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ABSTRACT 

Enumeration of the twin primes, and the sum of. their reciprocals, is 

extended to 3 x 1015
, yielding the count 1r2 (3 x 1015

) = 3310517800844. 

A more accurate estimate is obtained for Brun 's constant, 

B2 = 1.90216 05823 ± 0.00000 00008. Error analysis is presented to 

support the contention that this estimate produces a 95 % confidence 

interval for B2 • In addition, published values of the count 1r(x) of 

primes, obtained previously by indirect means, are verified by direct 

count to x = 3 x 1015 
. 
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INTRODUCTION 

The set K 2 = { (3, 5), (5, 7), (11, 13), (17, 19), ... } of twin prime pairs 

(q, q + 2) has been studied by many investigators, including Glaisher (1878), 

Brun (1919), Hardy and Littlewood (1923), Sutton (1937), Selmer (1942), 

Sexton (1954), Lehmer (1957), Froberg (1961), Gruenberger and Armerding 

(1965), Weintraub (1973), Bohman (1973), Shanks and Wrench (1974), Brent 

(1975), and Nicely (1995). 

The present study results from the continuation of a project initiated in 

1993, with results to 1014 previously published in (Nicely, 1995). A detailed 

description of the general problem, the computational methods employed, and 

the incidental discovery of the Pentium@ FDIV flaw may be found there, with 

additional details given in (Nicely, 1999); only a brief summary will be included 

here. 

The prime numbers themselves continue to retain most of their secrets, 

but still less is known about the twin primes. A matter as fundamental as 

the infinitude of K 2 remains undecided-the famous "twin prime conjecture." 

Nonetheless, Brun (1919) proved that in any event the sum of the reciprocals, 

(l) 82 = G + D + o + n + ul + 1~) + (1\ + 1~) + ···, 
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is convergent, in contrast to the known divergence of the sum of the reciprocals 

of all the primes (Brun actually omitted the first term in parentheses, which of 

course does not affect the convergence). The limit of this sum, styled Brun's 

sum or Brun's constant, is often denoted as simply B, but henceforth the 

author will use B2. In this . instance, as in a number of others noted in this 

paper, identifiers have been changed from those in (Brent, 1975) and (Nicely, 

1995), in anticipation of the need for analogous symbols to be used in the study 

of prime constellations other than the twins. 

The twin prime conjecture is a consequence of a much stronger result, 

an asymptotic relationship conjectured by Hardy and Littlewood (1923, pp. 

42-44): 

(2) l
x dt 

1r2(x) ""'L2(x) = 2c2 - 2-
2 In t 

where 1r2 (x) represents the count of twin prime pairs (q,q+2) such that q ~ x, 
and c2 denotes the "twin-prime constant," computed to 42D by Wrench (1961), 

(3) C2 = 0.66016 18158 46869 57392 78121 10014 55577 84326 23 ... 

The validity of the conjecture (2), often titled the Hardy-Littlewood approxi

mation, is central to the estimation of Brun 's constant and the error bounds in 

this paper. The Hardy-Littlewood approximation is itself a consequence of the 

yet more general "prime k-tuples conjecture," also set forth in their 1923 work. 

See Riesel (1994, pp. 60-83) for an illuminating exposition of these concepts. 

Although (1) is convergent, the monotonically increasing partial sums ap

proach the limit with agonizing slowness; summing the first thousand million 

reciprocals is still insufficient to bring us within five percent of the estimated 

value of the limit. However, assuming the validity of the Hardy-Littlewood 

approximation (2), a first-order extrapolation was derived by Froberg (1961) 

and further studied by Brent (1975), 

(4) 4c2 ( 1 ) 
B2 = S2(x) + lnx + 0 VX lnx 

with an accelerated rate of convergence O ( ,Jx) faster than ( 1). Here S2 ( x) is 

the partial sum 

(5) S2 (x) = L ( ! + : 
2

) · 
q~x q q 

of the reciprocals of all the twin prime pairs (q, q + 2) for which q ~ x. Note 

that S2 (x) is written as B(x) in (Brent, 1975) and (Nicely, 1995). The first

order extrapolation of S2 ( x) to approximate B2 consists of the first two terms 

of the right hand side of (4); this was indicated as B*(x) in (Brent, 1975) and 

(Nicely, 1995), but we write it here as F2(x): 

4c2 
(6) F2(x) = S2(x) + -

1 
-

nx 
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The final term in ( 4) is the author's conjectured error or remainder term, 

inspired by Brent's (1975) probabilistic analysis. As discussed by Shanks and 

Wrench (1974, p. 298), no effective second-order extrapolation is known. 

