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Abstract: A new efficient type I architecture for motion estimation in video sequences 

based on the Full-Search Block-Matching (FSBM) algorithm is proposed in 

this paper. This architecture presents minimum latency, maximum throughput 

and full utilization of the hardware resources, combining both pipelining and 

parallel processing techniques. The implementation of an array processor for 

motion estimation in a single-chip using 0.25 Ilm CMOS technology is 

presented. Experimental results show that this processor is able to estimate 

motion vectors in 4CIF video sequences at a rate of 16 frames/so 
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1. INTRODUCTION 

In the last few years, video coding systems have been assuming an 

increasingly important role in several application areas tied in with digital 

television, videophone and video-conference, video-surveillance and with 

the storage of video data. Several video compression standards have been 

established for these different applications [1], exploiting both spatial and 

temporal redundancies of video sequences to achieve the required 

compression rates. Among these techniques, motion-compensation has 

proved to be a fundamental technique to improve interframe prediction in 

video coding. 

Motion estimation requires a huge amount of computations. 

Consequently, a great research effort has been made to develop efficient 

dedicated structures and specialized processors [6]. Due to their regular 

processing scheme and simple control structures, FSBM algorithms have 

been the most widely used in VLSI implementations, providing optimal 
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estimation results and leading to fast and efficient processing structures. 

Moreover, the sum of absolute differences (SAD) matching criteria has been 

extensively applied in these processors, due to its simplicity and satisfactory 

results. 

Several different structures have been proposed over the last few years 

[4][9][3][2]. Most of them are 2D or ID arrays derived from the Dependence 

Graph (DG) of the FSBM algorithm. However, a comparative analysis of 

these architectures shows that none of them provides a maximum and 

constant throughput or a full utilization of the hardware resources. 

The main goal of the research presented in this paper is the analysis and 

development of a new and efficient array architecture for motion estimation 

in video sequences based on the FSBM algorithm. This new architecture 

uses the AB2 type architecture proposed by Vos [9] and its peculiar 

processing scheme as the basis for the present research. In fact, it will be 

shown that Vos' architecture can be significantly improved in what concerns 

both the latency and the hardware requirements. The amount of memory 

used to store the search area data can be substantially reduced .through a full 

utilization of the hardware resources. Moreover, the time wasted to fill the 

processor pipeline whenever a new reference block and search area are 

needed can be avoided, by introducing in the architecture an extra layer with 

pre-fetch registers. 

The proposed architecture was described using fully parameterizable 

IEEE-VHDL code and its functionality was thoroughly tested. Fast 

arithmetic units for addition and absolute difference computation were also 

designed based on prefix-adder and binary adder-tree structures. An 

integrated circuit for motion estimation was developed, by making use of the 

proposed architecture and using a standard cell library of a CMOS - 0.25 Jllll 

technology process. Experimental results show that the implemented circuit 

is able to estimate motion vectors in 4CIF video sequences at a rate of 16 

frames/so 

2. FSBM ARCmTECTURES 

In this section, the efficiency of the main systolic architectures proposed 

over the last few years for the FSBM algorithm is compared. Those 

architectures can be regarded as regular arrays of Processor Elements (PEs), 

where each PE computes the SAD similarity measure. The number of PEs 

that composes the array defines the concurrency level of the estimation 

process, which is usually dependent on the used performance versus circuit 

area trade-off. 
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(x,y) ¢= (0,0) {motion vector initialization} 
SAD(x,y) ¢= 00 

for c = -p to P do {(2p+l) x (2p+l) search area} 
forl=-ptopdo 

SAD(c,l) <= 0 {SAD similarity measure initialization} 
for u = 0 to N do {N x N reference rnacroblock} 

forv=OtoNdo 

SAD(c,l) += I R(u,v) - S(c+u,l+v) I 
end for 

end for 
if SAD(c,l) < SAD(x,y) then 

(x,y) = (c,l) ; SAD(x,y) = SAD(c,l) 

end if 
end for 

end for 
return (x,y) {motion vector = (x,y)} 

Figure O. FSBM algorithm using the SAD similarity function. 

