
A New Efficient VLSI Architecture for Full Search

Block Matching Motion Estimation

Nuno Roma and Leonel Sousa
lnstituto Superior Tecnico /INESC-ID, Lisboa, Portugal

Abstract: A new efficient type I architecture for motion estimation in video sequences

based on the Full-Search Block-Matching (FSBM) algorithm is proposed in

this paper. This architecture presents minimum latency, maximum throughput

and full utilization of the hardware resources, combining both pipelining and

parallel processing techniques. The implementation of an array processor for

motion estimation in a single-chip using 0.25 Ilm CMOS technology is

presented. Experimental results show that this processor is able to estimate

motion vectors in 4CIF video sequences at a rate of 16 frames/so

Key words: Motion Estimation, Block Matching, Array Architectures, Specialized

Processors.

1. INTRODUCTION

In the last few years, video coding systems have been assuming an

increasingly important role in several application areas tied in with digital

television, videophone and video-conference, video-surveillance and with

the storage of video data. Several video compression standards have been

established for these different applications [1], exploiting both spatial and

temporal redundancies of video sequences to achieve the required

compression rates. Among these techniques, motion-compensation has

proved to be a fundamental technique to improve interframe prediction in

video coding.

Motion estimation requires a huge amount of computations.

Consequently, a great research effort has been made to develop efficient

dedicated structures and specialized processors [6]. Due to their regular

processing scheme and simple control structures, FSBM algorithms have

been the most widely used in VLSI implementations, providing optimal
The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002

M. Robert et al. (eds.), SOC Design Methodologies

10.1007/978-0-387-35597-9_40

http://dx.doi.org/10.1007/978-0-387-35597-9_40

254 N. Roma, L. Sousa

estimation results and leading to fast and efficient processing structures.

Moreover, the sum of absolute differences (SAD) matching criteria has been

extensively applied in these processors, due to its simplicity and satisfactory

results.

Several different structures have been proposed over the last few years

[4][9][3][2]. Most of them are 2D or ID arrays derived from the Dependence

Graph (DG) of the FSBM algorithm. However, a comparative analysis of

these architectures shows that none of them provides a maximum and

constant throughput or a full utilization of the hardware resources.

The main goal of the research presented in this paper is the analysis and

development of a new and efficient array architecture for motion estimation

in video sequences based on the FSBM algorithm. This new architecture

uses the AB2 type architecture proposed by Vos [9] and its peculiar

processing scheme as the basis for the present research. In fact, it will be

shown that Vos' architecture can be significantly improved in what concerns

both the latency and the hardware requirements. The amount of memory

used to store the search area data can be substantially reduced .through a full

utilization of the hardware resources. Moreover, the time wasted to fill the

processor pipeline whenever a new reference block and search area are

needed can be avoided, by introducing in the architecture an extra layer with

pre-fetch registers.

The proposed architecture was described using fully parameterizable

IEEE-VHDL code and its functionality was thoroughly tested. Fast

arithmetic units for addition and absolute difference computation were also

designed based on prefix-adder and binary adder-tree structures. An

integrated circuit for motion estimation was developed, by making use of the

proposed architecture and using a standard cell library of a CMOS - 0.25 Jllll

technology process. Experimental results show that the implemented circuit

is able to estimate motion vectors in 4CIF video sequences at a rate of 16

frames/so

2. FSBM ARCmTECTURES

In this section, the efficiency of the main systolic architectures proposed

over the last few years for the FSBM algorithm is compared. Those

architectures can be regarded as regular arrays of Processor Elements (PEs),

where each PE computes the SAD similarity measure. The number of PEs

that composes the array defines the concurrency level of the estimation

process, which is usually dependent on the used performance versus circuit

area trade-off.

A New Efficient VLSI Architecture for FSBM Motion Estimation 255

(x,y) ¢= (0,0) {motion vector initialization}
SAD(x,y) ¢= 00

for c = -p to P do {(2p+l) x (2p+l) search area}
forl=-ptopdo

SAD(c,l) <= 0 {SAD similarity measure initialization}
for u = 0 to N do {N x N reference rnacroblock}

forv=OtoNdo

SAD(c,l) += I R(u,v) - S(c+u,l+v) I
end for

end for
if SAD(c,l) < SAD(x,y) then

(x,y) = (c,l) ; SAD(x,y) = SAD(c,l)

end if
end for

end for
return (x,y) {motion vector = (x,y)}

Figure O. FSBM algorithm using the SAD similarity function.

