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A New Error Estimator for Reduced-order

Modeling of Linear Parametric Systems
Lihong Feng and Peter Benner

Abstract—Efficient error estimation is important for reliable
reduced-order modeling with guaranteed accuracy. We propose
an error estimator for reduced-order modeling of linear
parametric dynamical systems. The error estimator estimates
the error of the reduced transfer function in frequency domain
and can be easily extended to output error estimation of
reduced-order models for linear steady parametric systems.
It is tight and cheap to compute. Using the error estimator,
the reduced-order model can be adaptively obtained with high
reliability. Numerical results show that the error estimator can
accurately estimate the true error even for transfer functions with
many resonances. Compared with an existing error bound, the
proposed error estimator can be orders of magnitudes sharper
and needs much less computational time.

Index Terms—Adaptive algorithms, estimation error,
large-scale systems, reduced-order systems.

I. INTRODUCTION

MODEL ORDER reduction (MOR) has been recognized

as an efficient tool for reducing the complexity

and sizes of very large-scale complex models arising

from many application areas including, but not limited to,

circuit simulation, electro-thermal analysis, electromagnetic

simulation, and Micro-Electro-Mechanical Systems (MEMS)

design. Accurate simulation of such large-scale models

is becoming important for reliable estimation of complex

phenomena, such as, parameter uncertainty, signal delay etc.

This poses high demand for computational resources. The

aim of MOR is to enable real-time simulation even in a

computational environment with limited resources.

Many MOR methods have been proposed during the last

decades and have attracted attention from computational

electromagnetics and microwave community [1], [2], [3], [4],

[5], [6]. However, efficient and accurate error estimation

of the reduced-order model (ROM) is often a critical

issue. Although there exists an error bound for the

balanced truncation method, this is not applicable to other

MOR methods. Many error bounds for balancing related

and moment-matching methods [7] are only applicable to
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non-parametric systems. Moreover, some of them face high

computational complexity [8], while others are heuristic [9].

In recent years, numerous MOR methods for linear

parametric systems have been developed and found wide

applications in engineering, for example, the Krylov based

(multi-moment matching) methods [5], [10], [11], [12], the

reduced basis methods [6], [13], [2], [3], etc. Many error

estimators developed for the reduced basis methods estimate

the error for the state vector [14], [6], but are not directly

applicable to the output error or transfer function error.

Furthermore, those error estimators are developed based on

the bilinear weak forms of the systems of Partial Differential

Equations (PDEs) [13], [14], which limit their applicability

mostly to only finite-element discretized problems, though

extensions to finite volume method exist [15].

Recently, an a-posteriori error bound for the transfer

function of the ROM has been proposed in [16], being

applicable to ROMs constructed by different MOR methods. It

is independent of the discretization method (finite difference,

finite element, finite volume) applied to the original PDEs and

can be directly used in the discretized vector space C
n.

However, one disadvantage of the error bound in [16] is its

need to compute the smallest singular value of a matrix with

size equal to the degree of the original full-order model, at

every parameter sample, leading to high computational cost.

A second issue is that for many models from, e.g., circuit

simulation, MEMS simulation, the smallest singular value can

be zero at some samples of the parameter [3], making the

error bound unavailable for those samples. The error bound

often overestimates the true error for those systems with the

smallest singular value being close to zero, as it appears in

the denominator of the error bound.

In this work, we propose a new estimator of the transfer

function error, as well as the output error. The proposed error

estimator avoids computing the singular values of any matrix,

and depends mainly on the ROM. It is applicable to any

system whose ROMs are computed using a projection based

MOR method. It is illustrated by the numerical results that the

error estimator is usually much sharper than the error bound

in [16]. Using the proposed error estimation, the adaptive

greedy algorithm in [16] converges much faster than using the

error bound. It is shown in [9] that for a MIMO system with

high-frequency and many resonances in frequency domain,

the heuristic adaptive technique proposed there cannot catch

all the resonances. However, combing the adaptive greedy

algorithm [16] with the proposed error estimator, all the

resonances can be reproduced by the ROM.

Compared with our initial work in the conference
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paper [17], new contributions in this work include: more

theoretical analysis on the error estimator is done in

Subsection II-A and Subsection II-D; A much simpler proof

for the error bound in [16] is proposed in Subsection II-B;

Detailed extension of the error estimator to output error

estimation for linear steady parametric systems is presented

in Subsection II-C; An adaptive algorithm for automatic MOR

of parametric linear systems using the new error estimator is

proposed in Section III; More simulation results on two new

models are given in Section IV.

The paper is organized as follows. In Section II, we

propose the error estimator and show how to efficiently

compute it. Section III presents greedy algorithms for

adaptively computing the ROM using the new error estimator.

Numerical results for a CD player model, an interconnect

model, a multi-input-multi-output (MIMO) system from circuit

simulation and a parametric system from MEMS simulation

are presented in Section IV. Conclusions are drawn in the end.

II. THE PROPOSED ERROR ESTIMATOR

We use first-order linear systems in the following form

to propose our error estimator, though the error estimator

also applies to second-order systems (see the example in

Section IV):

E(µ) d
dtx(t, µ) = A(µ)x(t, µ) +B(µ)u(t),
y(t, µ) = C(µ)x(t, µ).

(1)

Here, x(t, µ) ∈ R
n is the parameter-dependent state vector.

n is often referred to as the order of the system. The vector

µ := (µ1, . . . , µm) ∈ R
1×m includes all of the geometrical

and physical parameters. The system matrices E(µ), A(µ) ∈
R

n×n, and B(µ) ∈ R
n×nI , C(µ) ∈ R

nO×n, D(µ) ∈ R
nO×nI

may depend on the parameters.

MOR based on projection finds a matrix V whose columns

constitute the basis of an approximate subspace of the

state space, then replaces the state vector x(t, µ) by its

approximation represented by the linear combination of the

columns of V , i.e. x(t, µ) ≈ V z(t, µ):

E(µ) d
dtV z(t, µ) ≈ A(µ)V z(t, µ) +B(µ)u(t),

ŷ(t, µ) = C(µ)V z(t, µ).
(2)

Note that the first line in (2) is not an equation anymore, and

it induces a residual e = E(µ) d
dtV z(t, µ) − A(µ)V z(t, µ) +

B(µ)u(t) which is nonzero. If we enforce e to be zero in a

test subspace spanned by the columns of another matrix W ,

this is equivalent to letting

WT e = 0,

which leads to the first equation of the ROM in (3). This

process of deriving the ROM is called MOR based on

Petrov-Galerkin projection. Finally, the ROM of the original

system can be written as

Ê(µ) d
dtz(t, µ) = Â(µ)z(t, µ) + B̂(µ)u(t),

ŷ(t, µ) = Ĉ(µ)z(t, µ),
(3)

where Ê(µ) = WTEV ∈ R
r×r, Â(µ) = WTAV ∈ R

r×r,

B̂(µ) = WTB ∈ R
r×nI , Ĉ(µ) = C(µ)V ∈ R

nO×r, and

z(t, µ) ∈ R
r with r ≪ n. The state vector x(t, µ) can be

recovered by x(t, µ) ≈ V z(t, µ). Different ways of computing

W,V result in different MOR methods. For simplicity, we

assume Galerkin-projection, i.e. W = V ∈ R
n×r, though the

error estimator immediately applies to ROMs obtained with

Petrov-Galerkin projection as well, i.e. W 6= V .

