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agonist) as stand-alone therapeutics have revealed efficacy 

in the relief of the symptoms of AR patients. No anaphylaxis 

has been so far reported with such compounds targeting 

TLRs, with the most common adverse effects being transient 

and local irritation (e.g. redness, swelling and pruritus). Many 

other compounds that target TLRs have been found to sup-

press airway inflammation, eosinophilia and airway hyper-

responsiveness in various animal models of allergic inflam-

mation. Indeed, in the future a wide variability of TLR ago-

nists and even antagonists that exhibit anti-asthma/AR 

effects are likely to emerge.  © 2014 S. Karger AG, Basel 

 Introduction 

 Atopic asthma and allergic rhinitis (AR) represent two 
closely related allergic diseases of the respiratory system 
 [1] . The prevalence of these two diseases has increased 
over the past decades and, with respect to the costs, side 
effects and failures of conventional long-term symptom-
atic treatments or low compliance with allergen avoid-
ance, many efforts have been made to find novel thera-
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 Abstract 

 Toll-like receptors (TLR) belong to a large family of pattern 

recognition receptors known as the ancient ‘gatekeepers’ of 

the immune system. TLRs are located at the first line of de-

fense against invading pathogens as well as aeroallergens, 

making them interesting targets to modulate the natural his-

tory of respiratory allergy. Agonists of TLRs have been wide-

ly employed in therapeutic or prophylactic preparations use-

ful for asthma/allergic rhinitis (AR) patients. MPL ®  (a TLR4 

agonist) and the CpG oligodeoxynucleotide of 1018 ISS, a 

TLR9 agonist, show strong immunogenicity effects that 

make them appropriate adjuvants for allergy vaccines. Tar-

geting the TLRs can enhance the efficacy of specific allergen 

immunotherapy, currently the only available ‘curative’ treat-

ment for respiratory allergies. In addition, intranasal admin-

istration of AZD8848 (a TLR7 agonist) and VTX-1463 (a TLR8 
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peutics  [2] . So far, specific allergen immunotherapy (SIT) 
represents the only ‘etiologic’ treatment that directs to-
wards the basis of atopic respiratory disease and influ-
ences the natural history of AR and asthma  [3] . To de-
velop safer and more efficacious allergy vaccines or novel 
stand-alone therapeutics, innate immunity stands out as 
a major target since it is the first line of defense  [4, 5] . In-
nate immunity enables initial recognition of invading 
pathogens and presents them to the immune system to 
elicit an appropriate adaptive immune response. Pattern 
recognition receptors (PRRs) represent ancient and con-
served structures of the innate immune system with en-
dosomal, cell-membrane bound and soluble members 
that discriminate self from non-self  [6] . They recognize 
patterns that are common among invading pathogens 
and orchestrate subsequent immune responses  [7] . Toll-
like receptors (TLR), C-type lectin receptors, nucleotide-
binding oligomerization domain-like receptors and reti-
noic acid-inducible gene-1-like receptors are all members 
of the growing family of PRRs expressed in airway cells 
 [8, 9] . 

  TLRs exert dual roles in allergic diseases; activation of 
some TLRs offer sensitizations and breaking of the toler-
ance  [10–12] , while activation of some members of this 
family, particularly early in life, may promote tolerance 
to innocuous aeroallergens. The hygiene hypothesis sug-
gests that a reduced microbial burden in early childhood 
increases the susceptibility to allergic disease via deficient 
maturation of the immune system  [13] . Recently, the 
PASTURE study (Protection against Allergy: Study in 
Rural Environments) has shown that early-life exposure 
to a livestock farming environment, as well as drinking 
raw milk in the first year of life, reduces the chance of the 
allergic phenotype emerging by an overall increase in 
PRR gene expression  [14] . On the other hand, Holt et al. 
 [3]  introduced the 2-Hit model of asthma in which atopy 
together with viral respiratory infections such as rhinovi-
rus, respiratory syncytial viruses (RSV) and other respira-
tory viruses synergistically increase the risk of asthma in 
the presence of allergen exposure  [3, 15, 16] . This shows 
that not all infections and not all farming environments 
are protective. Interestingly, many triggers of asthma, 
such as environmental allergens and air pollutants, act in 
part via modulation in PRR expression and function  [17–
20] . Furthermore, the generation of reactive oxygen spe-
cies is increased in asthma and AR, with oxidative stress 
being one factor that causes exacerbation of disease. In-
terestingly, transcriptional factors activated through TLR 
signaling (e.g. NF-κB) are redox sensitive and several an-
ti-oxidant agents have been demonstrated to inhibit asth-

ma symptoms by reduction of reactive oxygen species 
generation  [21–24] . In addition, the consumption of pro-
biotics, which has been proposed to prevent allergic dis-
eases, might work via modulation of TLRs  [25–27] .

  TLRs are pivotal actors in shaping the effective and 
healthy adaptive immunity with the development of im-
mune deviation from the T-helper (Th) 2 to Th1 pheno-
type and maturation of T-reg cells  [28, 29] . Interestingly, 
the expression and function of TLRs  [30–34]  were dem-
onstrated to be different in patients with asthma/AR as 
compared to healthy subjects. This difference in immune 
defense may be one of the possible reasons for the in-
creased susceptibility to respiratory infections displayed 
by these patients. On the other hand, it has also been 
shown that impaired function of TLRs may be reversible 
through appropriate immunotherapy  [35]  or other med-
ications used frequently for patients with allergy  [36] . 
This observation offers real promise for immunothera-
peutic approaches to restore the protective immune re-
sponse in the airways of allergic subjects  [37] . In this re-
view, we summarize the results of studies   on   in vivo spe-
cific targeting of TLRs using animal models of allergic 
asthma, clinical trials I–IV and registries of clinical trials 
focused on specific targeting of TLRs in humans. The 
highest level of evidence provided by each study has been 
determined according to Oxford Centre for Evidence-
Based Medicine (OCEBM) 2011, and thereby the highest 
level of evidence for efficacy of each compound has been 
extracted (Box 1). The results are categorized under ap-
propriate subheadings. Overall, our review strongly sug-
gests that TLR targeting may arrest the disease progres-
sion of an allergic response either by induction of toler-
ance to allergens (e.g. SIT) and/or by redirecting the 
immune response away from the airways.

