

 Int. J. Hybrid Intelligence, Vol. 1, No. 1, 2019 5

 Copyright © 2019 Inderscience Enterprises Ltd.

A new energy-preserving cloud offloading algorithm
for smart mobile devices

Samar A. Said, Sameh A. Salem* and
Samir G. Sayed
Faculty of Engineering,
Department of Electronics, Communications
and Computer Engineering,
Helwan University,
Cairo, Egypt
Email: samar_said@h-eng.helwan.edu.eg
Email: sameh_salem@h-eng.helwan.edu.eg
Email: s.sayed@ee.ucl.ac.uk
*Corresponding author

Abstract: The advent of mobile devices becomes the way for various
technological developments in mobile communication and information
technology. However, mobile users expect to access computational intensive
applications through resource constrained mobile devices. Consequently the
growing demands for boosting the computations, storage and memory
resources became essential for mobile devices. A new trend to incorporate
mobile devices and cloud resources with the existence of the network
connectivity is named as mobile cloud computing (MCC). MCC is the greatest
solution to increase the application processing capabilities on mobile devices
by migrating the application to the cloud servers with on demand and unlimited
resources. This paper proposes a new energy-preserving cloud offloading
algorithm. The proposed algorithm estimates the application computational
time and uses multiple weighted parameters to give accurate offloading
decisions. Simulation results on various applications clarify that the proposed
algorithm is capable of estimating an application’s computation time with high
correlations compared with the real execution time. This improves the
offloading decision which actually preserves the energy and reduces the
execution time of mobile applications.

Keywords: mobile cloud; offloading decision; cloud computing; energy
preserving.

Reference to this paper should be made as follows: Said, S.A., Salem, S.A. and
Sayed, S.G. (2019) ‘A new energy-preserving cloud offloading algorithm for
smart mobile devices’, Int. J. Hybrid Intelligence, Vol. 1, No. 1, pp.5–22.

Biographical notes: Samar A. Said is a Demonstrator at the Faculty of
Engineering, University of Helwan, Cairo, Egypt. She received her Bachelor of
Engineering in Communication and Electronic Engineering from the University
of Helwan, Egypt in 2010. Her research interests are cloud computing, mobile
cloud computing, algorithms and data structure.

Sameh A. Salem earned his a BSc and MSc degrees in Electronics and
Communications Engineering from the Helwan University Egypt in May 1998
and October 2003 respectively. In 2008, he received his of PhD degree in
Engineering from the Department of Electrical Engineering and Electronics,

 6 S.A. Said et al.

The University of Liverpool, UK. His research interests include clustering
algorithms, machine learning, data mining, parallel computing, and cloud
computing. In 2014, he is promoted to be an Associate Professor and Honorary
Research Fellow at The University of Liverpool, UK. Currently, he is the
Department Head of Electronics, Communications, and Computer Engineering
at the Helwan University, Egypt.

Samir G. Sayed received his BS and MSc degrees from the Department of
Electronics and Engineering, Helwan University Egypt in 1996 and 2003
respectively. He received his PhD degree in Electronic and Electrical
Engineering from the University College London (UCL), UK in 2010. Since
2014, he is an Honorary Lecturer at the University College London (UCL),
UK. Since 2011, he is the Director of the Malware and Reverse Engineering
Department in the Egyptian Computer Emergency and Readiness Team
(EG-CERT). His research includes cyber security, malware analysis, and
wireless networks.

This paper is a revised and expanded version of a paper entitled ‘Energy aware
mobile cloud computing algorithm for android smartphones’ presented at
Proceedings of the International Conference on Advanced Intelligent Systems
and Informatics 2017, Egypt, 9–11 September 2017.

1 Introduction

With the huge improvements in the handheld devices as smartphones and tablet
computers, the request for these devices to run sophisticated and huge computational
applications is growing. These applications such as video processing, object recognition,
face recognition, augmented reality, games and natural language processing applications
need enormous power and memory. Also, these applications are used in multiple domains
as suggested by Zou et al. (2015), Bahrami (2015), Mohammadpour and Tafte (2016),
Lo’ai et al. (2016) and Zheng et al. (2016). From the other hand, these applications are
not fulfilled by the resource constrained mobile devices due to the limited battery life and
processing power. To create the mobile device capable of running these applications with
increasing performance uses mobile cloud computing (MCC). MCC is an integration of
cloud computing, mobile computing and internet to get huge computational resources for
mobile users as proposed by Huang and Wu (2017). One of the prevalent techniques used
to enhance the application performance and minimise the energy consumption is a
computation offloading. Computation offloading is a procedure in which the intensive
computations of the application are migrating from a mobile device to the cloud server as
depicted in Figure 1.