The transfer function of the original system is defined as

H(µ̃) = C(µ)Q−1(µ̃)B(µ),

where Q(µ̃) = sE(µ) − A(µ). Here, s is the Laplace

variable in frequency domain, and µ̃ := (µ, s) ∈ R
1×(m+1).

Similarly, the transfer function of the ROM is Ĥ(µ̃) =
Ĉ(µ)Q̂−1(µ̃)B̂(µ), where Q̂(µ̃) = sÊ(µ) − Â(µ). Note that

the non-singularity of Q(µ̃) and Q̂(µ̃) guarantee the existence

of H(µ̃) and Ĥ(µ̃), respectively.

We focus on estimating the error of the reduced transfer

function Ĥ(µ̃), i.e. |H(µ̃) − Ĥ(µ̃)|. As has been discussed

in the Introduction, an existing error bound [16] for |H(µ̃)−
Ĥ(µ̃)| needs high computational cost for large-scale systems

and is not tight for systems with small σminQ(µ̃) (where

σmin denotes the minimum singular value of a matrix) . In

subsection II-A, we propose a new error estimator which

avoids the above difficulties of the existing error bound.

Furthermore, we extend the error estimator to output error

estimation of steady systems in II-C and discuss its extension

to MIMO systems in II-E. We also discuss computing the key

components of the error estimator in II-D and fast computation

of the error estimator in II-F.

A. The New Error Estimator

In the following, we propose an error estimator for

the transfer function Ĥ(µ̃). We first consider single-input

single-output (SISO) systems. Extension of the error estimator

to MIMO systems is considered afterwards. Proofs for

Theorems 1-3 are given as Appendices. Define a primal system

in frequency domain as

Q(µ̃)xpr(µ̃) = B(µ). (4)

The reduced primal system is defined as

Q̂(µ̃)zpr(µ̃) = B̂(µ), (5)

so that x̂pr(µ̃) := V zpr(µ̃) well approximates the solution

xpr(µ̃). The primal residual is defined as

rpr(µ̃) = B(µ)−Q(µ̃)x̂pr(µ̃).

xdu(µ̃) solves the dual system

QT (µ̃)xdu(µ̃) = CT (µ), (6)

and zdu(µ̃) is the solution to the reduced dual system:

Q̂du(µ̃)zdu(µ̃) = Ĉdu(µ), (7)

where Q̂du = V T
duQ

T (µ̃)Vdu, Ĉdu = V T
duC

T (µ), so that

x̂du(µ̃) := Vduzdu(µ̃) well approximates xdu(µ̃). The matrix

Vdu is used to obtain the reduced dual system. The dual

residual is then defined as rdu(µ̃) = CT (µ)−QT (µ̃)x̂du(µ̃).
Details on how to compute Vdu are given in subsection II-D.
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Theorem 1: The approximation error for the reduced transfer

function Ĥ(µ̃) can be bounded as

|H(µ̃)− Ĥ(µ̃)| ≤ |xT
rdu

(µ̃)rpr(µ̃)|+ |x̂T
du(µ̃)rpr(µ̃)|,

where | · | denotes the absolute value of a scalar, x̂du(µ̃) is

defined by (7). xrdu(µ̃) is the solution to the dual-residual

system defined as

QT (µ̃)xrdu(µ̃) = rdu(µ̃). (8)

Note that computing xrdu(µ̃) in (8) needs solving a large

system. Instead, we compute the ROM of (8)

Q̃(µ̃)zrdu = r̃du(µ̃), (9)

where Q̃(µ̃) = V T
rdu

QT (µ̃)Vrdu , r̃du(µ̃) = V T
rdu

rdu(µ̃). Then

xrdu(µ̃) ≈ x̂rdu(µ̃) := Vrduzrdu(µ̃). Replacing xrdu(µ̃) in the

error bound with x̂rdu(µ̃), we get the error estimator:

|H(µ̃)− Ĥ(µ̃)| . |x̂T
rdu

(µ̃)rpr(µ̃)|+ |x̂T
du(µ̃)rpr(µ̃)| =: ∆(µ̃)

If Vrdu = Vdu, then we can prove that the first part of ∆(µ̃),
i.e. |x̂T

rdu
(µ̃)rpr(µ̃)| = 0.

Theorem 2: If Vrdu = Vdu, then |x̂T
rdu

(µ̃)rpr(µ̃)| = 0.

Theorem 2 implies that if Vrdu = Vdu, the fist part of ∆(µ̃)
will not contribute to the error estimator, and may lead to an

estimator underestimating the true error too much. This will

be illustrated by the numerical examples in Section IV.

B. A More Concise Proof of the Error Bound in [16]

An error bound for Ĥ(µ̃) is proposed in [16], which we

recall in the following theorem.

Theorem 3: [16] The approximation error for the reduced

transfer function Ĥ(µ̃) is bounded by

|H(µ̃)− Ĥ(µ̃)| ≤ ∆0(µ̃) :=
‖rdu(µ̃)‖2‖rpr(µ̃)‖2/σmin(G(µ̃)) + ‖x̂T

du(µ̃)rpr(µ̃)‖2

It is worth pointing out that from (32), we can derive the above

error bound in a much simpler way as shown Appendix C.

C. Output Error Estimator for Steady Parametric Systems

The above error estimator for the reduced transfer function

Ĥ(µ̃) can be easily extended to estimating the output error of

MOR for steady parametric systems

A(µ)x(µ) = B(µ), y(µ) = C(µ)x(µ), (10)

just by noting that y(µ) = C(µ)A−1(µ)B(µ) is in the

same form as H(µ̃). In this case, the primal system is the

original steady system (10). The reduced primal system can

be similarly constructed as the one in (5), i.e.