COMPUTATIONAL TECHNIQUE 

These calculations were carried out as part of a more comprehensive proj

ect, including in addition the tabulation of prime gaps and other prime con

stellations. Computations began in 1993 and have since proceeded almost 

without interruption, although several months' work was lost early on due to 

the Pentium® FDIV flaw. The calculations were distributed asynchronously 

across several (varying from a few to more than two dozen) personal com-

puters, using Intel® processors (mostly classic Pentiums®), extended DOS 

and Windows™ operating systems, and code written in C. The algorithm em

ployed the classic sieve of Eratosthenes to carry out an exhaustive generation 

and enumeration of the primes. To guard against errors, all calculations were 

performed in duplicate on separate systems; in addition, the count 1r(x) of 

primes was maintained and checked periodically against known values, such 

as those published by Riesel (1994, pp. 380-383). The values obtained for 

the count 1r2 (x) of twin prime pairs agreed to 1011 with those of Brent (1975, 

with addendum), and to 1014 with those of Kutrib and Richstein (1996). Ex-

cluding software bugs and the Pentium® FDIV flaw, approximately forty-nine 

instances of machine errors were detected and corrected, most apparently the 

result of transient bit errors in memory (DRAM) chips. One of these instances 

contained at least 364 individual errors. 

As mentioned previously, additional details regarding the computational 

technique, and the Pentium® FDIV affair, are available in (Nicely, 1995, 1999), 

and also at the author's URL. 

COMPUTATIONAL RESULTS 

Table 1 contains a brief summary of the computational results, including 

the counts _1r2 ( x) of twin prime pairs; the values of the discrepancy, denoted 

here by 82(x), between 1r2 (x) and the Hardy-Littlewood approximation: 

(7) 

the partial sums S2 ( x) of the reciprocals of the twins; and the first-order extrap

olations F2(x) of S2 (x) to the limit, according to (6), members of a sequence 

believed to be converging to Brun's constant B2 • Note that the discrepancy 

82 (x) was written in (Brent, 1975) and (Nicely, 1995) as r 3 (x); Brent also 

rounded this value to the nearest integer. 

Table 1 includes results previously published for powers of ten to 1014
, 

in addition to new results from the present study at additional increments 

of 1014
, ending with the results for the present upper bound of computation, 

x0 = 3 x 1015
• Updated and more extensive versions of Table 1 are being 

maintained at the author's URL. Also available there are equally extensive 
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TABLE 1. Counts of twin prime pairs and estimates of Brun 's constant. 

X 1r2(x) 62(x) S2(x) F2(x) 

101 2 2.84 0.8761904761904761905 2.0230090113326 
102 8 5.54 1.3309903657190867570 1.9043996332901 
103 35 10.80 1.5180324635595909885 1.9003053086070 
104 205 9.21 l.6168935574322006462 1.9035981912177 

105 1224 24.71 1.6727995848277415480 1.9021632918562 

106 8169 79.03 1.7107769308042211063 1.9019133533279 

107 58980 -226.18 1.7383570439172709388 1.9021882632233 
108 440312 55.79 1.7588156210679749679 1.9021679379607 
109 3424506 802.16 1.7747359576385368007 1.9021602393210 
1010 27412679 -1262.47 1.7874785027192415475 1.9021603562335 

1011 224376048 -7183.32 1.7979043109551191615 1.9021605414226 
1012 1870585220 -25353.18 1.8065924191758825917 1.9021606304377 
1013 15834664872 -66566.94 l.8139437606846070596 1.9021605710802 
1014 135780321665 -56770.51 1.8202449681302705289 l.9021605777833 