The decision for the application execution place is may be locally on mobile device or
remotely by offloading the heavy computations to the cloud. Jagtap et al. (2014) suggests
that the offloading decision is on basis of the communication technology, application
type and the application model used as recommended by. There are many communication
technology are used in MCC research as Bluetooth, Wi-Fi, 3G and long term evolution
(LTE). Bluetooth used for exchange data through small distance of 10 m range and the
application models in Nkosi and Mekuria (2011), Doolan et al. (2008) and Kemp et al.
(2010) use the Bluetooth communication technology. Wi-Fi communication technology
is faster and provides higher bandwidth. It supports additional devices as compared with

 A new energy-preserving cloud offloading algorithm 7

Bluetooth. It works in 100 m range. Kemp et al. (2010), Cuervo et al. (2010), Chun et al.
(2011), Satyanarayanan et al. (2009), Huerta-Canepa and Lee (2010) and Wang et al.
(2013) use the Wi-Fi communication technology in their application model. Third
generation mobile communication (3G) is provide lower bandwidth and have more delay
than Wi-Fi communication technology. Previous researches as Kemp et al. (2010),
Cuervo et al. (2010), Chun et al. (2011), Altamimi et al. (2012) and Kosta et al. (2012)
use 3G communication technology. LTE supports high throughput from 15 Mbps to
100 Mbps with high mobility range and supports higher capacity for mobile users with
respect to 3G. Lin et al. (2013) uses LTE communication technology. Consequently, the
computation offloading decision can be influenced by the network cost, delay and
bandwidth. Furthermore, the nature application is an important metric for offloading
decision. There are many applications cannot be offload it because the application access
hardware resource as GPS, sensors and camera. As similar, when the application codes
build the user interface or handle interaction with a user. But, there are many applications
effective in MCC which have intensive computations as gaming applications suggested
by Joselli et al. (2012), Chen (2015), Zamith et al. (2011) and Kim (2015). Chen et al.
(2011), Huang et al. (2012) and Vecchio et al. (2015) use augmented reality applications,
health monitoring applications (Kulkarni et al., 2014; Hanen et al., 2016; Nkosi and
Mekuria, 2010), virus scan applications (Kosta et al., 2011) and image recognition
applications (Ayad et al., 2014; Somasundaram et al., 2011; Arshad et al., 2017). Also,
the application model for mobile cloud may changes based on design and objectives for
decision making such as application execution or energy efficiency. Many previous work
presented different mobile cloud application model as Java agent development
environment (JADE) (Qian and Andresen, 2015) is written in Java and uses Android
operating system. It adds an advanced computation offloading to Android application and
observes application and device to take the accurate decision for offloading. The
communication among the agents is done using Java (RMI) remote method invocation.
(Zhang et al., 2010) suggest a model in which partitioned the application into component
called weblets. A weblet represent a function that compute independent task. The weblets
offloading decision are based on multiple parameters as CPU load, user preference,
communication channel and battery level. Also, weblets may be platform dependent or
platform independent based on the programming technology used. Mobile assistance
using infrastructure (MAUI) (Cuervo et al., 2010) written all its application using C#.
MAUI is a model enabled an energy aware offloading of smartphone code to the cloud.
The offloaded code to a remote infrastructure is favourable for the purpose of energy
conservation. Marinelli (2009) uses Hadoop’s mapreduce implementation for distributed
data processing proposes a model used to process the extra-large dataset distributed
across servers cluster. (March et al., 2011) proposes named μcloud. μcloud is a model
focus on the development of applications using heterogeneous components to support
reusability and flexibility that may be run on mobile device or cloud server. In μcloud the
applications are showed as directed graph. When an application graph executed each
node inserts its output into subsequent nodes. Excloud (Ma et al., 2011) proposes VM
instance level computation offloading to the cloud. The model make on demand data or
code migration and executes computation offloading when mobile device resources are
insufficient or reached to a certain level. excloud needs runtime synchronisation VM on
cloud server and the mobile device. Chun et al. (2011) suggests clonecloud model that
offloads parts of the application execution to the mobile clone in the cloud. In Clonecloud

 8 S.A. Said et al.

it’s very important the synchronisation. Clonecloud supports thread level migration and
requires development of cost model for a particular application under various partitions,
where each partition executed separately on mobile device and the cloud server. Kemp et
al. (2010) supports offloading parts of applications to the cloud server and uses
previously defined tools for application development. It uses an unpretentious decision
technique for offloading in case of the server is available. In this paper, the design
objectives, the entities that effect on the computation offloading and the implementation
details of the proposed algorithm is shown below. The paper is presented as follows:
Section 2 describes the system architecture and the implementation details of the
proposed offloading algorithm, while Section 3 discusses and shows the results obtained.
Finally the paper is concluded in Section 4.

Figure 1 Mobile computation offloading (see online version for colours)

2 System architecture

In this section, the offloading estimator architecture will be introduced. It is built for
smart mobile devices that use Android operating system to enhance the applications
performance and the energy efficiency. Furthermore, the offloading architecture consists
of two parts; the first part is named as the smartphone part while the other is called the
cloud part as depicted in Figure 2. This architecture uses an offloading criterion to decide
which application modules should be offloaded to the cloud and which modules will
remain and run on the mobile device. This criterion uses multiple weighted parameters
such as (user waiting time threshold, execution time, energy consumption, remaining
battery time, available memory). In addition, the introduced architecture uses an
estimator that based on PI computation (Super PI, 2017) to estimate and predict the
computation time of a module before the real execution of the module. The robustness
and reliability of this method is verified by the complexity analysis of the tested modules.