Â(µ)z(µ) = B̂(µ), ŷ(µ) = Ĉ(µ)z(µ), (11)

which is also the ROM of the original steady system. The dual

system is

AT (µ)xdu(µ) = CT (µ). (12)

The reduced dual system of (12) can also be similarly

constructed as

V T
duA

T (µ)Vduzdu(µ) = V T
duC

T (µ). (13)

Then the dual system solution can be approximated by the

reduced dual system solution xdu(µ) ≈ x̂du := Vduzdu(µ).
Following a similar argumentation as in the proof for Theorem

1, we can obtain an estimator for the output error |y(µ)−ŷ(µ)|
as below (assuming a SISO system)

|y(µ)− ŷ(µ)| . |x̂T
rdu

(µ)rpr(µ)|+ |x̂T
du(µ)rpr(µ)|, (14)

where x̂rdu = Vrduzrdu is the approximate solution to the

dual-residual system

AT (µ)xdu(µ) = rdu(µ) (15)

and zrdu solves the ROM of the dual-residual system (15) i.e.,

Ã(µ)zrdu(µ) = r̃du(µ), (16)

where Ã(µ) = V T
rdu

A(µ)TVrdu , r̃du(µ) = V T
rdu

rdu(µ). Note

that system (16) is of similar form as the system in (9), just

by replacing Q̃(µ̃) with Ã(µ).

D. Subspace Spanned by V, Vdu, Vrdu

The key components for computing ∆(µ̃) are the projection

matrices V , Vdu and Vrdu which are used to construct the

reduced systems in (5), (7), (9). By definition of (5), V is

also the projection matrix for constructing the ROM of the

original model. It depends on which method one use to obtain

the ROM. In this work, we apply the multi-moment-matching

method [12] to derive the ROM. Usually, Vdu needs to

be computed separately and can be computed using the

multi-moment-matching method [12] or the reduced basis

method. The subspace spanned by Vrdu should be analyzed

based on the state vector of the dual-residual system (8). In

the following, we discuss how to construct V , Vdu and Vrdu

separately.

1) Constructing V Using the Multi-moment-matching

Method [12]: If using the multi-moment-matching method

proposed in [12] to construct the ROM, then V can be

computed as follows. We first consider the state vector

x(t, µ) in frequency domain, i.e., the state vector x(µ̃) of the

primal system. Assume that Q(µ̃) has the following affine

decomposition as

Q(µ̃) = Q0 + h1(µ̃)Q1 + . . .+ hp(µ̃)Qp,

where hi(µ̃) : C
m+1 7→ C are scalar functions of µ̃. The

series expansion of x(µ̃) as a function of the multiple variables

h1(µ̃), . . . , hp(µ̃), can be derived as below,

x(µ̃) = [Q(µ̃)]−1B(µ)
= [Q0 +Q1h1(µ̃) + . . .+Qphp(µ̃)]

−1B(µ)
= [Q(µ̃i) + σ1Q1 + . . .+ σpQp]

−1B(µ)
= [I − (σ1M1 + . . .+ σpMp)]

−1BM

=
∞∑

i=0

(σ1M1 + . . .+ σpMp)
iBM ,

(17)

where σj = hj(µ̃) − hj(µ̃
i), and µ̃i := (µ̃i

1, . . . , µ̃
i
m+1)

is a sample of µ̃ = (µ, s) := (µ̃1, . . . , µ̃m+1). BM =
[Q(µ̃i)]−1B(µ), Mj = −[Q(µ̃i)]−1Qi, j = 1, 2, . . . , p. The

series expansion in the last equality is the multiplication of

BM with the MacLaurin series expansion of the multivariate
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matrix function [I − M(σ)]−1, where M(σ) = σ1M1 +
. . . + σpMp with σ = (σ1, . . . , σp). From the above relation

between σj and hj(µ̃
i), h(µ̃i) := (h1(µ̃

i), . . . , hp(µ̃
i)) is

the expansion point at which the series of x(µ̃) is derived

when x(µ̃) is considered as a function of multiple variables:

h1(µ̃), . . . , hp(µ̃). For a given function h(·), h(µ̃i) is uniquely

determined by µ̃i. Therefore, we call µ̃i the expansion point

in the following text, for simplicity. There exist recursions

between the coefficients of the series expansion as below,

R0 = B̃M ,
R1 = [M1R0, . . . ,MpR0],
R2 = [M1R1, . . . ,MpR1],

...

Rq = [M1Rq−1, . . . ,MpRq−1],
...

(18)

Here, B̃M = BM , if B(µ) does not depend on µ, i.e. B(µ) =
B. Otherwise, B̃M = [BM1

, . . . , BMp
], BMj

= [Q(µ̃i)]−1Bj ,

j = 1, . . . , p, if B(µ) can be approximately wirtten in affine

form, e.g., B(µ) ≈ B1β1(µ)+. . .+Bpβp(µ), βi(µ) : C
m 7→ C

are functions of the parameter vector µ and are the coefficients

of the parameter-independent terms Bi, i = 1, . . . , p, in

the affine approximation of B(µ), respectively. Then Vµ̃i is

computed as

range(Vµ̃i) = span{R0, R1, . . . , Rq}µ̃i , (19)

Note that the number of columns in Rj , j ≥ 0, grows

exponentially with j. To avoid exponential increase of column

dimension, we usually require q ≤ 1 and use only the first

two Rj‘s. The matrix Vµ̃i depends on the expansion point µ̃i.

Finally, V can be constructed as

V = orth{Vµ̃1 , . . . , Vµ̃l}. (20)

Since the proposed error estimator does not depend on the

MOR method, another possibility of constructing V is using

time-domain MOR methods, such as the reduced basis method

(RBM), or the method of proper orthogonal decomposition

(POD). These methods use the snapshots in time domain

(trajectories of the state vector x) to obtain V . As it is not

the focus of this work, we refer to [18], [19] for detailed

information on these two methods for parametric dynamical

systems.

2) Constructing Vdu Using Reduced Basis Method:

Similarly, we could construct Vdu through snapshot based

methods, or the multi-moment-matching method. The dual

system is a steady system, which does not involve the

trajectory of the state vector in time domain. The snapshots are

the state vector at different samples of the parameter µ. In this

case the reduced basis method can be seen as a special case

of the multi-moment-matching method. If using the reduced

basis method, we have

range(Vdu) = span{Q−T (µ̃1)CT (µ̃1), . . . , Q−T (µ̃l)CT (µ̃l)},
(21)

where Q−T (µ̃i)CT (µ̃i), i = 1, . . . , l, are the snapshots

selected through a greedy algorithm.