The FSBM algorithm can be described using the four nested loops 

presented in Figure 0: the inner (u,v) loops perform the matching calculation 

for a given candidate macroblock, while the outer (c,l) loops are responsible 

for the displacements inside the search area, to test all the considered 

candidate macroblocks. The specific characteristics of a given FSBM 

architecture are defined by the considered configuration and by the set of 

loops that are executed in parallel. Assuming, for example, that the index 1 in 

the algorithm of Figure 0 is set to a fixed value and that each PE performs 

the primitive operation SAD, a 3D DG can be derived [5]. Systolic structures 

can be derived by applying the usual operations to project the DG and obtain 

array structures defined in lower dimensional spaces: index projection, time 

scheduling and graph folding [5]. Architectures are usually classified 

according to the set of projections performed, giving rise to ID structures if 

mUlti-projection techniques are applied. Their execution time is dependent 

on the specific arrangement of data supply and on the number of projections 

performed in the retiming procedure. 

One of the first discussions about FSBM architectures classification was 

presented by Komarek and Pirsch [4]. They discussed the characteristics of a 

set of 2D and ID arrays, obtained by reducing the dimension of the original 

DG using traditional index projection, time scheduling and graph folding 

techniques [5]. The main difference between these arrays is the exploited 

processing concurrency, implying the usage of different structures and 

different number of PEs (#PE). The so called type I - AB2 bidimensional 

structure requires #PE=N 2, while the AS2 type array uses #PE=Nx(2p+l). 

By projecting the DG twice, one-dimensional arrays are obtained, such as 

the ABl structure, with #PE=N, and the ASl structure, with #PE=2p+ 1. 

Vos and Stegherr [9] proposed an improved version of the type I - AB2 

two-dimensional structure, which presents some significant advantages in 
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what concerns the processing time. They also proposed another structure that 

was obtained by reversing the processing order of the four loops of the 

FSBM algorithm: by indexing the inner loops with the variable pair (c,l), all 

candidate macroblocks are considered whenever a different pixel of the 

reference macroblock is read from the frame memory at a given clock cycle. 

Another type I architecture was proposed by Hsieh [3], with some 

improvements in what concerns the transfer of data into the processing 

circuit. In his proposal, the candidate macroblock pixels are supplied as a 

series of one-dimensional data through a set of delay elements. Chang [2] 

proposed an alternative notation for the DG representation in order to 

improve the four loop based model: instead of nodes and links, he repeatedly 

allocated a two dimension (u,v) projection (slice) in the (c,l) two­

dimensional space (tiling). Under certain particular conditions, Chang's 

model provides a hardware utilization rate very close to the optimal (100%). 

However, this is only possible if multiple data input lines are used. 

Array processors can be classified according to their performance level, 

which is related to the required number of clock cycles (n to estimate the 

motion vectors. This last measure is usually the most important figure of 

merit used to compare architectures intended to work in real time. The 

values of #PE and T of the referred architectures are presented in 1. 

For comparison purposes, it was also considered the limit situation 

corresponding to a processor array with a single PE, which was designated 

by SinglePE architecture. It is worth noting that, in practice, the real values 

of T can be significantly greater than those presented in Table 1. Frequently, 

extra clock cycles are necessary to fill the pipeline and dummy results are 

often computed to preserve a regular data flow. 

The circuit area (A *) and the processing time (T*) of the considered 

architectures were estimated by parameterizing the set of expressions 

presented in Table 1 in terms of k = pIN. The obtained results are presented 

in Figure 1 and Figure 2, respectively, using logarithmic scales to 

accommodate the large range of values. 

Table 1. FSBM structures. 

Architecture #PE T 

SinglePE 1 N Z x (2p+l)z 

ABl N Nx (2p+l) x (2p+N) 

ASl 2p+l Nx (2p+N) x (2p+l) 

typeI-AB2 NxN (2p+1) x (2p+N) 

type 1- Vas NxN (2p+l)2 

type I - Hsieh NxN (2p+N)2 

AS2 Nx (2p+l) Nx (2p+l) 

type II (2p+l) x (2p+l) N 2 
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Figure 1, Circuit area (A *) in function of k=plN (N=16). 
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Figure 2. Processing time (T*) in function of k=plN (N=16). 

In AB I and type I architectures the circuit area is independent of the 

search window size (N and N 2 processing elements, respectively), while in 

ASI, AS2 and type 1/ structures it increases significantly with the dimension 

of this window. Therefore, these last structures are usually advantageous for 

small sized search windows (p :::; NI2), while the formers offer advantages for 

greater search areas. In what concerns the processing time, while for most 

architectures it increases with the search window size, it remains constant for 

the type 1/ structure. This result was already expected, since one PE is used 

to compute the similarity measure of each candidate macroblock. 