2.1 Offloading estimator architecture

The proposed offloading estimator algorithm can offloads all or part of an application
execution on mobile devices or smartphones to a remote cloud or a nearby infrastructure
to achieve energy conservation and reduce the application’s execution time. This
architecture can be applied to any application partitioned into modules where heavy

 A new energy-preserving cloud offloading algorithm 9

computational modules can be offloaded into nearby or remote cloud, while other
modules can run locally on smartphone using the Android inter process communication
(IPC). In this context, the developer develops the application modules as services and
redirects the service invocation from the activity to the corresponding service module on
the cloud server without altering the application source code.

2.1.1 The smartphone part
As demonstrated in Figure 2, the smartphone part is composed of four components
(module estimator, module logger, module decision engine, module offloading director).
The detailed function of each component is described as follows.

Figure 2 The architecture of the offloading estimator model (see online version for colours)

2.1.1.1 Module estimator
The module estimator is one of the key parts in the offloading architecure. It is essential
to predict the time which is needed to execute an application before the real execution of
an application. Therefore, it is required to foresee the execution time to provide the
ultimate value of the time needed by an application to run on any computing devices such
as a mobile device or a cloud. As a consequence, this can get correct decisions for
offloading. Many researches (Engblom et al., 2003; Chen et al., 2005; Kirner et al., 2009;
Schoeberl et al., 2010) have been worked on the prediction of execution time. Therefore
for simplification purposes, this architecture is augmented with PI calculation method for
reliable estimation of application module executing time. This estimation criterion is

 10 S.A. Said et al.

validated by applying the complexity of the application module. Table 1 show the
parameters used in the module estimator and its description.
Table 1 List of parameters used by the module estimator

Parameter Description Unit
S

PT The estimated execution time on smartphone Second

C
PT The estimated execution time onto the cloud Second

I The number of instructions Instructions
Ss The processor speed of smartphone Instruction per second
SC The processor speed of cloud Instruction per second
SPI The speed when using PI calculation method Instructions per second

k
PII The number of instructions to get the PI constant for k

terms
Instructions

k
PIT The number of instructions to get the PI constant for k

terms
Instructions

∝PI The load factor when using PI calculation method -

∝C The load factor when using the complexity method -

Firstly to illustrate the PI calculation method, the predicted time to run an application
module on a smartphone or onto the cloud can be computed as in equation (1) and (2)

S
P

S

IT
S

= (1)

C
P

C

IT
S

= (2)

It should be noted that the PI constant uses the main dominant operations as addition,
subtraction, multiplication and division and is computed using Gregory’s series formula
for k terms of PI series (Borwein et al., 2004):

0

(1)
2 1

ik

i
PI

i=

−=
+ (3)

The speed of a computing device (SPI) can be obtained by the use of PI calculation
method as in equation (4):

k
PI
k
PI

I
TPIS = (4)

In this paper, the PI method is applied for various application modules such as loops,
nested loops, N-Queens, sorting, matrix multiplication, brute force attack and face
detection. For particular application module, the execution time is estimated using the PI
calculation method for different inputs n as depicted in equation (5)

n
i

PI
PI

IT
S

= (5)

 A new energy-preserving cloud offloading algorithm 11

where n
iI is the number of instructions for the ith module with n inputs. When applying

comprehensive tests, a noticeable load parameter factor (α) comes up as in equation (6):

realT
TPI

PI
∝ = (6)

This load factor for the ith module is almost constant with different inputs. Therefore, this
parameter becomes a good indicator for estimating the application module execution
time.

For the time complexity method, the focus is on getting the growth rate of the
execution time as a function of the input size n taking a ‘big-picture’ approach. For
example, it is regularly sufficient just to know that the execution time of an algorithm
rises proportionally to n (Goodrich and Tamassia, 2008). Therefore to estimate the
execution time for the ith module, the proposed method use of the unit time execution of
the PI constant for the computing device and multiply it by the time complexity of the ith
module as in equation (7).

(1) ()C iT t t n= × (7)

where t(1) is unit time execution of the PI constant in the computing device, while ti(n) is
the time complexity the ith module.

Similarly, a load factor (α) for each module is calculated as in equation (8):

realT
TPI

PI
∝ = (8)

For the purpose of validations, the proposed estimation methods are performed on
different application modules. Results give that the predicted execution time has high
correlation with the real execution time as shown in Table 2.
Table 2 The correlation between the estimated and real execution times

Application Loop Nested
loop

N-
Queens

Bubble
sort

Matrix
multiplication

Brute
force
attack

Face
detection

Using PI 0.99 0.99 0.93 0.99 0.99 0.99 0.99
Using
complexity

0.99 0.99 0.99 0.99 0.99 0.98 0.98

2.1.1.2 Module logger
It acts as a profile for each application module. It stores the module’s execution time on
the smartphone and on the cloud. It should be noted that the module estimator is
providing the module logger with such data for future executions of the application
module.