3) Constructing Vdu Using Multi-moment-matching:

If using the multi-moment-matching method, Vdu can

also be constructed similarly as V . For completeness,

we shortly discuss how to compute Vdu based on

multi-moment-matching. Considering the dual system in (6),

xdu(µ̃) can be written as

xdu(µ̃) = [Q(µ̃)]−TCT (µ)
= [QT

0 +QT
1 h1(µ̃) + . . .+QT

p hp(µ̃)]
−1CT (µ)

= [I − (σ1M̃1 + . . .+ σpM̃p)]
−1CM

=
∞∑

i=0

(σ1M̃1 + . . .+ σpM̃p)
iCM ,

(22)

where CM = [Q(µ̃i)]−TCT (µ), M̃j = [Q(µ̃i)]−TQT
j , j =

1, 2, . . . , p. The recursions between the coefficients of the

series expansion in (22) are

R̃0 = C̃M ,

R̃1 = [M̃1R̃0, . . . , M̃pR̃0],

R̃2 = [M̃1R̃1, . . . , M̃pR̃1],
...

R̃q = [M̃1R̃q−1, . . . , M̃pR̃q−1],
...

(23)

Here, C̃M = CM , if C(µ) does not depend on µ, i.e.

C(µ) = C. Otherwise, C̃M = [CM1 , . . . , CMp
], CMi

=
[Q(µ̃i)]−1Cj , j = 1, . . . , p, if C(µ) can be approximated

by an affine form, e.g., C(µ) ≈ C1γ1(µ) + . . . + Cpγp(µ),
where γi(µ) : C

m 7→ C are functions of the parameter

vector µ and are the coefficients of the parameter-independent

terms Ci, i = 1, . . . , p, in the affine approximation of C(µ),
respectively. Then V du

µ̃i is computed as

range(V µ̃i

du ) = span{R̃0, R̃1, . . . , R̃q}µ̃i . (24)

Finally, Vdu can be constructed as

Vdu = orth{V µ̃1

du , . . . , V µ̃l

du }. (25)

It is easy to see that if C(µ) does not depend on µ, i.e. C(µ) =
C, then R0 = CM = [Q(µ̃i)]−TCT , which is the snapshot of

xdu(µ̃) at µ̃i. In this case, if only R0 is included in V µ̃i

du (24)

for each expansion point µ̃i, then the multi-moment-matching

method for the steady dual system (6) is the reduced basis

method in (21).

4) Constructing Vrdu : From the state vector of the

dual-residual system (8), we see that

xrdu(µ̃) = Q−T (µ̃)rdu(µ̃)
= Q−T (µ̃)[CT (µ)−QT (µ̃)x̂du(µ̃)]
= Q−T (µ̃)CT (µ)− Vduzdu(µ̃),

(26)

where Q−T (µ̃)CT (µ) is nothing but the state vector xdu(µ̃) of

the dual system. Considering the series expansion of xdu(µ̃)
in (22), we see that taking the same expansion point as in (22),

the series expansion leads to the subspace range(Vdu). Finally,

Q−T (µ̃)CT (µ) in the last equality of (26) provides no new

information than Vdu, so that we can use range(Vdu) as the

subspace for approximating the trajectory space of xrdu(µ̃),
i.e. Vrdu = Vdu. However, from Theorem 2, we know that Vrdu
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should be different from Vdu. Therefore, if we use expansion

points different from those used for Vdu to obtain a second

projection matrix V 1
rdu

which is different from Vdu, then the

projection matrix Vrdu := orth{V 1
rdu

, Vdu} should represent

the trajectory of xrdu(µ̃) well.

There are two choices for computing V 1
rdu

. The first choice

is using the reduced basis method, i.e.

range(V 1
rdu

) = span{Q−T (µ̃1)CT (µ1), . . . , Q−T (µ̃l)CT (µl)},
(27)

where µ̃j , j = 1, . . . , l, should be different from µ̃i used

for Vdu in either (21) or (25). The second choice is using

the multi-moment-matching method as in (24) and (25), by

choosing expansion points which are different from those used

there.

range(V µ̃j

rdu
) = span{R̃0, R̃1, . . . , R̃q}µ̃j , j = 1, . . . , l. (28)

Finally,

range(Vrdu) = orth{V µ̃1

rdu
, . . . , V µ̃l

rdu
, Vdu}. (29)

The µ̃j in (27) or (28) can be selected through a greedy

algorithm by searching the maximum of |x̂T
rdu

(µ̃)rpr(µ̃)|,
the first part of ∆(µ̃) associated with x̂rdu , and are usually

different from the µ̃i used for computing Vdu. For example,

µ̃j in (28) is computed as µ̃i
α in Algorithm 2 and is computed

in Step 11, whereas µ̃i used for computing Vdu is computed

in Step 10. Analogously, for non-parametric systems, sαi for

Vrdu and si for Vdu, are computed in Step 10 and Step 9 in

Algorithm 1, respectively.

E. Error Estimator for MIMO Systems

For MIMO systems, the transfer function is a matrix, the

error of each entry in Ĥ(µ̃) can be estimated by

|Hij(µ̃)− Ĥij(µ̃)|
. |x̂T

rdu
(µ̃)rpr(µ̃)|+ |x̂T

du(µ̃)rpr(µ̃)| =: ∆ij(µ̃),

where x̂du(µ̃) is the approximate solution to the dual system

by replacing CT in (6) with CT (:, i), the ith row of C.

Similarly, rpr(µ̃) is the residual of x̂pr(µ), the approximate

solution to the primal system by replcing B in (4) with B(:, j),
the jth column of B. Finally, ∆(µ̃) = max

ij
∆ij(µ̃).

F. Efficiently Computing the Error Estimator

As analyzed in [16], if the system matrices are of affine

forms, then the residuals involved in the error estimator can

be even more efficiently computed. For example, if Q(µ̃) is

affine with respect to the parameters, i.e.

Q(µ̃) = Q0 +Q1h1(µ̃) + . . .+Qphp(µ̃),

then

rpr(µ̃) = B(µ̃)− V TQ(µ̃)V zpr(µ̃)
= B(µ̃)− [V TQ0V + . . .+ V TQpV hp(µ̃)]zpr(µ̃).

(30)

The parameter independent terms V TQ0V ,. . .,V TQpV can

be precomputed and repeatedly used for estimating the ROM

error at different values of the parameters.

In the next section, we show how to adaptively compute

V, Vdu, Vrdu , so that the reduced systems for error estimation

as well as the ROM of the original system are adaptively

constructed.