2.0 X 1014 259858400254 -286596.19 1.8219692563019236634 l.90216058066 7 4 

3.0 X 1014 380041003032 -386165.49 1.8229446574498899187 1.9021605813179 

4.0 X 1014 497794845572 -687458.42 l.8236224494488219106 1.9021605828234 
5.0 X 1014 613790177314 -495402.94 1.8241402488570614635 l.9021605819011 
6.0 X 1014 728412916123 -399030.90 1.8245582810368460212 l.9021605816028 

7.0 X 1014 841912734248 -330271.47 1.8249082431039834264 l.9021605813540 

8.0 X 1014 954464283498 -207253.20 l.8252088524969516994 1. 9021605810407 

9.0 X 1014 1066196920739 -459168.78 1.8254720744000806297 l.9021605816527 
1015 1177209242304 -750443.32 1.8257060132402797152 1.9021605822498 

1.1 X 1015 1287579137984 -732612.87 1.8259164099409972759 1.9021605822159 
1.2 X 1015 1397370335220 -761338.54 1.826107 4 785 718993129 1.9021605822802 

1.3 X 1015 1506635099560 -762644.45 1.8262824008978027694 1.9021605822837 

1.4 X 1015 1615417411648 -785068.05 1.8264436378766369280 1.9021605823288 

1.5 X 1015 1723754585354 -761213.67 1.8265931311402050729 1. 9021605823084 

1.6 X 1015 1831678961614 -851925.37 1.8267324395006005931 l.9021605824283 
1.7 X 1015 1939218595600 -1129122.83 1.8268628327687977085 1.9021605827604 

1.8 X 1015 2046397121805 -678331.73 1.8269853577548725890 l.9021605822393 
1.9 X 1015 2153237307407 -562823.58 1.8271008903959923363 1. 9021605821153 

2.0 X 1015 2259758303674 -612652.24 1.8272101680098151140 1.9021605821628 

2.1 X 1015 2365977242191 -653062.89 1.8273138179643056714 1.9021605822014 
2.2 X 1015 2471909670028 -643465.53 1.8274123785364204712 l.9021605821937 

2.3 X 1015 2577569863563 -750111.35 l.8275063150448871463 1. 9021605822851 
2.4 X 1015 2682970233099 -552427.29 1.8275960317894826243 1.9021605821145 

2.5 X 1015 2788122612616 -168258.89 1.8276818830618905359 1.9021605818032 

2.6 X 1015 2893038573759 -430246.96 1.827764181236 727 5962 1.9021605820124 
2.7 X 1015 2997726948096 -292107.29 l.8278432012390461693 1.9021605819106 

2.8 X 1015 3102197972961 -876051.32 1.8279191890118998763 1. 9021605823359 
2.9 X 1015 3206458423771 -521046.38 1.8279923621701145073 1.9021605820865 
3.0 X 1015 331051 7800844 -897422.15 1.8280629180352850193 1.9021605823404 
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tables of the values of 1r(x) recorded in this project, at much finer granularity 

than those commonly available for arguments exceeding 1011
. Indeed, the 

direct enumeration of the primes has been extended to a new upper bound 

by this project, culminating in the value 1r(3 x 1015
) = 86688602810119. This 

result, as well as a number of other previously published values (Riesel, 1994, 

pp. 380-382) which were known only through indirect calculations, is now 

confirmed by direct count in the present study. 

BRUN'S CONSTANT AND THE ERROR ANALYSIS 

The first-order extrapolation F2 (x0 ) = F2 (3 x 1015
) is believed to yield the 

most accurate value known to date for Brun's constant, 

(8) B 2 = 1.90216 05823 ± 0.00000 00008 

The error estimate is believed to define a 95 % confidence interval for the value 

of B 2 • I have no rigorous analytical proof of this assertion regarding the error 

estimate; rather, it is an inference from the analysis (presented below) of the 

available numerical data. The notion of a "95 % confidence interval" is to 

be interpreted as follows. Based on the available numerical data, the author 

believes that whenever the technique used for this error analysis is applied to a 

sufficiently numerous sample of distinct integers x > 1, Brun's constant B 2 will 

lie between F2 ( x) - E2 ( x) and F2 ( x) + E2 ( x) for at least 95 % of the integers 

in the sample. Here E2 (x) is the error bound function stated in (11) below; 

the error estimate given in (8) is a special case of this error bound function, 

namely E2 (x0 ). More precisely, given any set Z1 of distinct integers x > 1, 

there will always exist a superset Z2 of distinct integers x > 1, Z1 ~ Z2 , such 

that F2 (x) - E2 (x) :::; B 2 ~ F2 (x) + E2 (x) for at least 95 % of the integers in 

Z2. 
The algorithm for obtaining and validating this error bound function will 

now be explained. Discussion and justification of certain details of the proce

dure will be deferred until a later point in this paper. 