  Cell Surface TLRs 

 Cell surface TLRs have an active role in the identifica-
tion of structural components at the cell surface of invad-
ing pathogens. Wide varieties of gram-positive and nega-
tive bacteria, as well as some viruses such as RSV  [38, 39] , 
known as risk factors for triggering the allergic airway 
disease, are recognized by these TLRs. To expand signal-
ing, Toll/interleukin (IL)-1 receptor (TIR) domain-con-
taining adaptors are employed and, with the mediation of 
TIR domain-containing adaptor protein (TIRAP) and 
myeloid differentiation primary response gene 88 
(MyD88), a cascade is triggered that finally leads to the 
translocation of interferon regulatory factors 3/7, AP1 
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and NF-κB to the nucleus  [40] . These transcriptional fac-
tors enhance type 1 interferon, inflammatory cytokine 
and chemokine expression, as well as the induction of 
MUC gene expression ( fig. 1 )  [23, 41–44] . Targeting of 
these TLRs is based mainly on adjuvants of allergy vac-
cine, as seen in Pollinex ®  Quattro  [6] . Other therapeutic 
preparations with agonists or antagonists of cell surface 
TLRs are also described below.

  TLR1, 2, 6 and 10 

 TLR2 agonists may act as either allergenic or anti-aller-
gic agents based on the treatment schedule and materials. 
Pam3Cys and Pam3CSK4   (Pam3-Cys-Ser-Lys4) are syn-
thetic triacylated lipoproteins (TLR2/1 agonists) in which 
Pam3Cys was shown to promote a Th2-biased response 
and airway inflammation  [45] , while Pam3CSK4 reduced 
Th2 cytokine release, airway hyper-reactivity (AHR), IgE 
levels, airway inflammation and nasal symptoms in mu-
rine models of asthma and AR  [46–48] . In addition to the 
structural differences in the amino acid tail, these opposite 

effects may originate from the schedule of administration; 
protective effects of Pam3CSK4   have been reported when 
administrated after sensitization with a dose of 100 μg per 
mouse  [46, 47] , while Pam3Cys   was shown to be allergen-
ic when administered in combination with ovalbumin 
with a dose of 50 μg per mouse to induce sensitization  [45] . 
Interestingly, in vitro co-stimulation of peripheral blood 
mononuclear cells (PBMCs) obtained from atopic asth-
matics with Pam3CSK4 either during SIT  [49]  or outside 
of SIT  [50]  resulted in expanding the CD8+CD25+Foxp3+ 
T-reg population, suppression of CD4+ proliferation and 
dampening of the Th2 cytokine production. These find-
ings suggest that  Pam3CSK4 may be a good adjuvant for 
SIT. Certain TLR2 agonists that have shown anti-asthmat-
ic effects are described below. 

  Macrophage-Activating Lipopeptide-2 
 Macrophage-activating lipopeptide-2 or MALP-2 (evi-

dence from mechanism based studies, level 5) is a TLR2/6 
agonist obtained from  Mycoplasma fermentans . MALP-2 
can induce CD80 (B7–1), CD86 (B7–2), major histocom-
patibility complex I and II and CD40 expression in B cells 

 Box 1. Search strategy

To find relevant articles the databases of MEDLINE, Scopus 
and  EMBASE were searched with keywords of ‘TLR1–10’, 
‘airway’,  ‘asthma’, ‘allergy’, ‘rhinitis’, ‘CpG’, ‘AIC’, ‘QbG10’, 
‘AZD1419’, ‘AEV0675’, ‘SAR21609’, ‘IMO2134’, ‘VTX-1463’, 
‘R848’, ‘R837’,  ‘AZD8848’, ‘polyI:C’, ‘Resveratrol’, ‘ssDNA-ODN’, 
‘Capsazepinoids’, ‘MALP-2’, ‘Pam3Cys’, ‘Pam3CSK4’, ‘Zymosan’, 
‘Opr 1’, ‘LP40’, ‘MPL’, ‘PGA’, ‘CRX-675’, ‘E5564’ and ‘flagellin’. 
Furthermore, hand searching was performed by checking all 
reference lists of articles provided by the electronic search. No time 
limitation or language restriction was used and whenever the 
required data of publication was inaccessible, we contacted the 
corresponding author to provide it. It is of note to say that no 
preference was given to include studies and all in vivo studies that 
employed PRR agonists or antagonists in airway hyper-
responsiveness, whether on animal models or human subjects, were 
included in this review. Duplicated studies provided by searching 
the databases of MEDLINE, Scopus and EMBASE were excluded 
and preference was given to more recent and comprehensive in vitro 
studies. The highest level of evidence found in all possible sources 
from experimental studies to phase I–IV clinical trials in human 
subjects has been diligently summarized in this review. In accordance 
with ‘OCEBM 2011 Levels of Evidence’ and study design, the level 
of evidence provided by each study has been determined. According 
to OCEBM-2011, mechanism-based reasoning studies provide 
level 1, case series, case-control studies, or historically controlled 
studies provide level 2, non-randomized cohort studies provide level 
3, randomized trials provide level 2 and systematic review and meta-
analysis of randomized trials provide level 1 of evidence. 

On the other hand, since a large amount of data relating to 
this topic may be unpublished and therefore not indexed in 
searched databases, we also searched the International Clinical 
Trials Registry Platform (ICTRP) of the World Health 
Organization (WHO) with the same keywords to find registries 
that used agonists or antagonists of PRRs in human subjects 
with airway hyper-responsiveness (last update of December 
2012). ICTRP provides a monthly update of registries from the 
following registry systems: (1) Australian New Zealand Clinical 
Trials Registry (ANZCTR), (2) Chinese Clinical Trial Register 
(ChiCTR), (3) Clinical Research Information Service (CRiS), 
Republic of Korea, (4) ClinicalTrials.gov, national library of the 
USA, (5) Clinical Trials Registry – India (CTRI), (6) Cuban 
Public Registry of Clinical Trials (RPCEC), (7) EU Clinical 
Trials Register (EU-CTR), (8) German Clinical Trials Register 
(DRKS), (9) Iranian Registry of Clinical Trials (IRCT) ISRCTN.
org, (10) Japan Primary Registries Network (JPRN), (11) Pan 
African Clinical Trial Registry (PACTR), (12) Sri Lanka Clinical 
Trials Registry (SLCTR), and The Netherlands National Trial 
Register (NTR). Finally, after pooling all eligible studies whether 
published or unpublished, duplicated results were identified and 
excluded. 