III. ADAPTIVE MOR

The aim of an efficient error estimator is to construct a

ROM of the original system with satisfying accuracy and

high reliability. In the following, we show algorithms for

constructing the ROM of the original system, where the

error estimator acts as a guidance for greedy construction

of the projection matrix V for the ROM. To compute the

error estimator, the projection matrices Vdu, Vrdu need to be

constructed simultaneously with V .

Greedy algorithms using the error bound ∆0(µ̃) have been

proposed in [16] for adaptive MOR of linear systems with and

without parameters. In this work, we extend those algorithms

and adapt them using the proposed error estimator. The

resulting algorithms usually take much fewer iterative steps

and converges much faster than those in [16].

Algorithm 1 presents the greedy algorithm for

non-parametric linear systems. For non-parametric systems,

µ̃ = s in ∆(µ̃) and ∆0(µ̃). In this case, the ROM of the

system can be constructed using moment-matching [7].

However, for high-frequency problems, expanding the

transfer function only at zero to construct the projection

matrix V usually results in large errors of the reduced

transfer function at high frequencies. The following algorithm

provides a way of enriching V by adaptively selecting the

expansion points. In Algorithm 1, C̃(si) = (siE −A)−TCT ,

B̃(si) = (siE − A)−1B and q ≪ n. εtol is the tolerance

for the error of the reduced transfer function. Once the

maximal error estimator over the whole sample set Ξ is below

εtol, the algorithm stops. At every iteration, the s sample

corresponding to the maximal error estimator is chosen as

the next expansion point. An additional expansion point is

selected in Step 10 for the construction of Vrdu . Steps 7-8

orthogonalize the vectors in Vsi , V si
du and V

sαi
rdu against the

existing vectors, respectively. Algorithm 2 shows the adaptive

scheme for linear parametric systems. The expansion points

µ̃i are completely determined by the corresponding original

parameter sample µi. Actually, by computing the expansion

points µ̃i from the error estimator, we immediately know the

corresponding µi which generates µ̃i. This is useful when the

input matrix B(µ) or the output matrix C(µ) is parametric,

and when the reduced basis method is used to compute,

e.g., Vrdu from (27). As in Algorithm 1, orth in Steps 7-9

orthogonalizes Vµ̃i , V µ̃i

du , and V
µ̃i
α

rdu w.r.t. the already existing

basis vectors. For more clarity, we present two flowcharts in

Figures 1-2 to describe the processes of the greedy ROM

construction for non-parametric and parametric systems,

respectively.

IV. SIMULATION RESULTS

We use four models to show the robustness of the error

estimator. The first two are non-parametric SISO systems. One

is a CD player model, the other is a model of an RLC tree



IEEE TRANSACTIONS ON ON MICROWAVE THEORY AND TECHNIQUES 6

Algorithm 1 Greedy ROM construction for non-parametric

systems.

Input: System matrices E,A,B,C, εtol, Ξ: a set of samples

of s covering the interesting frequency range.

Output: The projection matrix V and the ROM in (3).

1: V = [], Vdu = [],Vrdu = [], set ǫ = εtol + 1, q > 1.

2: Initial expansion point: s1: the first sample in Ξ, sα1 : the

last sample in Ξ, i = 1.

3: while ǫ > εtol do

4: range(Vsi) = span{B̃(si), . . . , (Ã(si))
q−1B̃(si)},

Ã(s) = (sE −A)−1E.

5: range(V si
du) = span{C̃(si), . . . , (Ãc(si))

q−1C̃(si)},

Ãc(s) = (sE −A)−TET .

6: range(V
sαi
rdu) = span{C̃(sαi ), . . . , (Ãc(s

α
i )

q−1C̃(sαi )}.

7: V = orth{V, Vsi}, Vdu = orth{Vdu, V
si
du}.

8: Vrdu = orth{Vdu, Vrdu , V
sαi
rdu}.

9: i = i+ 1, si = argmax
s∈Ξ

∆(s).

10: sαi = argmax
s∈Ξ

|x̂T
rdu

(s)rpr(s)|. (first part of ∆(s))

11: ǫ = ∆(si).
12: end while

13: Compute the ROM in (3) using V and W = V .

Algorithm 2 Greedy ROM construction for parametric

systems.

Input: System matrices E(µ), A(µ), B(µ), C(µ), εtol, Ξ: a

set of samples of µ̃ covering the interesting frequency

range.

Output: The projection matrix V and the ROM in (3).

1: V = [], Vdu = [],Vrdu = [], set ǫ = εtol + 1.

2: Initial expansion point: µ̃1: the first sample in Ξ, µ̃1
α: the

last sample in Ξ, i = 1.

3: while ǫ > εtol do

4: Compute Vµ̃i following (19).

5: Compute V µ̃i

du following (24).

6: Compute V
µ̃i
α

rdu following (28).

7: V = orth{V, Vµ̃i}.

8: Vdu = orth{Vdu, V
µ̃i

du }.

9: Vrdu = orth{Vdu, Vrdu , V
µ̃i
α

rdu}.

10: i = i+ 1, µ̃i = argmax
µ̃∈Ξ

∆(µ̃).

11: µ̃i
α = argmax

µ̃∈Ξ
|x̂T

rdu
(µ̃)rpr(µ̃)|. (first part of ∆(µ̃))

12: ǫ = ∆(µ̃i).
13: end while

14: Compute the ROM in (3) using V and W = V .

circuit, which can be instantiated for any level l. Between two

consecutive levels, the circuit branch segments of the lower

level each split into two children, yielding
l−1∑

i=0

2i in the circuit

of level l. Each segment is made up of four RL pairs in series,

representing the wiring on a chip, with four capacitors to

ground, representing the wire-substrate interaction, see Fig. 3.

The dimension of this model is n = 6134. The third example is

derived from an electrical circuit of a CMOS-inverter driven

α
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Fig. 1. The greedy process of ROM construction by Algorithm 1 for
non-parametric systems.
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Fig. 2. The greedy process of ROM construction by Algorithm 2 for
parametric systems.

two-bit bus modelled by 40 RLC sections. The discretized

system was obtained using modified nodal analysis available

in SPICE, with n = 980. It has 4 inputs and 4 outputs, and no

parameters. Both the CD player model and the MIMO model

are from the SLICOT benchmark collection1. The last one

is the model of a butterfly-shaped micro-gyroscope. It is a

parametric system with n = 17, 931 and is available from the

MOR benchmark collection2.