2.1.1.3 Module decision engine
The offloading decision engine is the core of the proposed model. Therefore, this module
is responsible for deciding whether is beneficial for an application module to run local on

 12 S.A. Said et al.

smartphone or to remotely run onto the cloud server. Figure 3 illustrates the workflow of
the offloading decision algorithm. In addition, Table 3 shows the parameters used in the
workflow and its description. Therefore for a given application module, the following
subsequent steps should be applied to get the desirable offloading decision:

Step 1 Initialise the following coefficients CW, CE, CT, CR, CM and Doffload with zero and
then test the server and network availability if OK, go to step 2. Otherwise go to
step 9.

Step 2 Find the time to execute the application module on a smart phone Tsmartphone and
TCloud the total time to execute on cloud as in equations (9) and (10):

smartphone S
PI

IT
S

= (9)

cloud C
PI

I DT RTT
S BW

= + + (10)

Step 3 Find the waiting time threshold Twaiting that is specified by a user and then
compare Twaiting with Tsmartphone. If the user waiting time is greater than the
execution time on the smartphone, then the waiting time coefficient is assigned
with –1. Otherwise it’s assigned with +1.

Step 4 Find the energy consumption of executing the application module on the
smartphone and on the cloud server namely Esmartphone, ECloud respectively as
depicted in equation (11) and (12). Then compare Esmartphone, ECloud, if ECloud is
greater than Esmartphone the energy coefficient is assigned with –1, else assign it
with +1.

,smartphone cpu active smartphoneE P T= × (11)

, ,cloud network active cpu idle cloud
DE P RTT P T

BW
 = × + + ×

 (12)

Step 5 Find the remaining time on smartphone battery TRemaining and then compare it
with the execution time on smartphone and the communication time for sending
or receiving data to the cloud. If TRemaining is greater than TCommunication or lower
than Tsmartphone, the remaining battery time coefficient is assigned with +1.
Otherwise assign it with –1.

Step 6 Find the available memory on smartphone Mavail and the threshold of available
memory at which the memory is considered to be low Mth. If Mavail is lower than
Mth, the memory coefficient is assigned with +1. Else, assign it with –1.

Step 7 Calculate the final offloading decision Doffload using the weights W0, W1, W2, W3
and W4 based on priorities of user preferences as in equation (13). Finally, if the
offloading decision is greater than or equal zero, go to step 8. Otherwise go to
step 9.

0 W 1 E 2 T 3 R 4 MW C + W C + W C + W C + W CoffloadD = (13)

Step 8 It is favourable to offload the application module to cloud.

 A new energy-preserving cloud offloading algorithm 13

Step 9 It is beneficial to running the application module on smartphone.

Figure 3 The workflow of the proposed offloading decision algorithm

 14 S.A. Said et al.

Table 3 List of parameters used in the workflow and its description

Variable Description Unit
Tsmartphone The application module execution time on smartphone Second
TCloud The application module execution time on cloud Second
Tcommunication The communication time Second
TWaiting The waiting time threshold Second
I The number of instructions Instructions

S
PIS Speed of smartphone using PI Instructions per second

C
PIS Speed of cloud using PI Instructions per second

RTT The round trip time Second
D The data size to be transferred to/from the cloud Bytes
BW Bandwidth of the network Bytes per second
Esmartphone Energy consumed when executing the application on

smartphone
Joule

ECloud Total Energy consumed when executing the application on
cloud

Joule

Pcpu, idle Smartphone idle power Watt
Pcpu, active Active power of CPU on smartphone Watt
Pnetwork, active Power consumed when send or receive data Watt
Mavail Available memory on the smartphone Megabytes
Mth Threshold of the available memory at which the memory is

considered low
Megabytes

CW Waiting time coefficient -
CE Energy coefficient -
CT Execution time coefficient -
CR Remaining battery time coefficient -
CM Memory coefficient -
Wi Weighting variables ∈ [0:1] as the user preference such

that the ∈ [0:4], ΣiWi = 1
-

Doffload Final offloading decision -

2.1.1.4 Module director
This module is in charge of executing the application module based on the decision taken
by the offloading decision algorithm. If the decision is to execute the application module
on the smartphone, the module director calls the local service implementation from the
mobile part. But, if the decision is favour to execute onto the cloud, the module director
redirects the call to the cloud executor to execute the corresponding service
implementation of the module onto the cloud. Finally, the module director will deliver
the execution results to the application activity.

 A new energy-preserving cloud offloading algorithm 15

2.1.2 The cloud part
The cloud part contains the cloud executor component which is a java application
responsible for installing the offloaded modules to the cloud. Afterward, the module
service is initialised and invoked when getting a decision from the module offloading
director. It should be noted that the module service can be executed on any machine
having Java standard edition (SE). When an application is firstly executed, an archived
file (JAR File) will be sent and stored at the cloud server for future executions. Whenever
the module source code is modified, only the archived file of the module service will be
resent. After the execution of the module, the results send back to application activity.