Among all these array structures, the type I architecture proposed by Vos 

and Stegherr [9] was recognized as being one of the most efficient 

structures [7]. Its main advantages are the short processing time and the 

limited amount of required hardware resources, when compared with the 

other bidimensional structures. However, this architecture still has some 

non-exploited features, which can be used to significantly improve its 

efficiency in terms of hardware requirements and parallelism level. In the 

next section, a new efficient array architecture is proposed. 
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3. A NEW ARRAY ARCIDTECTURE 

The proposed architecture, designated by "New-AB2", is based on Vos 

architecture but presents some significant improvements in two different 

aspects: i) processor structure; ii) data transfer. Due to the similarities 

between the processing schemes of these two architectures, the description 

of the proposed structure is done by contrasting its optimized characteristics 

with those presented by Vos and Stegherr [9] . Therefore, references to Vos 

architecture will be done whenever it shows to be convenient. 

3.1 Processor Structure 

The diagram shown in Figure 3 illustrates the main differences between 

the archHecture proposed by Vos, represented using solid and dotted style 

lines (-), and the lie..w-AB2 architecture, represented with solid and 

dot-dashed style lines r). 
Like other type I bidimensional structures, each pixel of the reference 

macroblock is assigned to one of the N 2 PEs that compute the SAD 

similarity function (designated by active PEs). Besides this active block, the 

processor proposed by Vos is also composed by two passive blocks with 

2p x N passive PEs, which are appended to each side of the active block (see 

Figure 3). Each passive PE is composed by running-data registers for the 

displacement and storage of search area pixels. Both the reference 

macroblock and the search area pixels are transferred into the processor 

. i' 
, . 1 ... . : .. : I.;J .... L: . I.;.L.L: : ..... 
: .. : •••• : •. ;'" .... ,t., :.-: ....... . . 

:.t ... I..: l.i .... L: ... L: ..... 
:P.,ss/"'.:.. ·········:Pus /v.:.e· ········:Passl'll'-.· 
: ........ •• i .......... i ..•••••••• i 

d(c,t) 

R.f.rence 
Mocroblock 

.=:=. New 

:::::::: Vo. 

Figure 3. Type I processor array for FSBM motion estimation, considering each 

reference macroblock with N x N pixels (N = 3) and the search area 

composed by (N+2p) x (N+2p) pixels (p = 1). 
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h) t = To+7 i) t = To+8 j) t= To+9 

MVc =(1,0) MVc =(1,-1) MVc =(2 ,-1) 

Figure 4. Zig-zag data flow of search area pixels in Vas architecture (N=4, p=2). 

through two vertical input register chains, with length Nand 2p+N, 

respectively. 

Within the PE array, search area pixels can be displaced in three 

directions: upwards, downwards and to the left. If at a given clock cycle one 

column with 2p+N pixels of the search area is fed into the structure through 

the set of 2p+N upper inputs, all search area pixels within the PE array are 

simultaneously shifted one position to the left. During the next 2p+ 1 clock 

cycles, search area data is shifted downwards one position per cycle. 

Meanwhile, the pixels corresponding to different candidate macroblocks are 

transferred through the several active PEs, which provide one SAD 

similarity value at each clock cycle. After 2p+ 1 shift-down operations, 

another left shift of the search area is performed and a new column of pixels 

is fed in the right side of the array. However, this column is now loaded 

through the 2p+N lower inputs. This alternation of input positions in the 

input register chain is repeated along the search process. During the next 

2p+ 1 clock cycles, search area data is shifted upwards in a similar manner as 

described above, being shifted to the left after 2p+ 1 clock cycles. This zig­

zag processing scheme provides fast processing capabilities, preventing the 

need for dummy clock cycles between two adjacent lines of the search area. 

These extra cycles are often required by other architectures to displace 

search area data inside the array [4][3]. 