With respect to the heterogeneity of the studies presented in 
this review in terms of study subjects (animal models or human 
subjects), variability in reporting of the results for upper or lower 
respiratory tract and wide spectrum of TLRs, a meta-analysis of 
various studies has not been performed. Finally, results of eligible 
studies have been explained in categorized subheadings.
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and dendritic cells (DCs)  [51, 52] . Furthermore, MALP-2 
has the ability to increase the release of interferon-γ 
(IFN-γ) from DCs in response to allergens  [53] . Mucosal 
delivery of MALP-2 via the intratracheal route resulted in 
a marked decrease in AHR, eosinophilia and Th2 cyto-
kines in a murine model of asthma  [54] . In addition, 
MALP-2 promoted airway neutrophilia and the produc-
tion of the IL-12 p70 subunit  [54] . Interestingly, it has 
been shown that MALP-2 is able to activate neutrophils to 
produce chemokines and stimulate T cell, B cell and natu-
ral killer cell accumulation in the lung of treated mice, with 
more potency in male and adult subjects  [55] . Bisacyloxy-
propylcysteine polyethylene glycol (BPPcysMPEG)   is a 
derivate of MALP-2 that is also capable of stimulating 
TLR2/6 and also has the ability to abrogate Th2 response 
and airway eosinophilia in murine asthma models  [56] . 
BPPcysMPEG exerts its immunomodulatory effects by in-

ducing production of IL-1β, chemokine (C-C motif) li-
gand 4 (CCL4; macrophage inflammatory protein-1β) 
and IL-10 in viable precision-cut slices of lung tissues 
in  vitro  [57] . Both systemic and local delivery of 
 BPPcysMPEG with allergens leads to the maturation of 
DCs and induction of appropriate adaptive immune re-
sponse against the allergen in sensitized mice  [58] . In mice 
sensitized to house dust mites (HDMs), BPPcysMPEG 
also reduced eosinophilia and Th2 cytokine production 
and enhanced TNF-α and IFN-γ generation accompanied 
by the induction of a Th1 response in bronchoalveolar la-
vage fluid and mediastinal lymph nodes  [59] .

  Lipoprotein 1 
 Lipoprotein 1 (Opr1; evidence from mechanism-based 

studies, level 5) is a TLR2/4 agonist obtained from  Pseu-
domonas aeruginosa , and can prime DCs and T cells to 
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  Fig. 1.   a  Cell surface TLRs include TLR1, 2, 
6, 10, 4 and 5. Their ligands are structures 
in the cell wall of invading pathogens as 
well as allergens like HDMs and short rag-
weed. Intracellular endosomal membrane-
bound TLRs include TLR3, TLR7, TLR8 
and TLR9. They recognize genetic materi-
als of viruses and bacteria. MyD88, TIRAP 
and TRIF are the main adaptor molecules. 
Interferon regulatory factor 3/7 (IRF3/7), 
P50 and P65, nuclear factor-kB (NF-kB) 
and AP1 transcription factors enhance ex-
pression of proinflammatory cytokines, 
chemokines and type 1 IFNs. TLR4 uses 
both of the MyD88-dependent and TRIF-
dependent pathways. Several inhibitors 
regulate the signaling cascade of PRRs at 
different steps and include: IL-1 receptor-
associated kinase-M (IRAK-M), suppres-
sor of cytokine signaling (SOCS), MAPK 
phosphatase-1 (MKP-1), Toll-interacting 
protein (TOLLIP) and TRAF family mem-
ber-associated NF-kB (TANK).  
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produce IL-12 and IFN-γ, respectively. Additionally, its 
co-administration with ovalbumin abolished the produc-
tion of IL-4, IL-13 and airway eosinophilia in a murine 
asthma model  [60] . Lipopeptide-CGP40774 (LP40;   evi-
dence from mechanism-based studies, level 5)   is a similar 
TLR2 agonist capable of shifting the immune response 
toward a Th1 profile, reducing IgE production, AHR and 
airway inflammation, and increasing the T-reg response 
 [25, 61] . Additionally, it has been shown that LP40 can 
suppress allergic airway dysfunction and accompanying 
airway eosinophilia in mice  [25, 61] . 

  TLR4/MD2/CD14  

 Targeting of TLR4 to modify asthma/AR is based on 
the activation of TLR4 as an adjuvant in allergy vaccines 
to induce tolerance, and the inhibition of expression and 
inflammatory function of TLR4 with a TLR4 antagonist. 
Since TLR4 is upregulated in patients with asthma/AR, its 
targeting via allergy vaccines seems to work efficiently; 
however, it should be done with caution to preserve the 
safety of patients. 

  Adjuvants of Allergy Vaccines  
 MPL ®  (monophosphoryl lipid A), a TLR4 agonist, is 

a detoxified derivate from  Salmonella minnesota  that is 
used in the Pollinex Quattro allergy vaccine (Allergy 
Therapeutics, Worthing, UK; phase IV clinical trial for 
AR, phase I/II for asthma). Pollinex Quattro is a glutar-
aldehyde modified  L -tyrosine adsorbed pollen allergen 
(formulations containing grass, flower and tree pollens 
are available) with MPL that can be administered via 
subcutaneous or sublingual routes. The dose of MPL ad-
ministered orally can be 15 times higher than that used 
in subcutaneous injection therapy. This TLR4 agonist 

has been evaluated in children over 6 years of age with 
similar safety and efficacy as compared with adult pa-
tients  [62] . Pre-seasonal ultra-short SIT with Pollinex 
Quattro can alter the course of respiratory allergy in ei-
ther the upper or lower respiratory tract  [63]  and its ben-
eficial effects have been shown to be sustained for over 
5 years  [63, 64] . Interestingly, it prevents new sensitiza-
tions and asthma development after the cessation of 
treatment  [64] . Along with clinical improvements, the 
immune profile of patients will be changed through im-
munotherapy with MPL serving as a strong inducer of 
the Th1 response  [65]  ( fig. 2 a). In post-marketing open 
clinical trials conducted by Rosewich et al.  [62, 66] , the 
symptom scores and medication requirements decreased 
during the 3 years following the first course of injection 
and were augmented with subsequent injections. In their 
experience, clinical improvements were associated with 
T-reg induction and shifting from IgE to blocking IgG 
production. Similarly, a pre-seasonal ultra-short course 
of Pollinex Quattro led to a decrease in lung inflamma-
tion in asthmatics in terms of oxidative stress markers 
such as 8-isoprostane in exhaled breath condensate  [63] . 
No life-threatening side effects were reported and tran-
sient local reactions were seen only with the dose of 2,000 
standard units (SU)/ml ( fig. 3 ). No toxicity with the safe-
ty margin used in the clinic was detected in experimental 
studies  [67] . Polymite ®  (evidence from mechanism-
based studies, level 5) is a glutaraldehyde-modified  L -ty-
rosine adsorbed mite ( Dermatophagoides pteronyssinus  
and  D. farina ) protein extract with MPL. The formula of 
10:   50:   20 mg/ml for protein:MPL:tyrosine is used in the 
Polymite vaccine. Subcutaneous injection of Polymite 
resulted in minimal side effects or toxicity with a low-
dose injection (0.1–1 ml/week for 13 weeks) in rodents 
 [68] . To the best of our knowledge no study has tested its 
efficacy to date. 