2.2 Implementation details

This section demonstrates the workflow methodology of the offloading estimator
architecture. The proposed offloading architecture gives the developer an easy way to
offload the application modules to the cloud or to run it on the mobile. This architecture
is based on a modular technique. In which, the application developer segments the
application into modular parts, where each module act as a service and performs a
particular function. The application may have a user interface for user interactions or
activities for accessing sensors or cameras. It should be noted that either a user interface
or a local activity are not considered as candidate modules for offloading. For a candidate
module, two replicas of the same module service are used. The first replica is named as a
local service for local executions on the smartphone. The latter contains the same
implementation for remote executions on the cloud and is called a remote service which
can be updated by the developer. In this paper, the offloading architecture is developed
and applied on android platform. As known, the main components of an android
application are activities, services, content provider and broadcast receiver (Gargenta,
2011). In this context, the proposed work uses activities and services components. To
allow an application activity to connect to a service (module), a predefined interface
which is named as Android interface definition language (AIDL)
(Developer.android.com, 2017) is used through the inter-process communication (IPC).
The communication between AIDL module service and activities is achieved as follows:

• when the application activity requests to invoke a particular method in a service

• the activity directs a call to the identical method in the proxy

• the proxy is in charge of the connection of the service for rendering the needed
method

• but, the proxy cannot linked to service directly, it must firstly connects to the stub
that call the local service and then return results back to the proxy

• the proxy takes the results and sends them to the caller activity.

It is need to clarify that the android build system is augmented with the offloading model.
Consequently, the developer can write the implementation for the module service using
AIDL interface. The module service can be run on the smartphone or offloaded onto the
cloud based on the offloading decision. Afterward, each time a developer compiles the
module, through ant tool (Ant.apache.org, 2017), an archive file (JAR file) for the remote
implementations of the cloud is formed and sent the cloud. Then, the cloud executor in

 16 S.A. Said et al.

the cloud part is in charge of handling the offloaded modules requests and installing the
JAR files. After that, it invokes and initialises the module service.

3 Simulation results

This section shows the simulation results and discusses the performance evaluation of the
proposed algorithm. Table 5 shows various applications to examine the proposed
algorithm. Furthermore, a real application such as face detection is used. The proposed
algorithm allows the user to select an image and then apply the face detection module
service on either the mobile device or onto the cloud.

3.1 Experimental setup

The experiments are performed using Samsung galaxy N8100 with android platform as
mobile part and a cloud with a core i3 2.3 GHZ CPU. To evaluate the proposed model,
seven applications with various input sizes and computational resources are tested.
Table 4 explores the specifications of the mobile and cloud parts.
Table 4 Mobile and cloud specifications

Parameters Mobile part Cloud part
Operating system Android v4.0.3 Windows 7, 64-bit
Processing speed Dual core 1.5 GHZ Core i3 2.3 GHZ
RAM 1 GB 4 GB
Storage 16 GB 250 GB
Battery capacity Li-Ion 1750 mAh -

Table 5 The application modules description

No. Application Description
1 Loops Execute loops for n times
2 Nested loops Execute nested loops for n times
3 Sort Sort set of n integer numbers using bubble sort
4 Matrix multiplication Multiply n × n matrix
5 N-Queens problem Solve N-Queens problem with different n
6 Brute-force attack Crack n characters (0–9 and a–z)

3.2 Results and discussion

For the purpose of validation, the proposed algorithm is tested on a real world and
commonly used mobile application to examine its suitability and reliability. In this
context, the face detection application is used as it requires intensive computations and
consumes much of the mobile energy. In this paper, the faces are detected using OpenCV
version 2.4.11 which supports Java desktop development compatible to the Android
environment. The face detection operation is performed using Haar cascade classifiers

 A new energy-preserving cloud offloading algorithm 17

that are introduced by Viola and Jones (2001). Figure 4 depicts a set of tested images
before and after applying the face detection application.

Figure 4 (a) The tested images (b) The images after applying the face detection application
(see online version for colours)

(a)

(b)

Figure 5 The execution time on mobile and onto the cloud server after offloading (see online
version for colours)

To examine the effect of applying the offloading, the energy consumptions and execution
times for each module of the face detection application are computed at different images
with various sizes. Figure 5 and 6 show the execution time and the energy consumption
before and after applying the proposed offloading algorithm. As shown, the offloading
gives better energy consumptions specifically for high computational modules. It should
be noted that the increase in the image size leads to an increase in the execution time on

 18 S.A. Said et al.

the mobile device. Therefore by exploiting the cloud resources, the execution time and
energy consumption are improved. The execution time when applying the offloading is
the summation of the execution time on cloud server plus the communication time for
sending/receiving the application module to/from the cloud server.

Figure 6 The energy consumption on mobile and the cloud server after offloading (see online
version for colours)

Further experiments have been carried out to examine the reliability of the proposed
offloading algorithm. For this purpose, six different application modules are tested.