The processing scheme of Vos architecture can be represented in a 

simplified way by the sequence of states shown in Figure 4. The fraction of 

the search area being processed by the structure at a given clock cycle was 

represented using a solid-line rectangle, whereas those leaving or entering 

the processor were represented using a dashed-line rectangle. The bottom 

dashed-line rectangles represent search area fractions entering the processor 

in the next clock cycle, while the top dashed-line ones represent search 

fractions leaving the array, corresponding to the start of the search procedure 

in a new row of candidate macroblocks. 
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DOD •••• DOD 
DOD •••• DOD 
DO D •••• DOD 
DOD •••• DOD 

a) b) 

Figure 5. Rearrangement of the processor array: (a) - planar processor; (b) - the pair of 

passive blocks is superimposed by disposing the processor over a cylindrical 

surface. 

From Figure 4 it is possible to realize that in an array composed by N 2 

active PEs and by 2xN(2p-l) passive PEs, used to process search fractions 

with Nx(N+2p-l) pixels, half of the total amount of passive PEs, Nx(2p-l), 

are not being used. However, these passive PEs are required whenever 

search area pixels are displaced into their registers. The proposed solution to 

overcome this drawback consists in disposing the Vos planar structure over a 

cylindrical surface, as it is shown in Figure 5. By doing so, since the pair of 

passive blocks is superimposed, one can naturally discard one of them, using 

the other to displace the search area pixels. Nevertheless, it is worth noting 

that the zig-zag processing scheme can still be applied to this modified 

structure, preserving the properties of Vos architecture but keeping all PEs 

busy at any instant. 

A simplified block diagram of the proposed new-AB2 structure is 

presented in Figure 6. The cylindrical structure of Figure 5(b) is obtained by 

connecting the passive PEs located on the right margin of the passive block 

with the active PEs of the left margin of the active block, as it was shown in 

Figure 3. The processing scheme of this architecture is shown in Figure 7 

for the same setup of Figure 4. 

Contrasting with the architecture proposed by Vos, this structure does not 

require the usage of passive PEs not carrying useful data at some clock 

... CT . .... E B L.OC I( 

MOTION VECTOR 

•••• DDD 

•••• DDD 

•••• DDD 

•••• DDD 
R E'ElieNee 

MACIIIO.LOCK I 
INPUT 

SI!ARCH Atu. 

Figure 6. Simplified diagram of the proposed new-AB2 structure. 
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Figure 7. Zig-zag data flow of search area pixels in the proposed new-AB2 architecture 

(N=4,p=2) . 

cycles. Moreover, the zig-zag processing scheme of Vos architecture is 

preserved, thus maintaining its recognized efficiency properties. However, 

while Vos architecture requires [N+2x(2p-l)]xN registers, in the proposed 

architecture only [N+(2p-l)]xN registers are necessary. The chart 

presented in Figure 8 shows the variation of the number of registers required 

by both structures to perform the displacement of search area pixels, by 

considering N= 16 and k=plN. The line-chart represented with the D marks 

shows the relation between the number of registers required by both 

architectures. This relation is about 60% for k=1 (P=N) and 55% for k=2 

(P=2N). 
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! 
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Figure 8. Relation between the required number of displacement registers in Vos 

architecture and in the new-AB2 architecture. 

3.2 Data Transfer 

Many motion estimation architectures require extra clock cycles between the 

processing of adjacent lines of the search area to displace the search data 

inside the array [4][3]. Moreover, additional clock cycles are often spared in 

many architectures between the processing of consecutive reference 
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Figure 9. Prefetch layer used to load the internal registers in transparent mode. 

macroblocks, to insert and remove unused or already processed data from 

the array [9][3]. In both situations, these extra clock cycles often lead to the 

loss of a significant amount of time. 

Although the zig-zag processing scheme proposed by Vos provides the 

means to avoid the time loss associated with the displacement of search data 

inside the array, it does not prevent from sparing extra clock cycles between 

the processing of consecutive reference macroblocks. To attenuate this 

problem, Vos proposed the usage of running-data registers to store the pixels 

corresponding to the next reference macroblock while the current reference 

macroblock was being processed in the so called standing-data registers. 

When this processing is concluded, the next reference macroblock can then 

be instantaneously transferred from the running-data registers to the 

standing-data registers. 