  Fig. 2.  Changes to the immune profile following immunotherapy 
with two well-studied vaccines containing TLR 4/9 agonists. Pol-
linex Quattro contains MPL, a TLR4 agonist, and AIC contains 
1018 ISS, a TLR9 agonist versus placebo.  a  Pollinex Quattro sched-
ule is as follows: weekly injection of up-dosing vaccine with 300–
2,000 SU, 2–8 weeks prior to the pollen season. It is safe and effi-
cient in abolishing symptoms of AR/asthma-sensitized patients to 
pollens. It also shifts the Th2 response toward Th1/T-reg and IgE 
toward IgG production. Of note, IgG production is differed based 
on pollen since Timothy and rPhl p 5 allergen-containing vaccines 
induced greater values of IgG than other pollens. The allergen-
specific lymphocyte proliferation response is increased with the 
maximum quantities prior to the last injection of Pollinex Quattro 

 [64, 136, 139] .  b  The AIC schedule is as follows: weekly injection 
of up-dosing AIC with 0.06–12.0 μg (Amb a 1:   1018 ISS molar ra-
tio of 1:   4). Tulic et al.  [129] , Asai et al.  [126]  and Creticos et al. 
 [127]  started their studies before the ragweed season of 2001, and 
Tulic et al.  [129]  and Creticos et al.  [127]  followed their partici-
pants until the ragweed season of 2002. Only assessed immuno-
logic variables with at least one significant change between active 
versus placebo have been stated (p < 0.05; significant). Nasal symp-
toms included rhinorrhea, pruritus, sneezing and nasal conges-
tion, and the chest symptoms included tightness, wheezing, cough 
and shortness of breath. Cytokines were measured using superna-
tant culture of fresh PBMCs from participants exposed with 100 
μg/ml ragweed  [126–129] . 

(For figure see next page.)
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  Monotherapy with TLR4 Agonist 
 All data are from mechanism-based studies, level 5 of 

evidence except CRX675 (phase I/II clinical trial for AR, 
level 2), which is an aqueous MPL compound, the intra-
nasal administration of which led to the reduction of na-

sal symptoms of AR patients only at a dose of 100 μg  [69] . 
A similar compound of   lipid-A   exerted anti-asthmatic 
effects in a murine model of asthma as monotherapy. In 
this model, it was able to reduce total serum IgE levels, 
AHR, airway eosinophilia and IL-13 production  [48] . 
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  Fig. 3.  Safety profile of two well-studied vaccines containing TLR4/9 
agonists. The side effects of allergy vaccines of Pollinex Quattro, 
which contains MPL, a TLR4 agonist, and AIC, which contains 1018 
ISS, a TLR9 agonist. The Pollinex Quattro with grass pollens and the 
same preparation with tree pollens elicited slightly higher local side 
effects    [137] .  a  The most common local adverse effects of subcuta-
neous immunotherapy (SCIT) with Pollinex Quattro as the active 
group include: redness or swelling (61/81, 75%), pain (19/81, 23%) 
and itching (23/81, 28%)      [139] .  b  The most common local adverse 
effects of sublingual immunotherapy (SLIT) with Pollinex Quattro 
as the active group include: pruritus (26/48, 54%), swelling (4/48, 
9%) and burning sensation (5/48, 10%). The materials employed in 
active treatment included grass major allergen  Phleum pratense  (Phl 
p) and MPL as follows: GP9.5: 9.45 μg of Phl p 1; GP9.5 + MPL21: 
9.45 μg of Phl p 1 + 21 μg of MPL; GP9.5 + MPL52 9.45 μg of Phl p 
1 + 52.5 μg of MPL, and GP19 + MPL52: 19.04 μg of Phl p 1 + 52.5 

μg of MPL. Placebo was the buffered glycerine solution  [136] .  c  The 
local adverse effects of SCIT immunotherapy with AIC were catego-
rized as mild-to-moderate versus severe by Tulic et al.  [129] , and 
none of them required any medication.  d  Total local and systemic 
side effects of immunotherapy with Pollinex Quattro or AIC ob-
tained from the aforementioned studies. Systemic side effects in-
cluded rhinoconjuctivitis, joint pain, headaches, nausea, hot flush-
es, chills, hypotension and tachycardia. The probability of a sys-
temic reaction by injection of Pollinex Quattro was 8.6%, while it 
was 10.7% with AIC. No anaphylactic shock was reported due to 
either Pollinex Quattro or AIC administration. Error bars have been 
used to present the prevalence of adverse effects. Comparisons were 
made using χ 2  test with SPSS version 16.0 (SPSS Inc., Chicago, Ill., 
USA). Probabilities of less than 0.05 were considered significant and 
shown as p for corresponding comparisons.       
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Poly-γ-glutamic acid (γ-PGA) is a TLR4 agonist ob-
tained from the cell wall of bacilli which induces expres-
sion of the co-stimulatory molecules, CD80, CD86 and 
CD40 on DCs, and also upregulates IL-12  [70] . Its ad-
ministration to a murine model of allergic-type lung in-
flammation led to the suppression of the Th2 cytokines, 
AHR, airway inflammation and eosinophilia  [70] . 
ER803022   is another synthetic TLR4 agonist that showed 
anti-asthmatic effects in murine models. It inhibited 
AHR, airway eosinophilia and Th2 cytokine production 
on TLR-dependent MyD88 activation and IL-12/IFN-γ 
production, rather than a  TIRAP-inducing interferon-β 
(TRIF)-dependent cascade  [71] . UT12, an agonistic an-
tibody against TLR4,   can suppress airway-allergic dis-
ease through the abrogating production of Th2 and Th17 
cytokines without the induction of T-reg or Th1 cyto-
kines  [72] . On the other hand, E5564 is a TLR4 antago-
nist that was safe and efficient in reducing IL-6 genera-
tion, AHR, airway inflammation, neutrophilia and eo-
sinophilia in allergen-sensitized and challenged mice 
 [73] . 