Table 5 presents the description of application modules.
Table 6 describes the application modules evaluations with different input with

respect to the execution time and energy consumption. As shown, for the loop module,
the offloading is always preferred for both the execution time and energy consumption
because the input size is very large. While in nested loop module with smaller input sizes,
it is beneficial to execute the module locally as the offloading requires large execution
times. This is because the communication time exceeds the execution time on the mobile
device. In bubble sort and matrix multiplication modules, when the array contains a small
set of numbers, the offloading does not give any improvements in energy consumption
and execution time. As a consequence it is favourable to execute locally on the mobile
device. But for higher sizes, the offloading become a most convenient and suitable
solution. Likewise in N-Queens problem, when the input size is less than or equal nine,
the offloading is not preferable where the local execution on the mobile is better than the
remote execution. For the brute force attack, there are large trials of generated numbers
and characters to find the desired user password. Consequently, this application module is
considered a high computational module specifically when the password digits are
increased. So, it is preferred to offload this module rather than executing it locally on the
mobile device.

 A new energy-preserving cloud offloading algorithm 19

Table 6 The execution time and energy consumption for the various application modules with
different input sizes

Application module Input size
Execution time in (sec) Energy consumption in (J)
Mobile Offloading Mobile Offloading

Loop (iterations) 2E + 06 1.632 0.53 0.653 0.025
4E + 06 3.497 0.547 1.399 0.025
6E + 06 5.201 0.563 2.081 0.025
8E + 06 6.868 0.578 2.747 0.025

10E + 06 8.606 0.599 3.442 0.025
Nested loop (iterations) 1E + 04 0.319 0.542 0.128 0.025

3E + 04 2.297 0.834 0.919 0.026
5E + 04 6.075 1.385 2.43 0.027
7E + 04 11.453 2.168 4.581 0.029
9E + 04 18.543 3.201 7.417 0.031

Bubble sort (numbers) 1E + 03 0.031 1.008 0.012 0.05
5E + 03 0.344 1.088 0.138 0.051

10E + 03 1.296 1.264 0.518 0.052
15E + 03 3.113 1.651 1.245 0.054
20E + 03 5.36 2.054 2.144 0.056

Matrix multiplication 100 × 100 0.092 1.086 0.037 0.053
300 × 300 1.366 1.892 0.546 0.082
500 × 500 7.605 3.892 3.042 0.143
700 × 700 24.98 7.679 9.992 0.239
900 × 900 57.698 15.431 23.079 0.361

N-Queens 8 0.054 0.54 0.022 0.025
9 0.26 0.621 0.104 0.025
10 0.914 0.824 0.366 0.026
11 3.13 1.852 1.252 0.027
12 10.471 8.052 4.189 0.042

Brute-force attack Crack 3
characters

0.893 0.827 0.357 0.026

Crack 4
characters

28.916 11.842 11.566 0.051

Crack 5
characters

954.228 391.251 381.691 0.885

 20 S.A. Said et al.

4 Conclusions

This paper has introduced a new energy-preserving mobile cloud offloading algorithm.
The proposed algorithm can successfully reduce the energy consumption of mobile
devices and enhance the performance of applications. As demonstrated, the application to
be executed is partitioned into modules, where each module acts as a service to be run on
the mobile device or on a cloud server. Furthermore, the introduced algorithm uses
multiple weighted parameters to decide which modules of an application should be
executed and offloaded onto the cloud and which modules will reside and run locally on
the mobile device. For the purpose of validation, the proposed architecture is tested on
real world applications to examine its suitability and reliability. The results showed a
remarkable saving on both the energy and the execution time when using the proposed
mobile cloud offloading algorithm.

References
Altamimi, M., Palit, R., Naik, K. and Nayak, A. (2012) ‘Energy-as-a-service (EaaS): on the

efficacy of multimedia cloud computing to save smartphone energy’, in IEEE 5th
International Conference on Cloud Computing (CLOUD), IEEE, June, pp.764–771.

Ant.apache.org (2017) Apache Ant – Welcome [online] http://ant.apache.org/ (accessed 5 October
2017).

Arshad, H., Chun, L.M., Obeidy, W.K. and Yee, T.S. (2017) ‘An efficient cloud based image target
recognition SDK for mobile applications’, International Journal on Advanced Science,
Engineering and Information Technology, Vol. 7, No. 2, pp.496–502.

Ayad, M., Taher, M. and Salem, A. (2014) ‘Real-time mobile cloud computing: a case study in face
recognition’, in 28th International Conference on Advanced Information Networking and
Applications Workshops (WAINA), May, IEEE, pp.73–78.

Bahrami, M. (2015) ‘Cloud computing for emerging mobile cloud apps’, in 3rd IEEE International
Conference on Mobile Cloud Computing, Services and Engineering (MobileCloud), IEEE,
March, pp.4–5.

Borwein, J.M., Bailey, D.H. and Bailey, D. (2004) Mathematics by Experiment: Plausible
Reasoning in the 21st Century, p.103, AK Peters, Natick, MA.