The FSBM algorithm can be described using the four nested loops

presented in Figure 0: the inner (u,v) loops perform the matching calculation

for a given candidate macroblock, while the outer (c,l) loops are responsible

for the displacements inside the search area, to test all the considered

candidate macroblocks. The specific characteristics of a given FSBM

architecture are defined by the considered configuration and by the set of

loops that are executed in parallel. Assuming, for example, that the index 1 in

the algorithm of Figure 0 is set to a fixed value and that each PE performs

the primitive operation SAD, a 3D DG can be derived [5]. Systolic structures

can be derived by applying the usual operations to project the DG and obtain

array structures defined in lower dimensional spaces: index projection, time

scheduling and graph folding [5]. Architectures are usually classified

according to the set of projections performed, giving rise to ID structures if

mUlti-projection techniques are applied. Their execution time is dependent

on the specific arrangement of data supply and on the number of projections

performed in the retiming procedure.

One of the first discussions about FSBM architectures classification was

presented by Komarek and Pirsch [4]. They discussed the characteristics of a

set of 2D and ID arrays, obtained by reducing the dimension of the original

DG using traditional index projection, time scheduling and graph folding

techniques [5]. The main difference between these arrays is the exploited

processing concurrency, implying the usage of different structures and

different number of PEs (#PE). The so called type I - AB2 bidimensional

structure requires #PE=N 2, while the AS2 type array uses #PE=Nx(2p+l).

By projecting the DG twice, one-dimensional arrays are obtained, such as

the ABl structure, with #PE=N, and the ASl structure, with #PE=2p+ 1.

Vos and Stegherr [9] proposed an improved version of the type I - AB2

two-dimensional structure, which presents some significant advantages in

256 N. Roma, L Sousa

what concerns the processing time. They also proposed another structure that

was obtained by reversing the processing order of the four loops of the

FSBM algorithm: by indexing the inner loops with the variable pair (c,l), all

candidate macroblocks are considered whenever a different pixel of the

reference macroblock is read from the frame memory at a given clock cycle.

Another type I architecture was proposed by Hsieh [3], with some

improvements in what concerns the transfer of data into the processing

circuit. In his proposal, the candidate macroblock pixels are supplied as a

series of one-dimensional data through a set of delay elements. Chang [2]

proposed an alternative notation for the DG representation in order to

improve the four loop based model: instead of nodes and links, he repeatedly

allocated a two dimension (u,v) projection (slice) in the (c,l) two­

dimensional space (tiling). Under certain particular conditions, Chang's

model provides a hardware utilization rate very close to the optimal (100%).

However, this is only possible if multiple data input lines are used.

Array processors can be classified according to their performance level,

which is related to the required number of clock cycles (n to estimate the

motion vectors. This last measure is usually the most important figure of

merit used to compare architectures intended to work in real time. The

values of #PE and T of the referred architectures are presented in 1.

For comparison purposes, it was also considered the limit situation

corresponding to a processor array with a single PE, which was designated

by SinglePE architecture. It is worth noting that, in practice, the real values

of T can be significantly greater than those presented in Table 1. Frequently,

extra clock cycles are necessary to fill the pipeline and dummy results are

often computed to preserve a regular data flow.

The circuit area (A *) and the processing time (T*) of the considered

architectures were estimated by parameterizing the set of expressions

presented in Table 1 in terms of k = pIN. The obtained results are presented

in Figure 1 and Figure 2, respectively, using logarithmic scales to

accommodate the large range of values.

Table 1. FSBM structures.

Architecture #PE T

SinglePE 1 N Z x (2p+l)z

ABl N Nx (2p+l) x (2p+N)

ASl 2p+l Nx (2p+N) x (2p+l)

typeI-AB2 NxN (2p+1) x (2p+N)

type 1- Vas NxN (2p+l)2

type I - Hsieh NxN (2p+N)2

AS2 Nx (2p+l) Nx (2p+l)

type II (2p+l) x (2p+l) N 2

A New Efficient VLSI Architecture for FSBM Motion Estimation 257

..... ASI
14.4

........ -'$.