  TLR5 

 TLR5, another cell surface TLR, recognizes flagellin 
and triggers the MyD88-dependent signaling cascade. 
Its expression has been shown in monocyte-derived 
cells  [30] , neutrophils  [74] , eosinophils  [74] , airway ep-
ithelial cells  [75]  and airway smooth muscle cells 
(ASMCs)  [76] . Some claim that its expression and func-
tion is not different between asthmatics and non-asth-
matics  [30, 74] , while others believe that its expression 
in the airways is decreased in asthmatics  [77] . Indoor 
allergens such as those from HDMs are thought to pro-
mote allergic respiratory disease, a Th2-biased response 
and IgE production in part due to inappropriate TLR5 
activation  [17] . On the other hand, TLR5 is also impli-
cated in the defense against many pathogens of the re-
spiratory system such as  Pseudomonas aeruginosa   [75] , 
 Yersinia pestis   [78] ,  Streptococcus pneumoniae   [79]  and 
influenza virus  [80]  in such a way that the addition of 
flagellin to the formulation of vaccines against the afore-
mentioned pathogens enhanced the efficacy of immu-
nization. Interestingly, when co-administered with the 
allergens, flagellin was shown to reduce AHR, inflam-
matory cell influx to airways and Th2 type cytokine 
 production in an ovalbumin murine model of allergic 
airway inflammation  [81]  via the induction of T-reg 
 responses  [82] . Accordingly, TLR5 looks like a double-

edged sword; on one hand, it can be the criminal in 
 producing an exaggerated and inappropriate re-
sponse to innocuous aeroallergens in allergic patients, 
while on the other hand, TLR5 ligands are strong adju-
vants  either in allergy vaccines or vaccines against infec-
tious agents (evidence from mechanism-based studies, 
level 5). 

  Intracellular TLRs 

 Intracellular TLRs recognize the genomic material of 
invading pathogens and their most important role is to 
trigger appropriate antiviral responses. TLR3, 7, 8 and 9 
are intracellular TLRs and their signaling cascade is de-
picted in  figure 1   [19, 23, 41, 42] . Viral infections, espe-
cially with rhinovirus, account for the most common 
causes of asthma exacerbation in children and cause 
more severe forms of wheezing episodes in allergic sub-
jects  [83] . As described below, boosting the immune re-
sponse through targeting these TLRs may promise a eti-
ologic treatment for patients with respiratory allergy in 
the shape of an allergy vaccine (evidence from a phase II 
clinical trial) or lead to more effective drugs in viral-in-
duced asthma exacerbations, such as imidazoquinoline 
compounds (evidence from mechanism based studies, 
level 5).

  TLR3: Sensor of Double-Stranded RNA 

 TLR3 activation mimics a viral infection that alters the 
immune response and airway microenvironment toward 
inflammation  [84, 85] , AHR  [86]  and bronchospasm 
 [87] . TLR3 agonists such as polyinosinic-polycytidylic 
acid (polyI:C) at a low dose are used to create in vitro and 
animal models of viral-induced asthma  [86, 88] . Accord-
ingly, the employment of TLR3 inhibitors seems to be 
beneficial for the treatment of respiratory allergies, and 
there is one report regarding the usefulness of polyI:C, a 
TLR3 agonist, in the suppression of murine allergic air-
way inflammation  [89] .

  PolyI:C  
 Despite all the inflammatory effects of polyI:C (evi-

dence from mechanism-based studies, level 5), Sel et al. 
 [89]  found that systemic administration of 200 μg/200 μl 
of polyI:C reduced AHR, inflammation and IgE produc-
tion in murine models of asthma via the induction of IL-
10 and IL-12 production. Interestingly, the dose of polyI:C 
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used in this study (200 μg/200 μl)  [89]  was similar to what 
others (1 mg/1 ml)  [86]  employed to induce an asthma 
phenotype. 

  Capsazepinoids  
 Analogues to capsazepine (in vitro results) have been 

recently shown to act as a TLR3 inhibitor. They sup-
press the production of inflammatory cytokines includ-
ing TNF-α, IL-8 and TSLP (thymic stromal lymphopoi-
etin) by airway epithelial cells collected from asthmatics 
 [90] . Additionally, they have revealed bronchodilator 
effects by relaxation of ASMCs. Indeed, these com-
pounds are believed to reverse AHR induced by polyI:C 
 [90] .

  Single-Stranded DNA Oligonucleotides 
 Single-stranded DNA oligonucleotides (ssDNA-

ODNs; evidence from mechanism-based studies, level 5) 
inhibit not only binding of the polyI:C to TLR3, but also 
production of proinflammatory cytokines triggered by 
TLR3 activation in PBMCs  [91] . Intranasal administra-
tion of ssDNA-ODNs prevented Th2-type lung inflam-
mation in a non-human primate model and suppressed 
inflammatory cell infiltration into the respiratory tract in 
monkeys treated with polyI:C  [91] .

  Resveratrol 
 Resveratrol or trans-3,4,5-trihydroxystilbene (evi-

dence from mechanism-based studies, level 5) is a herbal 
extract that is abundant in grapes. It showed protective 
effects on asthma development following RSV infection 
by preventing upregulation of TLR3 expression and inhi-
bition of its adaptor molecule TRIF  [24] .

  TLR7 and TLR8: Sensors of Single-Stranded Viral 

RNA  

 Imidazoquinoline is a common structure among 
TLR7/8 agonists; however, other classes, such as 
poly(RNA) molecules, also exist  [92] . The employment 
of lipid carriers, phosphorothioate modification of RNA 
backbone or addition of arabinonucleotides prevents nu-
clease degradation and increase the stability of the prod-
uct  [93] . Systemic administration of TLR7/8 agonists re-
sulted in fatal side effects, including peripheral leukocyte 
depletion due to systemic activation of endothelia that 
express vascular adhesion molecules  [94]  and progressive 
lymphoid destruction mimicking HIV-mediated immu-
nopathology  [95] , perhaps due to the TNF-α storm  [96]  

induced by this particular type of TLR7 agonist. Taken 
together, it will be important to choose the proper TLR7/8 
ligand, its dose and route of administration to develop a 
safe and efficient protocol for the treatment of patients 
with allergic asthma, which of course should be done un-
der the close supervision of physicians. 

  Imiquimod 
 Imiquimod or R837: (Aldara ® , 3M pharmaceutics, 

mechanism-based studies, level 5 of evidence) is an 
FDA-approved drug used for treating skin basal cell 
carcinoma, actinic keratosis and external genital warts 
with many suggested off-label benefits in other disease, 
such as melanoma  [6] . Interestingly, it has been recent-
ly demonstrated that topical administration of this 
TLR7 agonist mediates systemic changes and modu-
lates the composition of the cell/cytokine milieu of the 
respiratory system  [97] . Imiquimod treatment of mice 
led to a reduction in alveolar macrophages, B cells and 
TNF-α production, along with an increase in DC and 
natural killer accumulation in the lung tissue and IL-10 
production. Similar cellular changes in blood were also 
observed but without an overt inflammatory response 
 [97] . Imiquimod also showed bronchodilator effects in 
both murine  [98]  and porcine  [92]  models of AHR, 
possibly through induction of nitric oxide, prostaglan-
dins and large-conductance calcium-activated potassi-
um channels, but not adenosine receptors  [92] . As im-
iquimod can also promote antiviral defense and pro-
tect  against virus-induced airway dysfunction  [99] , it 
seems an interesting drug for viral-induced asthma ex-
acerbations.