Chen, M., Ling, C. and Zhang, W. (2011) ‘Analysis of augmented reality application based on
cloud computing, in 4th International Congress on Image and Signal Processing (CISP),
IEEE, October, Vol. 2, pp. 569-572.

Chen, S., Liu, Y., Gorton, I. and Liu, A., (2005) ‘Performance prediction of component-based
applications’, Journal of Systems and Software, Vol. 74, No. 1, pp.35–43.

Chen, X. (2015) ‘Decentralized computation offloading game for mobile cloud computing’, IEEE
Transactions on Parallel and Distributed Systems, Vol. 26, No. 4, pp.974–983.

Chun, B.G., Ihm, S., Maniatis, P., Naik, M. and Patti, A. (2011) ‘Clonecloud: elastic execution
between mobile device and cloud’, in Proceedings of the Sixth Conference on Computer
Systems, ACM, April, pp.301–314.

Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu, S., Chandra, R. and Bahl, P.
(2010) ‘MAUI: making smartphones last longer with code offload’, in Proceedings of the 8th
International Conference on Mobile Systems, Applications and Services, ACM, June,
pp.49–62.

Developer.android.com (2017) Android Developers, Android Interface Definition Language
(AIDL) [online] https://developer.android.com/guide/components/aidl.html (accessed 5
October 2017).

 A new energy-preserving cloud offloading algorithm 21

Doolan, D.C., Tabirca, S. and Yang, L.T. (2008) ‘Mmpi a message passing interface for the mobile
environment’, in Proceedings of the 6th International Conference on Advances in Mobile
Computing and Multimedia, ACM, November, pp. 317–321.

Engblom, J., Ermedahl, A., Sjödin, M., Gustafsson, J. and Hansson, H. (2003) ‘Worst-case
execution-time analysis for embedded real-time systems’, International Journal on Software
Tools for Technology Transfer (STTT), Vol. 4, No. 4, pp.437–455.

Gargenta, M. (2011) Learning Android, O’Reilly Media, Inc, USA.
Goodrich, M.T. and Tamassia, R. (2008) Data Structures and Algorithms in Java, John Wiley &

Sons, USA.
Hanen, J., Kechaou, Z. and Ayed, M.B. (2016) ‘An enhanced healthcare system in mobile cloud

computing environment’, Vietnam Journal of Computer Science, Vol. 3, No. 4, pp.267–277.
Huang, B.R., Lin, C.H. and Lee, C.H. (2012) ‘Mobile augmented reality based on cloud

computing’, in International Conference on Anti-Counterfeiting, Security and Identification
(ASID), IEEE, August, pp.1–5.

Huang, D. and Wu, H. (2017) Mobile Cloud Computing: Foundations and Service Models, Morgan
Kaufmann, USA.

Huerta-Canepa, G. and Lee, D. (2010) ‘A virtual cloud computing provider for mobile devices’, in
Proceedings of the 1st ACM Workshop on Mobile Cloud Computing & Services: Social
Networks and Beyond, ACM, June, p.6.

Jagtap, V.S., Pawar, K.V. and Pathak, A.R. (2014) ‘Augmented execution in mobile cloud
computing: a survey’, in International Conference on Electronic Systems, Signal Processing
and Computing Technologies (ICESC), IEEE, January, pp.237–244.

Joselli, M., Zamith, M., Silva, J., Clua, E.W.G., Feijó, B., Leal, R., Valente, L. and Soluri, E.
(2012) An Architecture for Mobile Games with Cloud Computing Module, SBGames, SBC,
Brazil.

Kemp, R., Palmer, N., Kielmann, T. and Bal, H.E. (2010) ‘Cuckoo: a computation offloading
framework for smartphones’, in MobiCASE, October, pp. 59–79.

Kim, S. (2015) ‘Nested game-based computation offloading scheme for mobile cloud IoT systems’,
EURASIP Journal on Wireless Communications and Networking, No. 1, p.229.

Kirner, R., Kadlec, A. and Puschner, P. (2009) ‘Precise worst-case execution time analysis for
processors with timing anomalies’, in 21st Euromicro Conference on Real-Time Systems,
ECRTS’09, IEEE, July, pp.119–128.

Kosta, S., Aucinas, A., Hui, P., Mortier, R. and Zhang, X. (2011) ‘Unleashing the power of mobile
cloud computing using thinkair’, Computing Research Repository (CoRR), pp.1–17,
abs/1105.3232 [online] https://arxiv.org/abs/1105.3232.

Kosta, S., Aucinas, A., Hui, P., Mortier, R. and Zhang, X. (2012) ‘Thinkair: dynamic resource
allocation and parallel execution in the cloud for mobile code offloading’, in INFOCOM, 2012
Proceedings IEEE, IEEE, March, pp.945–953.

Kulkarni, G., Shelke, R., Patil, P.B.N., Kulkarni, V. and Mohite, S. (2014) ‘Optimization in mobile
cloud computing for cloud based health application’, in Fourth International Conference on
Communication Systems and Network Technologies (CSNT), IEEE, April, pp. 569–572.