Type 1 -ABZ, '1M. HMh

..... A.92
loa -+- Type II

10'

- I I I I I I I
I I I I I 1 I
I I I 1 I 1 I
I I I 1 I 1 I
I I I 1 I 1 I

0,0 0.2 0,' 0,6 0,8 1,0 1,2 I,' I ,' 1,8 2,0

Figure 1, Circuit area (A *) in function of k=plN (N=16).

10'
.....,. I I I I I 1 1
-.-ABt, ASI I I I I I I I

10' Typol · "'" ___ TypeI . Yoe I I I I
__ Typo, . _ I I I

..... I
10' TypeU '-r--

1

I I I

10' __ .. --- I-----t-----t----t----J.----L----

_ _ __ ____ ____ ____ .1 ____ J. ____ L ____ L ___ _
I I 1 I I I I
I I I I I I I

I I I I I 1 I I I
10' - --t-----;----'1----;----;-----t----'t'----'t'----t-----

I 1 I 1 1 1 I I 1
I 1 1 1 I 1 I I 1

0,0 0 ,2 0,' 0,. 0,. 1.0 1.2 I ,' I,' I,. 2.0

Figure 2. Processing time (T*) in function of k=plN (N=16).

In AB I and type I architectures the circuit area is independent of the

search window size (N and N 2 processing elements, respectively), while in

ASI, AS2 and type 1/ structures it increases significantly with the dimension

of this window. Therefore, these last structures are usually advantageous for

small sized search windows (p :::; NI2), while the formers offer advantages for

greater search areas. In what concerns the processing time, while for most

architectures it increases with the search window size, it remains constant for

the type 1/ structure. This result was already expected, since one PE is used

to compute the similarity measure of each candidate macroblock.

Among all these array structures, the type I architecture proposed by Vos

and Stegherr [9] was recognized as being one of the most efficient

structures [7]. Its main advantages are the short processing time and the

limited amount of required hardware resources, when compared with the

other bidimensional structures. However, this architecture still has some

non-exploited features, which can be used to significantly improve its

efficiency in terms of hardware requirements and parallelism level. In the

next section, a new efficient array architecture is proposed.

258 N. Roma, L. Sousa

3. A NEW ARRAY ARCIDTECTURE

The proposed architecture, designated by "New-AB2", is based on Vos

architecture but presents some significant improvements in two different

aspects: i) processor structure; ii) data transfer. Due to the similarities

between the processing schemes of these two architectures, the description

of the proposed structure is done by contrasting its optimized characteristics

with those presented by Vos and Stegherr [9] . Therefore, references to Vos

architecture will be done whenever it shows to be convenient.

3.1 Processor Structure

The diagram shown in Figure 3 illustrates the main differences between

the archHecture proposed by Vos, represented using solid and dotted style

lines (-), and the lie..w-AB2 architecture, represented with solid and

dot-dashed style lines r).
Like other type I bidimensional structures, each pixel of the reference

macroblock is assigned to one of the N 2 PEs that compute the SAD

similarity function (designated by active PEs). Besides this active block, the

processor proposed by Vos is also composed by two passive blocks with

2p x N passive PEs, which are appended to each side of the active block (see

Figure 3). Each passive PE is composed by running-data registers for the

displacement and storage of search area pixels. Both the reference

macroblock and the search area pixels are transferred into the processor

. i'
, . 1 : .. : I.;J L: . I.;.L.L: :
: .. : •••• : •. ;'" ,t., :.-:

:.t ... I..: l.i L: ... L:
:P.,ss/"'.:.. ·········:Pus /v.:.e· ········:Passl'll'-.·
: •• i i ..•••••••• i

d(c,t)

R.f.rence
Mocroblock

.=:=. New

:::::::: Vo.

Figure 3. Type I processor array for FSBM motion estimation, considering each

reference macroblock with N x N pixels (N = 3) and the search area

composed by (N+2p) x (N+2p) pixels (p = 1).

A New Efficient VLSI Architecture for FSBM Motion Estimation 259

a) t = To

MVc =(-1,-1)

f) t = To+5

MVc =(1 ,2)

b) t= To+1

MVc =(0,-1)

IIIIII§I
g) t = To+6

MVc =(1,1)

1§liillllllill§1
00
00
00
00

c) t = To+2 d) t = To+3 e) t= To+4

MVc =(0,0) MVc =(0,1) MVc =(0,2)

h) t = To+7 i) t = To+8 j) t= To+9

MVc =(1,0) MVc =(1,-1) MVc =(2 ,-1)

Figure 4. Zig-zag data flow of search area pixels in Vas architecture (N=4, p=2).

through two vertical input register chains, with length Nand 2p+N,

respectively.