The interesting frequency of the CD player model is f ∈
[0, 1 MHz]. The interesting frequency of the second and the

third models is f ∈ [0, 3 GHz]. The Gyroscope model is a low

frequency problem with f ∈ [0.025, 0.25]MHz. The samples

for the Laplace variable s are taken along the imaginary axis,

i.e. s = ω, and ω = 2πf . Here and below,  is the imaginary

unit.

The error tolerance εtol used in the greedy algorithms, i.e.

the error tolerance for the error of the ROMs, is set as 1×10−3

for the first three examples, while for the last example, we set

εtol = 1× 10−7, since the transfer function H(µ) is of small

magnitude: O(10−7) at some samples of the parameter.

1URL: http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
2URL: https://morwiki.mpi-magdeburg.mpg.de/morwiki
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The error bound ∆0(µ̃) was tested using the first two

examples in [16], the second and third example are also

used in [9] to demonstrate the heuristic adaptive expansion

point selection technique. However, as is discussed in the

introduction, the technique proposed in [9] is not robust for

the MIMO example.

For all the non-parametric examples, we use q = 3 for

Steps 4-6 of Algorithm 1. For the parametric model, we

use (R0, R1)/(R̃0, R̃1) to generate the matrices Vµ̃i , V µ̃i

du

and V
µ̃i
α

rdu in Steps 4-6 of Algorithm 2. At each iteration

step of Algorithm 1 and Algorithm 2, the maximal error

estimator/bound in Ξ, is computed, and is used as the error

control for the ROM. Therefore, the maximal true error

εmax = max
µ̃i∈Ξ

ε(µ̃i) is used for a comparison, where ε(µ̃i)

is the true error of the ROM evaluated at µ̃i, at the current

iteration of the algorithm.

For both algorithms, the initial expansion point for

computing V, Vdu is taken as the first sample in Ξ, and the

initial expansion points for computing Vrdu is taken as the

last sample in Ξ to make the two groups of expansion points

as different as possible. The sampling rule used for generating

Ξ for each example is detailed in the following subsections.







segment Level 2 

Level l 

Output 

Level 1 

Segment circuit: 

Fig. 3. An RLC tree example.

A. The CD Player Model

The CD player model describes a compact disc player which

is an optical decoding device that reproduces high-quality

audio from a digitally coded signal recorded as a spiral track

on a reflective disc [20]. More details about the model and

the device can be found in [20], where a schematic view

of a compact disc mechanism is presented. The CD player

model was collected as a benchmark example for MOR in [21]

and is widely used for testing MOR methods. The training

set Ξ for this model contains 60 samples of s, and then

the finally obtained ROM is validated at 600 samples of s
covering the whole interesting frequency range. The samples

are taken from the interval [0, 1MHz] using the MATLAB

function ”logspace”. Algorithm 1 takes 8 iterations to converge

when using ∆0(µ̃), while it takes 7 iterations when ∆(µ̃) is

used. The details for ∆0(µ̃) are shown in Table II, and those

for ∆(µ̃) are shown in Table I. Interesting to see is that ∆0(µ̃)

TABLE I
CD PLAYER, εtol = 10−3 , q = 3, r = 52.

iteration f := si/(2π) (Hz) εmax ∆(si)
1 1 40.75 51
2 11.7 30.16 35.75
3 47.6 0.75 5.41
4 11.8 0.32 0.4
5 96.1 0.03 0.02
6 626 0.002 0.002
7 1000 8.28× 10−4 8.38× 10−4

TABLE II
CD PLAYER, εtol = 10−3 , q = 3, r = 60.

iteration f := si/(2π)(Hz) εmax ∆0(si)
1 1 40.75 3.87× 103

2 11.7 19.34 2.8× 103

3 47.6 0.59 618
4 11.8 0.31 164
5 96.1 0.05 1.59
6 626 0.002 0.26
7 7.3 5.9× 10−4 0.08
8 1000 5.2× 10−6 1.43× 10−4

and ∆(µ̃) provide almost the same expansion points, except

at the final iteration step. However, due to overestimation

of the true error, ∆0 takes one more iteration step, and

produces a ROM with true error being too below the tolerance.

We further validate the ROM obtained by both ∆0(s) and

∆(s) at 600 samples, the results are plotted in Figure 4-5.

It is clear from the figure that there are relatively big gaps

between ∆0(s) and the true error at certain points, whereas

∆(s) tightly estimates the true error. The effectivity of the

proposed error estimator eff(s) := ∆(s)/ǫtrue(s), evaluated

at 600 frequency samples, satisfies 0.12 < eff(s) < 17. The

effectivity of the error bound satisfies 0.11 < eff(s) < 91.

We observe that underestimation of both ∆ and ∆0 happens

only at samples with very small true errors being smaller

than 10−12 which may be caused by rounding errors. The

Fig. 4. CD player: ∆(s) vs true error at 600 frequency samples in [0, 1 MHz].

magnitude of the transfer function of the original model and

the that of the ROM computed by Algorithm 1 using the

proposed error estimator, are plotted in Figure 6. The reduced

transfer function approximates the original transfer function

well.
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Fig. 5. CD player: ∆0(s) vs true error at 600 frequency samples in [0,
1 MHz].

Fig. 6. CD player: original |H(ω)| vs reduced |Ĥ(ω)|.

B. The RLC Tree Model

We use a training set Ξ with 90 frequency samples covering

the whole frequency range [0, 3 GHz]. The samples si are

taken using the function fi = 3 × 10i/10, si = 2π, i =
1, . . . , 90. Here  is the imaginary unit. The greedy algorithm

takes 3 iterations to converge with the error estimator, but uses

8 iterations to converge with the error bound, see Table VI-IV.

This is mainly due to low tightness of the error bound leading

to stagnation of the true error after the 4th iteration, and the

unnecessary iterations after the 3rd iteration.

The derived ROMs are validated on 900 samples covering

the interesting frequency range. The performance of ∆(µ̃) and

∆0(µ̃) is plotted in Figure 7 and Figure 8, respectively. It

is clear that the error bound is too rough at many samples,

this is mainly due to the small magnitude of σmin(Q(s))
in (34) for this example. The effectivity of the proposed

error estimator eff(s) := ∆(s)/ǫtrue(s), evaluated at 900

frequency samples, satisfies 0.003 < eff(s) < 244, which

looks not sharp. However, it is noticed that the true error is

close to zero at many sample points. If we only consider

the true error larger than 1 × 10−11, then the effectivity

of the error estimator falls into the interval [0.37, 51], i.e.