  Resiquimod 
 Resiquimod or R848 or S28463 (3M Pharmaceutics, 

Maplewood, Minn., USA; mechanism-based studies, lev-
el 5 of evidence) is a TLR7/8 agonist, the systemic  [25, 89, 
100, 101]  or intranasal  [96]  application of which has been 
shown to suppress AHR and airway remodeling in mu-
rine models of asthma with similar dose responses  [96, 
100–103] . Resiquimod administration suppressed acute 
asthma with a shifting of the immune response toward 
Th1 and type-1 IFN production, a reduction in both Th1 
and Th2 cytokine levels in the lungs of rats and mice, and 
a reduction in lung eosinophilia, goblet cell hyperplasia 
and total IgE levels  [96, 100–103] . Despite consistency 
regarding suppression the of Th2 response, some studies 
report that it can suppress Th1 responses in vivo in aller-
gic asthma in mice and rats  [101] . Interestingly, resiqui-
mod treatment resulted in the promotion of long-lasting 
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protection from experimental asthma by IFN-γ produc-
tion and induction of memory CD8+ T cells  [96] . Similar 
to imiquimod, resiquimod with concomitant antiviral 
and anti-asthmatic effects can be used for viral-induced 
asthma exacerbations  [104] . 

  SA2 and PolyUs  
 9-Benzyl-2-Butoxy-8-Hydroxy Adenine, also called 

SA2, has been shown to reduce Th17/Th2 family cyto-
kines, neutrophilia and AHR, along with enhanced IL-10 
production in murine models of allergic-type lung in-
flammation  [105] . Distinct from this, PolyUs (21-mer 
single-stranded phosphorothioate polyuridylic acid), a 
synthetic ssRNA, has been reported to exert bronchodi-
lator effects in a porcine model of asthma through a 
TLR7-dependent mechanism with induction of nitric 
oxide production  [92]  (mechanism-based studies, level 
5 of evidence).

  AZD8848 
 AZD8848 (phase II clinical trial for AR) is a TLR7 ag-

onist that was shown to be safe and efficacious in reduc-
ing nasal symptoms in seasonal AR patients. AZD8848 
led to an increase in IL-1Ra production and a decrease in 
mast cell tryptase and α2-macroglobulin in the nasal la-
vage of AR patients, suggestive of a reduction in plasma 
exudation and mast cell activity  [106] . The side effects 
were dose dependent and included influenza-like symp-
toms, epistaxis, pharyngeal pain, pyrexia, rhinorrhea, na-
sal blockage or ulcers, nasopharyngitis, malaise and my-
algia  [106] .

  GSK2245035 
 GSK2245035 (phase II clinical trial for respiratory al-

lergy) is a highly selective TLR7 agonist suggested to be 
beneficial in respiratory allergy via intranasal administra-
tion. Phase I of the pharmacodynamics, safety and effi-
cacy assessment has been completed, but so far no result 
has been published (NCT01480271; March 2012). Par-
ticipants are now being recruited for phase II 
(NCT01607372; June 2012).

  VTX-1463 
 VTX-1463 or VTX-378 (phase II clinical trial for AR) 

is a TLR8 agonist currently in clinical development for 
AR patients; its safety and efficacy has been tested with 
promising results. It led to a reduction in nasal symp-
toms in grass pollen-sensitized AR patients after a course 
of 5-dose intranasal treatment without any reported side 
effects. However, detailed results have not yet been pub-

lished – only one trial has been published as an abstract 
 [107] , along with a comprehensive review by Horak 
 [108] .

  TLR9: Sensor of Bacterial DNA 

 A decade of experimental employment of TLR9 ago-
nists in animal models of asthma was promising  [109, 
110] . Synthetic TLR9 agonists reduced airway eosinophil-
ia, IL-4, IL-5 and IgE production, and enhanced IL-10 lev-
els in bronchoalveolar lavage fluid of murine models of 
asthma  [102, 109, 111] . Furthermore, they inhibited air-
way remodeling by reducing airway collagen deposition, 
metalloproteinase activity and angiogenesis  [112–115] . 
CpG-ODNs enhance the ability of the immune system to 
combat invading pathogens via increased expression of 
structures that are necessary for efficient antigen presenta-
tion  [116] . They showed efficacy in reducing respiratory 
allergy in the context of sensitization to either pollen or 
fungal allergens  [117]  via either the subcutaneous  [118]  or 
mucosal  [119]  routes of administration. TLR9 ligands act 
as both prophylactic  [109]  and therapeutic  [120]  agents in 
new-onset or established  [121]  asthma/AR  [122, 123]  with 
long-lasting effects. Furthermore, CpG-ODN treatment 
was shown to be efficacious in this regard in both the aged 
murine models of AHR and the neonates  [119]  of a ma-
ternal transmitted model of asthma. However, mice with 
pre-existing severe allergic airway inflammation did not 
benefit from CpG-ODN administration as neither the Th2 
immune response nor AHR were reduced following treat-
ment  [124] . Similarly, children with severe asthma showed 
a reduced response to TLR9 agonists as compared with 
mild asthmatics or healthy controls in terms of IL-12 or 
IFN production  [125] . 

  Allergen-TLR9-L ISS Conjugate 
 Therapeutic administration of allergen-TLR9-L ISS 

conjugate (AIC; Dynavax, phase II clinical trial) in sensi-
tized mice to ragweed led to inhibition of airway inflam-
mation  [115] . Results with AIC also look promising in the 
clinic ( fig. 2 b)  [126–129] . AIC administration resulted in 
a reduction of Th2 responses and an increase in Th1 and 
T-reg cytokines  [128] . Along with an increased Th1/Th2 
ratio, AIC led to an antibody switching from IgE domi-
nant to neutralizing IgG production  [129] . It is of note 
that after AIC treatment a transient increase in IgE pro-
duction is possible  [127] . Despite the promising results 
with AIC in the clinic, AIC failed to reduce nasal symp-
toms of AR patients in initial clinical trials  [129]  and there 
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remains controversy regarding the onset and duration of 
its efficacy  [127, 129] . Furthermore, it failed to reduce 
asthma symptoms in treated children  [130] . No signifi-
cant local or systemic side effects related to AIC have so 
far been reported ( fig. 3 )  [126–129] . Finally, administra-
tion of 1018 ISS revealed no significant improvement in 
the symptoms of asthmatics as a stand-alone therapy 
 [131] .