Within the PE array, search area pixels can be displaced in three

directions: upwards, downwards and to the left. If at a given clock cycle one

column with 2p+N pixels of the search area is fed into the structure through

the set of 2p+N upper inputs, all search area pixels within the PE array are

simultaneously shifted one position to the left. During the next 2p+ 1 clock

cycles, search area data is shifted downwards one position per cycle.

Meanwhile, the pixels corresponding to different candidate macroblocks are

transferred through the several active PEs, which provide one SAD

similarity value at each clock cycle. After 2p+ 1 shift-down operations,

another left shift of the search area is performed and a new column of pixels

is fed in the right side of the array. However, this column is now loaded

through the 2p+N lower inputs. This alternation of input positions in the

input register chain is repeated along the search process. During the next

2p+ 1 clock cycles, search area data is shifted upwards in a similar manner as

described above, being shifted to the left after 2p+ 1 clock cycles. This zig­

zag processing scheme provides fast processing capabilities, preventing the

need for dummy clock cycles between two adjacent lines of the search area.

These extra cycles are often required by other architectures to displace

search area data inside the array [4][3].

The processing scheme of Vos architecture can be represented in a

simplified way by the sequence of states shown in Figure 4. The fraction of

the search area being processed by the structure at a given clock cycle was

represented using a solid-line rectangle, whereas those leaving or entering

the processor were represented using a dashed-line rectangle. The bottom

dashed-line rectangles represent search area fractions entering the processor

in the next clock cycle, while the top dashed-line ones represent search

fractions leaving the array, corresponding to the start of the search procedure

in a new row of candidate macroblocks.

260 N. Roma, L Sousa

DOD •••• DOD
DOD •••• DOD
DO D •••• DOD
DOD •••• DOD

a) b)

Figure 5. Rearrangement of the processor array: (a) - planar processor; (b) - the pair of

passive blocks is superimposed by disposing the processor over a cylindrical

surface.

From Figure 4 it is possible to realize that in an array composed by N 2

active PEs and by 2xN(2p-l) passive PEs, used to process search fractions

with Nx(N+2p-l) pixels, half of the total amount of passive PEs, Nx(2p-l),

are not being used. However, these passive PEs are required whenever

search area pixels are displaced into their registers. The proposed solution to

overcome this drawback consists in disposing the Vos planar structure over a

cylindrical surface, as it is shown in Figure 5. By doing so, since the pair of

passive blocks is superimposed, one can naturally discard one of them, using

the other to displace the search area pixels. Nevertheless, it is worth noting

that the zig-zag processing scheme can still be applied to this modified

structure, preserving the properties of Vos architecture but keeping all PEs

busy at any instant.

A simplified block diagram of the proposed new-AB2 structure is

presented in Figure 6. The cylindrical structure of Figure 5(b) is obtained by

connecting the passive PEs located on the right margin of the passive block

with the active PEs of the left margin of the active block, as it was shown in

Figure 3. The processing scheme of this architecture is shown in Figure 7

for the same setup of Figure 4.

Contrasting with the architecture proposed by Vos, this structure does not

require the usage of passive PEs not carrying useful data at some clock

... CT E B L.OC I(

MOTION VECTOR

•••• DDD

•••• DDD

•••• DDD

•••• DDD
R E'ElieNee

MACIIIO.LOCK I
INPUT

SI!ARCH Atu.

Figure 6. Simplified diagram of the proposed new-AB2 structure.

A New Efficient VLSI Architecture/or FSBM Motion Estimation 261

III IIIII§I !iii •••
1 ___ ._._---_.1

a) I = To b) t=To+ l c) t= To+2 d) 1= To+3 e) t = To+4

MVc =(-1,- 1) MVc= (O,- I) MVc =(0,0) MVc =(0,1) MVc =(0,2)

JIIII[!iii III 6-i. ••• 0 •••
'----_ . _ __ ._.1

j) t = To+5 g) t = To+6 h) 1= To+7 i) t = To+8 j) t = To+9
MVc =(1,2) MVc =(1,1) MVc =(1,0) MVc =(1 .-1) MVc =(2,-1)

Figure 7. Zig-zag data flow of search area pixels in the proposed new-AB2 architecture

(N=4,p=2) .

cycles. Moreover, the zig-zag processing scheme of Vos architecture is

preserved, thus maintaining its recognized efficiency properties. However,

while Vos architecture requires [N+2x(2p-l)]xN registers, in the proposed

architecture only [N+(2p-l)]xN registers are necessary. The chart

presented in Figure 8 shows the variation of the number of registers required

by both structures to perform the displacement of search area pixels, by

considering N= 16 and k=plN. The line-chart represented with the D marks

shows the relation between the number of registers required by both

architectures. This relation is about 60% for k=1 (P=N) and 55% for k=2

(P=2N).