0.37 < eff(s) < 51. The effectivity of the error bound

satisfies 0.45 < eff(s) < 2 × 108, and is not always a

bound. Similar as before, the underestimation only happens

at samples with true errors smaller than 10−12. This again

TABLE III
RLC TREE, εtol = 10−3 , q = 3, r = 20.

iteration f := si/(2π) (Hz) εmax ∆(si)
1 3.77 0.18 0.6
2 2.38× 109 0.016 0.06
3 1.19× 109 6.12× 10−6 6.45× 10−6

TABLE IV
RLC TREE, εtol = 10−3 , q = 3, r = 25.

iteration f := si/(2π)(Hz) εmax ∆0(si)
1 3.77 0.19 1× 106

2 1.5× 109 0.06 9.13× 104

3 2.4× 109 4.11× 10−6 1.14× 103

4 3× 109 5.75× 10−10 0.009
5 1.9× 109 5.68× 10−10 0.004
6 9.5× 108 5.76× 10−10 0.002
7 3.7× 108 5.79× 10−10 0.01
8 1.5× 108 5.70× 10−10 1.8× 10−7

be caused by rounding errors when evaluating true errors

with very small values. Magnitudes of the original and the

Fig. 7. RLC tree: ∆(s) vs true error at 900 frequency samples in [0, 3 GHz].

Fig. 8. RLC tree: ∆0(s) vs true error at 900 frequency samples in [0, 3 GHz].

reduced transfer functions are plotted in Figure 9, respectively.

The reduced transfer function is computed by Algorithm 1

using the proposed error estimator and reproduces the original

transfer function.

C. The MIMO Example

This example has the same frequency range as the second

example, therefore we use the same samples as for the RLC
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Fig. 9. RLCtree: original |H(ω)| vs reduced |Ĥ(ω)|.

tree model to construct Ξ. The error estimator is the maximal

error estimator defined in subsection II-E. The true error is

the maximal true error ǫtrue(s) = max
ij

|Hij(s) − Ĥij(s)|.

Algorithm 1 converges in 3 iterations with ∆(s), but in 4

iterations with ∆0(s).

The MIMO ROM is of order r = 73 using ∆(s).
Fig. 10 and Fig. 11 plot ∆(s), ∆0(s) and their corresponding

ǫtrue(s) at 900 frequency samples in [0, 3 GHz], respectively.

It shows that ∆(s) catches the true error very well, and

is much sharper than ∆0(s). The effectivity eff(s) :=
∆(s)/ǫtrue(s), evaluated at 900 frequency samples, satisfies

0.11 < eff(s) < 5. The effectivity of the error bound satisfies

0.46 < eff(s) < 6.5 × 106. The underestimation of both

∆(s) and ∆0(s) happens at samples with true errors smaller

than 5× 10−9. Fig. 12 plots the magnitudes of the functions

H(s) and Ĥ(s) at input port 1 and output port 4, though Ĥ(s)
reproduces H(s) at all other input-output ports, too. In order

to show more resonances, we extend the frequency range to

5GHz. Algorithm 1 based on frequency samples taken from

the extended frequency interval [0, 5 GHz], can still produce

a ROM meeting the required accuracy.

Remark 1: In the proceedings paper [17], we use a training

set Ξ with 18 samples and q = 5 for moment-matching

in Algorithm 1, therefore, we obtain different results. The

error estimator works equally well. Due to space limitation,

these details were not presented there. Techniques of adaptive

training sampling [22], [23] could be applied to obtain an

optimal training set so that the ROM is robust for as many

other samples outside of the training set as possible. However,

it is beyond the scope of this paper.

TABLE V
MIMO EXAMPLE, εtol = 10−3 , q = 3, r = 73.

iteration f := si/(2π) (Hz) εmax ∆(si)
1 3.77 0.28 0.28
2 1.5× 109 5.9× 10−5 0.0023
3 3.7× 107 4.72× 10−8 1.43× 10−7

TABLE VI
MIMO EXAMPLE, εtol = 10−3 , q = 3, r = 100.

iteration f := si/(2π) (Hz) εmax ∆0(si)
1 3.77 0.28 2.47× 107

2 1.89× 109 1.87× 10−5 542
3 3× 109 5.49× 10−8 61.89
4 1.19× 106 9.83× 10−10 5.54× 10−5

Fig. 10. MIMO example: ∆(s) vs true error at 900 frequency samples in [0,
3 GHz].

D. The Parametric Example

The micro-gyroscope model is a second-order parametric

system with four parameters,

M(d)ẍ+D(θ, α, β, d)ẋ+ T (d)x = Bu(t),
y = Cx.

Here, M(d) = (M1 + dM2), T (d) = (T1 + 1
dT2 + dT3),

D(θ, α, β, d) = θ(D1+dD2)+αM(d)+βT (d) ∈ Rn×n, n =
17, 913. The parameters are d, θ, α, β. d ∈ [100%, 200%], the

width of the bearing, taken as the percentage of the base value,

and θ ∈ [10−7, 10−5]MHz, the rotation velocity along the

x-axis. α, β contribute to the proportional damping [24]. The

numerical values of d, θ and f for simulation are taken from

the intervals [1,2], [10−7, 10−5] and [0.025, 0.25], respectively.

After Laplace transform, the system in frequency domain is

s2M(d)x+ sD(θ, α, β, d)x+ T (d)x = BuL(s),
y = Cx.

The above system can be rewritten into the affine form,

Q(µ̃)x = BuL(µ̃),
y = Cx,

where Q(µ̃) = T1+ µ̃1M1+ µ̃2M2+ µ̃3D1+ µ̃4D2+ µ̃5M1+
µ̃6M2 + µ̃7T1 + µ̃8T2 + µ̃9T3 + µ̃10T2 + µ̃11T3. Here µ̃ =
(µ̃1, . . . , µ̃11)

T includes the newly generated parameters, µ̃1 =
s2, µ̃2 = s2d, µ̃3 = sθ, µ̃4 = sθd, µ̃5 = sα, µ̃6 = sαd,

µ̃7 = sβ, µ̃8 = sβ/d, µ̃9 = sβd, µ̃10 = 1/d, µ̃11 = d.

For this example, we use 75 random training samples (3 for

θ, 5 for s, 5 for d, α = β = 0) for the error estimator ∆(µ̃), but

use 150 random samples (3 for θ, 10 for s, 5 for d, α = β = 0)

for the error bound ∆0(µ̃), because the error bound stagnates

at around 1e-7 when using 75 samples. Therefore, the runtime

of the greedy algorithm using the error bound is counted for

the 150 training samples. Afterwards, both are validated at

2500 samples, with β = 10−9 and α = 0.1 being nonzero.
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Fig. 11. MIMO example: ∆0(s) vs true errors at 900 frequency samples in
[0, 3 GHz].