  QbG10 
 QbG10, an A-type CpG-ODN (phase II clinical trial), 

has been tested in HDM-sensitized AR patients as either 
monotherapy  [132]  or in an allergy vaccine formulation 
 [133] . It manifests the ability to reduce symptoms, con-
comitant medication needs and increase the quality of 
life of AR patients  [132] . Assessment of QbG10 in mild-
to-moderate and moderate-to-severe asthma is now sub-
ject to ongoing clinical trials (NCT00890734 and 
NCT01673672, respectively). The side effects reported to 
be due to QbG10 administration include erythema, 
lymphadenopathy, influenza-like symptoms, pyrexia, fa-
tigue and headache  [132] . Recently, several new TLR9 
agonists have been introduced for the treatment of pa-
tients with AR/asthma, including AZD1419 (Dynavax), 

AEV0675 (Coley Pharmaceutics), SAR21609 (Coley 
Pharmaceutics), and IMO2134 (Idera Pharmaceutics) 
 [134] . However, to our knowledge there is no publication 
regarding their efficacy or safety in AHR patients.

  Conclusions and Future Directions 

 Since almost all the TLRs are positioned to play a sen-
tinel role in the development of respiratory allergy, they 
provide major therapeutic targets to modulate the natural 
course of allergic disease. So far, agonists rather than an-
tagonists of TLRs have been widely employed in thera-
peutic or prophylactic preparations useful for asthma/AR 
patients. MPL (a TLR4 agonist) and 1018 ISS (a TLR9 
agonist) show strong immunogenicity effects that make 
them appropriate adjuvants for allergy vaccines ( fig. 2 ). 
Although patients should be informed regarding possible 
side effects, it seems from experience to date that these are 
mostly local and transient ( fig. 3 ). TLR4 and TLR9 ago-
nists in the shape of allergy vaccines are the most promis-
ing compounds in this family to be used in the clinic. In-
tranasal administration of AZD8848 (TLR7 agonist) and 
VTX-1463 (TLR8 agonist) have revealed efficacy in the 

 Table 1.  TLR agonists/antagonists which may be beneficial for AHR

Targeted TLR Compound Level of 
evidence

TH2/TH1 
response

DC activation Bronchodilator of  
ASMCs or reversing 
remodeling

TLR2 complexes MALP-2 [140] level 5 ↓ yes no
TLR2 complexes BPPcysMPEG [56, 58, 59] level 5 ↓ yes no
TLR2 complexes and TL4 Lipoprotein1 (Opr1) [60] level 5 ↓ yes no
TLR2 complexes Lipopeptide-CGP40774 (LP40) level 5 ↓ yes yes
TLR4 MPL [62, 65, 66] level 2 ↓ yes no
TLR4 CRX675 [140] level 2 ↓ yes yes
TLR4 γ-PGA [70] level 5 ↓ yes no
TLR4 ER803022 [71] level 5 ↓ yes no
TLR4 UT12 [72] level 5 ↓ no no
TLR4 E5564 [73] level 5 ↓ no no
TLR3 ssDNA-ODN [91] level 5 no no no
TLR3 Resveratrol [24] level 5 no no no
TLR7/8 Imiquimod [92] level 5 ↓ yes yes
TLR7 Resiquimod [96] level 5 ↓ yes yes
TLR7 SA2 [105] level 5 ↓ no no
TLR7 PolyUs [92] level 5 ↓ no yes
TLR7 AZD8848 [106] level 2 ↓ no no
TLR8 VTX-1463 [108] level 2 ↓ no no
TLR9 1018ISS [126–129] level 2 ↓ yes yes
TLR9 QbG10 [132] level 2 ↓ yes yes

 The highest level of evidence for efficacy of each compound for AHR is presented.

http://dx.doi.org/10.1159%2F000362553


 TLRs in Allergy and Asthma Int Arch Allergy Immunol 2014;164:46–63
DOI: 10.1159/000362553

57

 Table 2.  Clinical efficacy of targeting TLRs

Targeting Study Design Level of 
evidence

Compound Dose of 
compound

Route Participants 
(active:placebo)

Age, 
years

Symptom 
score (active 
vs. placebo)

Medication 
score (active 
vs. placebo)

TLR4 
agonist

DuBuske et 
al. [135] 
2011

Single-center 
RCTDB

Level 2 Pollinex 
Quattro

300–2,000 SU/
ml ×4
ultra-short 
course

SCIT AR patients 
sensitized to 
grass pollens, 
514:514

NA Significantly 
reduced

Significantly 
reduced

TLR4 
agonist

Pfaar et al. 
[136]
2011

Single-center 
RCTDB

Level 2 Pollinex 
Quattro 
rPhl p + 
MPL

9.45 or 19.04 μg 
Phl p + 21 or 
52.5 μg MPL/
day for 8 weeks

SLIT AR patients 
sensitized to 
grass pollen, 
64:16

35.9
(18–64)

NA
(combined 
symptom and 
medication 
score was 
reduced)

NA
(combined 
symptom and 
medication 
score was 
reduced)

TLR4 
agonist

Musarra 
et al. [64] 
2010

Single-center 
open clinical 
trial

Level 2 Pollinex 
Quattro

300–2,000 SU/
ml ×4
ultra-short 
course

SCIT AR/asthma- 
sensitized 
 patients to grass 
pollen, 29:28

33.7
(10–59)

Significantly 
reduced as 
assessed by 
VAS

NA

TLR4 
agonist

Rosewich et 
al. [66] 2010

Post-marketing 
multi-center 
open trial 
(cohort)

Level 3 Pollinex 
Quattro

300–2,000 SU/
ml ×4
ultra-short 
course

SCIT AR/asthma 
patients 
 sensitized to 
grass pollen, 
34 active

10.2
(6–18)

Significantly 
reduced

Significantly 
reduced

TLR4 
agonist

Rosewich et 
al. [62] 2010

Post-marketing 
multi-center 
open trial 
(cohort)

Level 3 Pollinex 
Quattro

300–2,000 SU/
ml ×4
ultra-short 
course

SCIT AR/asthma 
patients 
 sensitized to 
grass pollen, 
421 active

13.2
(6–18)