However, this transfer mechanism is not sufficient to eliminate the need 

for extra clock cycles, since search area data still has to be loaded into the 

array. To circumvent this limitation, a new data transfer method based on the 

usage of an additional pre-fetch layer (see Figure 9) is now proposed. With 

such a structure, it is now possible to pre-load both the reference and part of 

the search area data corresponding to the next reference macroblock, while 

the current macroblock is being processed. Data stored in the so-called 

transparent layer is transferred to the processing layer as soon as the last 

candidate macroblock is processed. Therefore, not only does this structure 

preload the reference macroblock data like Vos structure does (by using the 

so-called running-data registers), but it also enables a simultaneous 

prefetching of the search area data, making it possible to compute a new 

SAD similarity value in every clock cycle. 

It is worth noting that this improved transfer scheme does not imply any 

increase of the data input bandwidth. In fact, during the processing of a 

given reference macroblock, it is now necessary to load (N+2p-l)x(2p-l) 

pixels corresponding to the current search area, (N+2p-l)xN pixels 

corresponding to the next search area and N 2 pixels of the next reference 

macroblock, which is exactly the same amount of data that would be 
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required if no transparent layer was used. However, this efficiency 

improvement implies the usage of some more registers: with the proposed 

new-AB2 structure 2x[N+(2p-l)]xN registers are required, while with the 

original Vos architecture [N+2x(2p-l)]xN registers are used, thus leading to 

an increase of N 2 registers. In a typical implementation, with N=16 and k=1 

(p=N=16), it represents an increase of only 20.5%, which can be easily 

tolerated if the achieved performance gains are taken into account. 

4. EXPERIMENTAL RESULTS 

The desired efficiency level of the proposed processor can only be 

achieved if its implementation is carried out in conjunction with a careful 

study of the blocks that more significantly affect its overall performance, 

trying to minimize its processing critical path. The most time consuming 

operations performed by the processor are those involved in the computation 

of the SAD similarity measure: addition, subtraction and absolute value 

computation. Consequently, gate level optimizations must be considered in 

order to obtain the shortest critical path as possible [8]. 

The description of the several blocks that compose the processor was 

carried out using IEEE-VHDL description language. To achieve the required 

characteristics in what concerns the processor configurability, this 

description was focused on easily obtaining fully parameterizable VHDL 

code, by making extensive use of \ generic' type configuration inputs. 

Furthermore, in order to achieve the required optimization levels of the 

several processing structures, a fully structural description of the main 

blocks of the processor was carried out by using the most elementary logic 

operations provided by the implementation library. 

A FSBM chip based on the proposed architecture was designed with 

Synopsys synthesis tools and Cadence design tools, using a standard cell 

library based on a 0.25 J.UD CMOS technology process. The implemented 

processor is composed by 16x16 active PEs (N=16), with a search range 

from -15 to +16 pixels (p=16). Since the active PE is the most important 

module, a careful optimization procedure was carried out in terms of area 

and speed. The total area of the implemented chip is about 16.07 mm2, with 

a total pin-count of 56. The main characteristics of the processor are 

presented in Table 2 and Table 3. 

The chip is able to deliver 28.6 OOPs at 36.5 MHz over typical voltage 

and temperature ranges, giving rise to a total of 1.78 OOPs / mm2• In each 

clock cycle, each of the N 2 active PEs computes one difference, one absolute 

value and one accumulation operation; each of the ( 210g2 N -1 ) adder-tree PEs 

computes one addition; and the comparator unit computes one comparison. 
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Table 2. Algorithm characteristics. Table 3. Chip characteristics. 

Algorithm FSBM Process 0.25 J1I11 CMOS - IP5M 

Block size* 16 x 16 Supply voltage 2.5V 13.3V 
Search range* -IS, +16 Die size 4 x 4 mm 
Max. resolution* 4CIF 16 framesls Active PE area 32,184.2 Ilm2 

* - configurable Max. frequency 36.5 MHz 

Pin count 56 

S. CONCLUSIONS 

A new efficient type I architecture for motion estimation in video sequences 

was proposed in this paper. This architecture presents minimum latency, 

maximum throughput and full utilization of the hardware resources. These 

optimized characteristics were achieved through the development of a new 

processing scheme for the processor array and through the introduction of an 

extra pre-fetch layer to avoid the need for extra clock cycles to transfer the 

data between the processor and the video coding system. Experimental 

results proved that this architecture can be used to implement the existing 

ITU-T H.26x and ISO MPEG video coding standards, with configurable 

search ranges and video quality tradeoffs. The implemented processor is able 

to estimate motion vectors in 4CIF video sequences at a rate of 16 frames/so 
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