Fig. 12. MIMO example: input port 1, output port 4, original |H41(ω)| vs

reduced |Ĥ41(ω)|.

The algorithm then converges in 6 iterations using ∆(µ̃),
whereas it uses 36 iterations with the error bound ∆0(µ̃). This

is mainly because ∆0(µ̃) is not sharp in the beginning of the

greedy algorithm. The decays of both ∆(µ̃) and ∆0(µ̃) with

the iterations of the greedy algorithm are shown in Fig. 13.

The resulting ROM derived using ∆(µ̃) is of order r = 72. In

Fig. 14, we compare ∆(µ̃), ∆0(µ̃) with the corresponding

true errors of Ĥ(µ̃) at 2500 samples of µ̃, including the

samples of s. It shows ∆(µ̃) is orders of magnitudes sharper

than ∆0(µ̃). eff(µ̃) := ∆(µ̃)/ǫtrue(µ̃) at all samples satisfy

0.38 < eff < 15. We show the runtime of the greedy

algorithms using the proposed error estimator and the error

bound in [16], respectively, in Table VII. The error estimator

obviously saves much computational time, especially when the

original system becomes large. We present the magnitude of

the transfer function of the Gyroscope model computed by the

ROM using the proposed error estimator in Figure 15. The

plot shows the transfer function changing with both frequency

and the parameter d, when the other parameter θ is fixed

as θ = 10−6. Since the original transfer function shows no

difference from the reduced one, we only present the reduced

transfer function for clarity of the plot.

E. Performance of ∆(µ̃) when Vrdu = Vdu

In the end, we use the MIMO example and the parametric

example to show the performance of ∆(µ̃) when Vrdu = Vdu.

Fig. 13. Parametric example: decays of ∆(µ̃) and ∆0(µ̃).

TABLE VII
RUNTIME (SECONDS) OF THE GREEDY ALGORITHMS

Models Runtime-∆ (s) Runtime-∆0 (s) Speedup

CD player n =120 0.81 0.94 1.2

RLC tree n = 6, 134 2.13 11.58 5.4

MIMO n =980 42 89 2.1

Parametric n = 17, 931 326 3006 9.22

From Theorem 2, we know that if Vrdu = Vdu, ∆(µ̃)
reduces to ∆1(µ̃) = |x̂T

du(µ̃)rpr(µ̃)|. We plot ∆1(µ̃) and

the corresponding true error in Figures 16-17. It is clear

that ∆1(µ̃) cannot catch the true error well and is not a

reliable error estimator. Therefore, the second part of ∆(µ̃), i.e.

|x̂T
rdu

(µ̃)rpr(µ̃)| does contribute to the rigorousness of ∆(µ̃).

V. CONCLUSIONS

Error estimation is still a critical issue in model

order reduction. In this work, an efficient error estimator

for reduced-order modeling of linear non-parametric and

parametric systems is proposed. The error estimator measures

the transfer function error or the output error. It is

cheap to compute and outperforms other existing error

bounds/estimators. The robustness of the error estimator is

well demonstrated by four real-world models.

APPENDIX A

PROOF OF THEOREM 1

Proof From the definition of the transfer function, we have

|H(µ̃)− Ĥ(µ̃)|

= |C(µ)[Q−1(µ̃)B(µ)− V Q̂−1(µ̃)B̂(µ)]|

= |C(µ)Q−1(µ̃)[B(µ)−Q(µ̃)V Q̂−1(µ̃)B̂(µ)]
︸ ︷︷ ︸

zpr(µ̃)

|

= |C(µ)Q−1(µ̃)rpr(µ̃)|

(31)

Then,

|H(µ̃)− Ĥ(µ̃)| − |x̂T
du(µ̃)rpr(µ̃)|

= |C(µ)Q−1(µ̃)rpr(µ̃)| − |x̂T
du(µ̃)rpr(µ̃)|

≤ |[Q−T (µ̃)CT (µ)− x̂du(µ̃)]
T rpr(µ̃)|

= |[Q−T (µ̃)(CT (µ)−QT (µ̃)x̂du(µ̃))]
T rpr(µ̃)|

= |[Q−T (µ̃)rdu(µ̃)
︸ ︷︷ ︸

xrdu(µ̃) in (8)

]T rpr(µ̃)|.

(32)

It follows

|H(µ̃)− Ĥ(µ̃)| ≤ |xT
rdu

(µ̃)rpr(µ̃)|+ |x̂T
du(µ̃)rpr(µ̃)|.
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Fig. 14. Parametric example: ∆(µ̃),∆0(µ̃) vs true errors at 2500 samples
of µ̃.

Fig. 15. Parametric model: |Ĥ(µ, ω)| of the ROM.

APPENDIX B

PROOF OF THEOREM 2

Proof
|x̂T

rdu
(µ̃)rpr(µ̃)|

= |rTpr(µ̃)x̂rdu(µ̃)|
= |rTpr(µ̃)Vrduzrdu(µ̃)|

= |rTpr(µ̃)VrduQ̃
−1(µ̃)r̃du(µ̃)|

= |rTpr(µ̃)VrduQ̃
−1(µ̃)V T

rdu
rdu(µ̃)|.

(33)

If Vrdu = Vdu, then

V T
rdu

rdu = V T
durdu

= V T
du(C

T (µ)−QT (µ̃)Vduzdu(µ̃))
= V T

duC
T (µ)− V T

duQ
T (µ̃)Vduzdu(µ̃))

= Ĉdu(µ)− Q̂du(µ̃)zdu(µ̃)
= 0.

Substituting V T
rdu

rdu = 0 into the last equality of (33) results

in |x̂T
rdu

(µ̃)rpr(µ̃)| = 0.

APPENDIX C

PROOF OF THEOREM 3

Proof From the first and last equality in (32), we obtain

|H(µ̃)− Ĥ(µ̃)|
≤ |Q−T (µ̃)rdu(µ̃)rpr(µ̃)|+ |x̂T

du(µ̃)rpr(µ̃)|
(34)

≤ ‖Q−T (µ̃)‖2‖rdu(µ̃)‖2‖rpr(µ̃)‖2 + ‖x̂T
du(µ̃)rpr(µ̃)‖2

= ‖rdu(µ̃)‖2‖rpr(µ̃)‖2/σmin(Q(µ̃)) + ‖x̂T
du(µ̃)rpr(µ̃)‖2

Fig. 16. MIMO example: ∆1(µ̃) vs true errors at 900 samples of µ̃.

Fig. 17. Parametric example: ∆1(µ̃) vs true errors at 2500 samples of µ̃.
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