(A) A set S of sample test points is chosen from the available numerical 

data; this set should be a reasonably large subset of all the available data 

points, avoiding any known bias in the associated values of S2 or F2 • Indeed, 

S might be chosen as the entire set T of all recorded data points, up to and 

including the current upper bound x0 = 3 x 1015 of computation; there are 

300081 points in T, consisting of the lattice (1010)(1010)(x0 ) together with 

the "decade values" x = k · 10n (k = 1. .. 9, n = 1. .. 9). However, the 

calculations to be carried out in the error analysis then become excessive. We 

choose instead for S the lattice (1012)(1012)(x0 ), consisting of 3000 equally 

spaced data points, extending to the current upper limit of computation, the 

increment being one (U. S.) trillion. 

(B) For each x ES, we obtain an error bound on F2 (x), presumably rep

resenting a 95 % confidence interval, by deter~ining the value of a parameter 
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K 95 (x) such that, for at least 95 % of the points in the set U = {t: tET, t~x/2}, 

(9) IF2(x) - F2(t)I < :;;s(x) . 
t · ln t 

Here the form of the . "scaling factor" in the denominator is inferred from the 

remainder term conjectured in (4). The data points t > x/2 are excluded from 

U to minimize any artificial reduction in the error estimate resulting from the 

implicit bias of F2(t) toward F2(x) as t-+ x. 

(C) We now reason as follows. Since for each x E S, at least 95 % of 

the (relevant) preceding extrapolations F2 (t), tEU, agree with F2 (x) within 

the bound in (9), we assume that this property will remain valid for arbitrarily 

large values of x as well. We now interchange x and t in (9), as well as the 

order of the resulting terms on the left hand side, and take the limit as t-+ + oo. 

(10) 

The numerical evidence indicates that the positive function K 95 (x) is either 

roughly constant, or exhibits an overall decreasing trend masked by small scale 

variations (see Table 2). Thus we can obtain an approximate upper bound on 

the error by using K95(x) in place of the (unknown) limit of K95(t) in (10). 

This produces the desired error bound function E2 (x): 

(11) 

Determination of the error bound at any specific x then becomes a matter of 

calculating K 95 (x) and substituting into (11). 

Analysis of the data yields the value K95 (x0 ) = 1.380. Substitution into 

(11) then gives 

1.380 
(12) E2(x0 ) = po 

1 
~ 0.00000 00007 06989 . 

xo · nxo 

Rounding up produces the error estimate stated in (8). 

VALIDATION OF THE ERROR ANALYSIS 

Since the ad hoc error analysis algorithm.described and employed clearly 

lacks a rigorous analytical foundation, additional examination of the empirical 

evidence was undertaken, in an effort to find supporting evidence, or lack 

thereof. 

The validation process consisted of comparing the confidence intervals ob

tained for B2 at each x in the "lower half" S' = {x : xES, x~x0 /2} of S 

(the values near x0 being excluded for reasons similar to those given for set 

U) with the (presumably) best value obtained at x0 . Simply put, the issue 

is this: what percentage of the confidence intervals obtained for each x E S' 

actually contain the best known point estimate for B 2 , given in (8) (and to 
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TABLE 2. Performance data for the error analysis algorithm. 