Lin, B.S.P., Tsai, W.H., Wu, C.C., Hsu, P.H., Huang, J.Y. and Liu, T.H. (2013) ‘The design of
cloud-based 4G/LTE for mobile augmented reality with smart mobile devices’, in IEEE 7th
International Symposium on Service Oriented System Engineering (SOSE), IEEE, March,
pp.561–566.

Lo’ai, A.T., Bakhader, W., Mehmood, R. and Song, H. (2016) ‘Cloudlet-based mobile cloud
computing for healthcare applications’, in Global Communications Conference
(GLOBECOM), IEEE, December, pp.1–6.

Ma, R.K., Lam, K.T. and Wang, C.L. (2011) Excloud: transparent runtime support for scaling
mobile applications in cloud’, in International Conference on Cloud and Service Computing
(CSC), IEEE, December, pp.103–110.

 22 S.A. Said et al.

March, V., Gu, Y., Leonardi, E., Goh, G., Kirchberg, M. and Lee, B.S. (2011) ‘μcloud: towards a
new paradigm of rich mobile applications’, Procedia Computer Science, Vol. 5, pp.618–624.

Marinelli, E.E. (2009) Hyrax: Cloud Computing on Mobile Devices using MapReduce (No. CMU-
CS-09-164), School of Computer Science, Carnegie-Mellon University, Pittsburgh PA.

Mohammadpour, S. and Tafte, F. (2016) ‘M-commerce: the state of the art, challenges and
cloud-based solutions’, in Eighth International Conference on Information and Knowledge
Technology (IKT), IEEE, September, pp.66–77.

Nkosi, M. and Mekuria, F. (2011) ‘Improving the capacity, reliability & life of mobile devices with
cloud computing’, in IST-Africa Conference Proceedings, IEEE, May, pp.1–9.

Nkosi, M.T. and Mekuria, F. (2010) ‘Cloud computing for enhanced mobile health applications’, in
IEEE Second International Conference on Cloud Computing Technology and Science
(CloudCom), IEEE, November, pp.629–633.

Qian, H. and Andresen, D. (2015) ‘Extending mobile device’s battery life by offloading
computation to cloud’, in 2nd ACM International Conference on Mobile Software Engineering
and Systems (MOBILESoft), IEEE, May, pp.150–151.

Satyanarayanan, M., Bahl, P., Caceres, R. and Davies, N. (2009) ‘The case for VM-based cloudlets
in mobile computing’, IEEE Pervasive Computing, Vol. 8, No. 4, pp.14–23.

Schoeberl, M., Puffitsch, W., Pedersen, R.U. and Huber, B. (2010) ‘Worst-case execution time
analysis for a Java processor’, Software: Practice and Experience, Vol. 40, No. 6,
pp.507–542.

Somasundaram, M., Gitanjali, S., Govardhani, T.C., Priya, G.L. and Sivakumar, R. (2011)
‘Medical image data management system in mobile cloud computing environment’,
Proceedings of International Conference on Signal, Image Processing and Applications
(ICSIPA 2011), Academic Press, Kuala Lumpur, Malaysia, pp.11-15.

Super PI (2017) Wikipedia [online] https://en.wikipedia.org/wiki/Super_PI (accessed 5 October
2017).

Vecchio, P., Mele, F., De Paolis, L.T., Epicoco, I., Mancini, M. and Aloisio, G. (2015) ‘Cloud
computing and augmented reality for cultural heritage’, in International Conference on
Augmented and Virtual Reality, Springer International Publishing, August, pp.51–60.

Viola, P. and Jones, M. (2001) ‘Rapid object detection using a boosted cascade of simple features’,
in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, CVPR 2001, IEEE, Vol. 1, p.1.

Wang, Y., Lin, X. and Pedram, M. (2013) A nested two stage game-based optimization framework
in mobile cloud computing system, in IEEE 7th International Symposium on Service Oriented
System Engineering (SOSE), IEEE, March, pp.494–502.

Zamith, M., Joselli, M., Clua, E.W.G., Montenegro, A., Leal-Toledo, R.C.P., Valente, L. and
Feijo, B. (2011) ‘A distributed architecture for mobile digital games based on cloud
computing’, in Brazilian Symposium on Games and Digital Entertainment (SBGAMES), IEEE,
November, pp.79–88.

Zhang, X., Jeong, S., Kunjithapatham, A. and Gibbs, S. (2010) ‘Towards an elastic application
model for augmenting computing capabilities of mobile platform’, in International
Conference on Mobile Wireless Middleware, Operating Systems, and Applications
(MOBILWARE), Springer, pp.161–174.

Zheng, J., Cai, Y., Wu, Y. and Shen, X.S. (2016) ‘Stochastic computation offloading game for
mobile cloud computing’, in IEEE/CIC International Conference on Communications in
China (ICCC), IEEE, July, pp.1–6.

Zou, Q., Wang, J. and Chen, X. (2015) ‘Secure encrypted image search in mobile cloud
computing’, in 10th International Conference on Broadband and Wireless Computing,
Communication and Applications (BWCCA), IEEE, November, pp.572–575.