2500 100%

VOII

I! 2000
__ .-.A821 VOII 1%1

- - 80%

I
",

c! . 1500 60% B
:::

40%! .
1000

li !

!
e

500 20% j

0 0"'-

0 0.2 0.4 0.6 0.8 1,2 1.4 1.6 1.8 2

Figure 8. Relation between the required number of displacement registers in Vos

architecture and in the new-AB2 architecture.

3.2 Data Transfer

Many motion estimation architectures require extra clock cycles between the

processing of adjacent lines of the search area to displace the search data

inside the array [4][3]. Moreover, additional clock cycles are often spared in

many architectures between the processing of consecutive reference

262 N. Roma, L. Sousa

Figure 9. Prefetch layer used to load the internal registers in transparent mode.

macroblocks, to insert and remove unused or already processed data from

the array [9][3]. In both situations, these extra clock cycles often lead to the

loss of a significant amount of time.

Although the zig-zag processing scheme proposed by Vos provides the

means to avoid the time loss associated with the displacement of search data

inside the array, it does not prevent from sparing extra clock cycles between

the processing of consecutive reference macroblocks. To attenuate this

problem, Vos proposed the usage of running-data registers to store the pixels

corresponding to the next reference macroblock while the current reference

macroblock was being processed in the so called standing-data registers.

When this processing is concluded, the next reference macroblock can then

be instantaneously transferred from the running-data registers to the

standing-data registers.

However, this transfer mechanism is not sufficient to eliminate the need

for extra clock cycles, since search area data still has to be loaded into the

array. To circumvent this limitation, a new data transfer method based on the

usage of an additional pre-fetch layer (see Figure 9) is now proposed. With

such a structure, it is now possible to pre-load both the reference and part of

the search area data corresponding to the next reference macroblock, while

the current macroblock is being processed. Data stored in the so-called

transparent layer is transferred to the processing layer as soon as the last

candidate macroblock is processed. Therefore, not only does this structure

preload the reference macroblock data like Vos structure does (by using the

so-called running-data registers), but it also enables a simultaneous

prefetching of the search area data, making it possible to compute a new

SAD similarity value in every clock cycle.

It is worth noting that this improved transfer scheme does not imply any

increase of the data input bandwidth. In fact, during the processing of a

given reference macroblock, it is now necessary to load (N+2p-l)x(2p-l)

pixels corresponding to the current search area, (N+2p-l)xN pixels

corresponding to the next search area and N 2 pixels of the next reference

macroblock, which is exactly the same amount of data that would be

A New Efficient VLSI Architecture for FSBM Motion Estimation 263

required if no transparent layer was used. However, this efficiency

improvement implies the usage of some more registers: with the proposed

new-AB2 structure 2x[N+(2p-l)]xN registers are required, while with the

original Vos architecture [N+2x(2p-l)]xN registers are used, thus leading to

an increase of N 2 registers. In a typical implementation, with N=16 and k=1

(p=N=16), it represents an increase of only 20.5%, which can be easily

tolerated if the achieved performance gains are taken into account.

4. EXPERIMENTAL RESULTS

The desired efficiency level of the proposed processor can only be

achieved if its implementation is carried out in conjunction with a careful

study of the blocks that more significantly affect its overall performance,

trying to minimize its processing critical path. The most time consuming

operations performed by the processor are those involved in the computation

of the SAD similarity measure: addition, subtraction and absolute value

computation. Consequently, gate level optimizations must be considered in

order to obtain the shortest critical path as possible [8].

The description of the several blocks that compose the processor was

carried out using IEEE-VHDL description language. To achieve the required

characteristics in what concerns the processor configurability, this

description was focused on easily obtaining fully parameterizable VHDL

code, by making extensive use of \ generic' type configuration inputs.