x/1012 Kgs(x) E2(x) x 1010 Success% 

1 2.074 750.61 100.00 

10 2.218 234.32 80.00 

100 1.758 54.53 94.00 

200 1.602 34.40 83.50 

300 1.582 27.40 89.00 

400 2.047 30.44 91.75 

500 1.688 22.30 93.40 

600 1.564 18.76 94.50 

700 1.451 16.04 94.86 

800 1.320 13.60 95.25 

900 1.487 14.39 94.89 

1000 1.658 15.18 95.40 

1100 1.623 14.13 95.82 

1200 1.626 13.52 96.17 

1300 1.608 12.82 96.46 

1400 1.606 12.31 96.71 

1500 1.584 11.70 96.93 

1600 1.612 11.51 97.12 

1700 1.747 12.08 97.29 

1800 1.511 10.14 97.44 

1900 1.455 9.49 97.58 

2000 1.454 9.23 97.70 

2100 1.450 8.97 97.81 

2200 1.434 8.65 97.91 

2300 1.449 8.54 98.00 

2400 1.381 7.96 98.08 

2500 1.269 7.16 98.16 

2600 1.321 7.30 98.23 

2700 1.277 6.92 98.30 

2800 1.399 7.43 98.36 

2900 1.307 6.82 98.41 

3000 1.380 7.07 98.47 

greater precision, if not accuracy, in the last entry of Table 1)? For exam-

pie, applying our error analysis technique to the data for x ~ 1014 yields 

K 95 (1014) = 1.758, and substitution into (11) then produces the confidence 

interval B2 = 1.90216 05777 83 ± 0.00000 00054 53. Since our best estimate 

for B2 lies within this interval, we consider the error estimate algorithm to be 

a success at x = 1014 . On the other hand, applying the algorithm to the data 
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for x :5 x1 = 8.13 x 1014, we obtain K95 (xi) = 1.306, with the resulting confi

dence interval B2 = 1.90216 05809 53 ± 0.00000 00013 34, which constitutes 

a failure. 

A survey of all the points x E S' reveals that 96.93 % (1454 of 1500) pro

duce confidence intervals containing our current best point estimate for B 2 • 

These calculations, briefly summarized in Table 2, also show the trends in 

the values of K95 (x), E2(x), and the cumulative percentage of successful (in 

the sense described above) error estimates generated by the algorithm. The 

available data thus indicates that our algorithm has been successful ( actually 

performing beyond expectation) in producing valid 95 % confidence intervals 

for the estimates of B2 • Therefore we anticipate that the error bounds thus 

obtained for larger values of x, including our current upper bound of computa

tion x0 = 3 x 1015
, will also yield valid 95 % confidence intervals for the value 

of B2. 

CRITIQUE AND FURTHER REMARKS 

The results of additional analysis of the data, conducted in order to ad

dress various weaknesses of the error analysis algorithm described, are now 

summarized. 

• Further reduction of the "cutoff" fraction for the selection of sample 

points in sets U and S' (for example, restricting these sets to the smallest 

quarter, rather than the smaller half of the eligible values) had no significant 

effect on the results. Of course, if the restriction is relaxed or eliminated, the 

effect is to artificially inflate the success percentage of the algorithm. This 

may be observed in the entries of the last column of Table 2, for values of 

X > 1.5 X 1015
. 

• Increasing the density of the sample sets S and S' in T (for example, 

reducing the increment to 1011 rather than 1012
) had no significant effect on 

the results. 

• Replacing the presumed best estimate F2 ( x0 ) for B 2 by another value 

within the specified confidence interval (8) (both endpoint values were tested) 

had no significant, effect on the conclusions. 

• Replacing Brent's (1975) scaling factor Jx · lnx (corresponding to the 

denominator of the remainder term in (4)) with other plausible possibilities 

had no significant effect on the results. Among the candidates checked were 

Jx·lnx·lnlnx, Jx·(lnx) 2
, Jx·lnx·(lnlnx) 2

, Jx·lnx·lnlnx·lnlnlnx, and Jx. 
Results produced by each of these scaling factors are summarized in Table 3; 

note that the values for K 95 and the error are calculated at x = x0 = 3 x 1015
, 

while the success percentages are evaluated at x = x0 /2 = 1.5 x 1015
, as in 

our principal error analysis; furthermore, the values of the error are in units 

of 10-10
• The available numerical data is seen to be insufficient to either 

confirm or reject the error term conjectured by the author in (4), or any of the 

alternatives. On the other hand, since the use of these alternatives had little 

impact on the final results of the error analysis, the validity of the algorithm 
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TABLE 3. Impact of various scaling factors on the error analysis. 