Significantly 
reduced

Significantly 
reduced

TLR4 
agonist

Casale et al. 
[69] 2006

Single-center 
RCTDB

Level 2 CRX-675 2–20–100–200 
μg/patient 

Intranasal AR patients 
sensitized to 
ragweed, 48:16

31.5
(19–50)

Improved 
only with 100 
μg/safety 
assessment

NA

TLR4 
agonist

Von Baehr 
et al. [65] 
2005

Single-center 
RCT

Level 2 Pollinex 
Quattro

300–2,000 SU/
ml ×4
ultra-short 
course

SCIT AR/asthma 
patients 
sensitized to 
grass/tree 
pollens, 21:14 

31.4
(18–61)

NA NA

TLR4 
agonist

Drachenberg 
et al. [137] 
2003

Multi-center 
open trial

Level 2 Pollinex 
Quattro

300–2,000 SU/
ml ×4
ultra-short 
course

SCIT AR/asthma 
patients 
 sensitized to 
grass pollen, 90 
(all active)

12.5
(6–17)

Significantly 
reduced 

Significantly 
reduced

TLR4 
agonist

Mothes et al. 
[138] 2003

Single-center 
RCTDB

Level 2 Pollinex 
Quattro

300–2,000 SU/
ml ×4
ultra-short 
course

SCIT AR patients 
sensitized to 
pollens, 11:9

NA Significantly 
reduced

Significantly 
reduced

TLR4 
agonist

Drachenberg 
et al. [139] 
2001

Multi-center 
RCTDB

Level 2 Pollinex 
Quattro

300–2,000 SU/
ml ×4
ultra-short 
course

SCIT AR/asthma 
patients 
 sensitized to 
grass pollen, 
90 (active), 81:60

28.2
(18–60)

Significantly 
reduced 

NS

TLR7 
agonist

Greiff et al. 
[106] 2012

Single-center 
RCTDB 
NCT00770003

Level 2 AZD8848 60 μg/week ×5 Intranasal Grass pollen-sen-
sitized AR pati-
ents, 34:34

27
(18–46)

Significantly 
reduced

Significantly 
reduced
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relief of symptoms in AR patients. Many other drugs that 
target TLRs were found to suppress airway inflammation, 
eosinophilia and AHR at least in animal model systems. 
Indeed, most of our knowledge regarding TLR agonists/
antagonists rose from experimental studies ( table 1 ). The 
future for a wide variability of PRR agonists and antago-
nists in the manipulation of the allergic disease pathways 
holds considerable promise. 

  However, many questions remain to be answered. 
There is poor evidence regarding the usefulness of target-
ing TLRs in allergic children since most clinical trials so 
far have been conducted on adult participants ( table 2 ); 
specifically, how much targeting of the immature im-
mune system of a child is safe and efficacious? The an-
swer is of utmost importance since the prevalence of 
atopic asthma is higher in children and in these subjects 

the risk of persistence of asthma into adult life is greater 
than in non-atopic patients. Furthermore, despite the 
promising experiments with ISS in dampening estab-
lished AHR and airway remodeling, SIT is usually em-
ployed in mild-to-moderate asthma; therefore, it remains 
to be established if targeting of TLRs could be success-
fully applied to severe asthma. Finally, timing, dosage, 
patient selection and many other questions regarding the 
best formulation to be utilized in targeting the TLRs need 
to be answered since inappropriate  administration may 
precipitate exaggerated immune responses.
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 Table 2.  (continued)

Targeting Study Design Level of 
evidence

Compound Dose of 
compound

Route Participants 
(active:placebo)

Age, 
years

Symptom 
score (active 
vs. placebo)

Medication 
score (active 
vs. placebo)

TLR8 
agonist

Horak et al. 
[107] 2011
(abstract)

Single-center 
RCTDB 

Level 2 VTX-1463 0.25, 0.50, 0.75 
and 1.0, or 62.5 
μg/week ×4

Intranasal Grass pollen-
sensitized AR 
patients, 80:NA

NA Significantly 
reduced

Significantly 
reduced

TLR9 
agonist

Klimek et al. 
[132] 2011

Multi-center 
RCTDB

Level 2 CYT003-
QbG10

0.5 or 1 mg/
week ×6

SCIT HDM-sensitized 
AR patients, 
99:35

31.2
(18–64)

Significantly 
reduced

Significantly 
reduced

TLR9 
agonist

Senti et al. 
[133] 2009

Single-center 
open-label

Level 3 QbG10 300 μg/week ×6 SCIT HDM-sensitized 
AR patients, 20:0

34.0
(18–56)

Significantly 
reduced

Significantly 
reduced

TLR9 
agonist

Creticos 
et al. [127] 
2006

Single-center 
RCTDB

Level 2 Amb a1-
1018 ISS 
(AIC)

0.06–12 μg/
week ×6

SCIT Ragweed- 
sensitized AR 
patients, 14:11

39.4
(23–60)

Significantly 
reduced

Significantly 
reduced

TLR9 
agonist

Nayak et al. 
[130] 2006
(abstract)

Single-center
RCT

Level 2 Amb a1-
1018 ISS 
(AIC)

0.06–12 μg/
week ×6

SCIT Ragweed- 
sensitized 
 asthmatic 
 patients, 18:6

NA
(6–17)

NS NS

TLR9 
agonist

Gauvreau 
et al. [131] 
2006 

Single-center 
RCTDB

Level 2 1018 ISS 36 mg/week ×4 Inhalation Atopic 
asthmatics, 21:19

24.8
(18–55)

NS NS

TLR9 
agonist

Tulic et al. 
[129] 2004

Single-center 
RCTSB

Level 2 Amb a1-
1018 ISS 
(AIC)

0.06–12 μg/
week ×6

SCIT Ragweed-
sensitized AR 
patients, 28:29

39.9
(27–55)

Significantly 
reduced 
(second year)

Significantly 
reduced

 The level of evidence provided by each study has been determined accor-
ding to OCEBM 2011 Levels of Evidence with respect to study design. Any 
significant (p < 0.05) improvement in allergic airway symptoms compared 
with baseline or placebo was considered an improvement. Mothes et al. [138] 
and Nayak et al. [130] did not mention the exact age of participants in the 
full text of their articles. The full text of the study of DuBuske et al. [135] was 
not available and no response was received regarding the missing data from 

the corresponding author. NS = Not significant (active vs. placebo), symp-
tom and medication scores were usually recorded using diary cards; 
 RCTDB  = randomized double-blind clinical trial; RCTSB  = randomized 
single-blind clinical trial; RCT = randomized clinical trial without blindness; 
Phl p = Phleum pratense; NA = data was not available/applicable; VAS = vi-
sual analogue scale.
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