Furthermore, in order to achieve the required optimization levels of the

several processing structures, a fully structural description of the main

blocks of the processor was carried out by using the most elementary logic

operations provided by the implementation library.

A FSBM chip based on the proposed architecture was designed with

Synopsys synthesis tools and Cadence design tools, using a standard cell

library based on a 0.25 J.UD CMOS technology process. The implemented

processor is composed by 16x16 active PEs (N=16), with a search range

from -15 to +16 pixels (p=16). Since the active PE is the most important

module, a careful optimization procedure was carried out in terms of area

and speed. The total area of the implemented chip is about 16.07 mm2, with

a total pin-count of 56. The main characteristics of the processor are

presented in Table 2 and Table 3.

The chip is able to deliver 28.6 OOPs at 36.5 MHz over typical voltage

and temperature ranges, giving rise to a total of 1.78 OOPs / mm2• In each

clock cycle, each of the N 2 active PEs computes one difference, one absolute

value and one accumulation operation; each of the (210g2 N -1) adder-tree PEs

computes one addition; and the comparator unit computes one comparison.

264 N. Roma, L. Sousa

Table 2. Algorithm characteristics. Table 3. Chip characteristics.

Algorithm FSBM Process 0.25 J1I11 CMOS - IP5M

Block size* 16 x 16 Supply voltage 2.5V 13.3V
Search range* -IS, +16 Die size 4 x 4 mm
Max. resolution* 4CIF 16 framesls Active PE area 32,184.2 Ilm2

* - configurable Max. frequency 36.5 MHz

Pin count 56

S. CONCLUSIONS

A new efficient type I architecture for motion estimation in video sequences

was proposed in this paper. This architecture presents minimum latency,

maximum throughput and full utilization of the hardware resources. These

optimized characteristics were achieved through the development of a new

processing scheme for the processor array and through the introduction of an

extra pre-fetch layer to avoid the need for extra clock cycles to transfer the

data between the processor and the video coding system. Experimental

results proved that this architecture can be used to implement the existing

ITU-T H.26x and ISO MPEG video coding standards, with configurable

search ranges and video quality tradeoffs. The implemented processor is able

to estimate motion vectors in 4CIF video sequences at a rate of 16 frames/so

6. REFERENCES

[1] V. Bhaskaran and K. Konstantinides., Image and Video Compression Standards:

Algorithms and Architectures, Kluwer Academic Publishers, 2nd edition, June 1997.

[2] S. Chang, J. H. Hwang, and C. W. Jen., Scalable Array Architecture Design for Full

Search Block Matching, IEEE Transactions on Circuits and Systems for Video

Technology, 5(4):332-343, August. 1995.

[3] C. H. Hsieh and T. P. Lin., VLSI Architecture for Block Matching Motion Estimation

Algorithm, IEEE Transactions on Circuits and Systems for Video Technology,

2(2):169-175, June 1992.

[4] T. Komarek and P. Pirsch, Array Architectures for Block Matching Algorithms, IEEE

Transactions on Circuits and Systems, 36(10):1301-1308, October. 1989.

[5] S. Y. Kung, VLSI Array Processors, Prentice Hall, 1988.

[6] Y. Ooi, Motion Estimation System Design, in K. Parhi and T. Nishitani (eds.): Digital

Signal Processing for Multimedia Systems, Marcel Dekker Inc., chap. 12: 299-327, 1999.

[7] K. K. Parhi and T. Nishitani, editors, Digital Signal Processing for Multimedia Systems,

Marcel Dekker, Inc., 1999.

[8] N. Roma, L. Sousa, Implementation Aspects of MESA Processor, Technical Report,

INESC-ID, RT/OO 11200 1 , January, 2001.

[9] L. Vos and M. Stegherr, Parameterizable VLSI Architectures for the Full-Search Block­

Matching Algorithm. IEEE Transactions on Circuits and Systems, 36(10):1309-1316,

October 1989.

	A New Efficient VLSI Architecture for Full SearchBlock Matching Motion Estimation
	1. INTRODUCTION
	2. FSBM ARCmTECTURES
	3. A NEW ARRAY ARCIDTECTURE
	3.1 Processor Structure
	3.2 Data Transfer

	4. EXPERIMENTAL RESULTS
	5
. CONCLUSIONS
	6. REFERENCES