Scaling factor K95 Error Success% 

Jx · lnx 1.380 7.07 96.93 

Jx · In x · In In x 4.809 6.89 96.27 

Jx · (lnx) 2 45.40 6.53 94.80 

Jx · In x · (In In x) 2 16.80 6.74 95.67 

,.;fii · In x · In In x · In In In x 6.016 6.77 95.87 

yX 0.043 7.83 99.00 

appears to be relatively insensitive to the precise nature of the scaling factor 

(remainder term). Let it be noted that one could make a case, based on the 

results in Table 3, for a more agressive error estimate of 0.00000 00006 58 in 

(8); the author prefers the more conservative value previously stated. 

• Other analysis techniques were investigated as well, but none was found 

superior to the one described. Efforts to use weighted or unweighted data 

averaging or smoothing, or linear regression techniques, in an attempt to obtain 

a more accurate value of Brun's constant, have not met with success. Harmonic 

analysis and fast Fourier transforms have been suggested by various colleagues 

as promising techniques for analysis of the data, but I have not pursued this 

avenue. I will attempt to post enough of the raw data at my URL so that 

other investigators may experiment with their own techniques; perhaps some 

other method will indeed be more successful than my own in producing a more 

accurate extrapolation, or a superior error bound. 

• The error bound formula E2 ( x) in ( 11) is a generalization of that obtained 

by Brent (1975). As a consequence of a quite different line ofreasoning, Brent 

arrived at the constant 3.5 in place of K 95 (x), and believed this to produce an 

88 % confidence interval for his estimate for B2 • It now appears that Brent's 

error estimate· was quite conservative. On the other hand, the error bound 

obtained in (Nicely, 1995) was specifically designed to represent one computed 

standard deviation at 1014
, and the present estimate for B 2 differs from that 

value by more than two of those standard deviations. As pointed out above, 

the present technique, when applied to the portion of the data for x ~ 1014
, 

produces a 95 % confidence interval containing the current best estimate for 

B2 (and even containing the entire current best confidence interval); since 

a 95 % confidence interval corresponds to about ±1.96 standard deviations 

(for a normal distribution), that result implies a(1014
) = 0.00000 00028, a 

more conservative value than the estimate of 0.00000 00021 arrived at (using 

a different approach) in (Nicely, 1995). 

• As the upper bound x2 of computation for 1r2 (x) and S2 (x) is extended, 

corresponding error estimates can be obtained by analyzing the new totality 
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of data to determine K 95 (x2), according to part (B) of the error analysis al

gorithm, then substituting into (11). Note that there is no need to recompute 

K 95 (x) for any x other than the value for which a new error bound is desired; 

computation of K 95 (x) over the entire sample set was carried out only to ex

plain and validate the algorithm. Indeed, based on the variation exhibited by 

K 95 ( x) in Table 2, a rough error estimate could be obtained by simply using 

K95(x2) = K95(xo) = 1.380 ; or if a quite conservative value is desired, use 

K95(x2) = 2. 
• Finally, it must be emphasized that both the value of B2 and the as

sociated error estimate obtained in this paper are entirely dependent on the 

validity of the Hardy-Littlewood approximation (2). All the numerical evi

dence to date strongly supports this conjecture, but one must maintain some 

informed skepticism; after all, the numerical evidence to the current level of 

computations also supports the famous conjecture that Li(x) > 1r(x), even

tually disproved by Littlewood (1914) himself. Absent a major theoretical 

breakthrough, it will be difficult indeed to improve significantly on either the 

estimate or error bound herein presented for Brun's constant. As Shanks and 

Wrench (1974, p. 299) noted, the calculation of B2 to eight or nine decimals is 

(was) extremely difficult-or at least computationally intensive-and twenty 

decimals of precision remains as remote now as it was then. Equation (11) 

indicates that computations may have to be extended to 1017 just to settle 

the tenth decimal place, and twenty decimals would require calculations out 

to perhaps 1036 -a figure far exceeding the total number of machine cycles 

available in the cumulative projected lifetimes of all the CPUs currently on 

our planet. 
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