
694 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

A New Evolutionary System for Evolving
Artificial Neural Networks

Xin Yao, Senior Member, IEEE,and Yong Liu

Abstract—This paper presents a new evolutionary system, i.e.,
EPNet, for evolving artificial neural networks (ANN’s). The evo-
lutionary algorithm used in EPNet is based on Fogel’s evolution-
ary programming (EP). Unlike most previous studies on evolving
ANN’s, this paper puts its emphasis on evolving ANN’s behaviors.
This is one of the primary reasons why EP is adopted. Five
mutation operators proposed in EPNet reflect such an emphasis
on evolving behaviors. Close behavioral links between parents
and their offspring are maintained by various mutations, such as
partial training and node splitting. EPNet evolves ANN’s archi-
tectures and connection weights (including biases) simultaneously
in order to reduce the noise in fitness evaluation. The parsimony
of evolved ANN’s is encouraged by preferring node/connection
deletion to addition. EPNet has been tested on a number of
benchmark problems in machine learning and ANN’s, such
as the parity problem, the medical diagnosis problems (breast
cancer, diabetes, heart disease, and thyroid), the Australian credit
card assessment problem, and the Mackey–Glass time series
prediction problem. The experimental results show that EPNet
can produce very compact ANN’s with good generalization ability
in comparison with other algorithms.

Index Terms—Evolution, evolutionary programming, evolution
of behaviors, generalization, learning, neural-network design,
parsimony.

I. INTRODUCTION

A RTIFICIAL neural networks (ANN’s) have been used
widely in many application areas in recent years. Most

applications use feedforward ANN’s and the backpropagation
(BP) training algorithm. There are numerous variants of the
classical BP algorithm and other training algorithms. All these
training algorithms assume a fixed ANN architecture. They
only train weights in the fixed architecture that includes both
connectivity and node transfer functions.1 The problem of
designing a near optimal ANN architecture for an applica-
tion remains unsolved. However, this is an important issue
because there are strong biological and engineering evidences
to support that the function, i.e., the information processing
capability of an ANN is determined by its architecture.

There have been many attempts in designing ANN architec-
tures (especially connectivity2) automatically, such as various

Manuscript received January 6, 1996; revised August 12, 1996 and Novem-
ber 12, 1996. This work was supported by the Australian Research Council
through its small grant scheme.

The authors are with the Computational Intelligence Group, School of
Computer Science, University College, The University of New South Wales,
Australian Defence Force Academy, Canberra, ACT, Australia 2600.

Publisher Item Identifier S 1045-9227(97)02758-6.
1Weights in this paper indicate both connection weights and biases.
2This paper is only concerned with connectivity and will use architecture

and connectivity interchangeably. The work on evolving both connectivity
and node transfer functions was reported elsewhere [4].

constructive and pruning algorithms [5]–[9]. Roughly speak-
ing, a constructive algorithm starts with a minimal network
(i.e., a network with a minimal number of hidden layers, nodes,
and connections) and adds new layers, nodes, and connections
if necessary during training, while a pruning algorithm does
the opposite, i.e., deletes unnecessary layers, nodes, and con-
nections during training. However, as indicated by Angelineet
al. [10], “Such structural hill climbing methods are susceptible
to becoming trapped at structural local optima.” In addition,
they “only investigate restricted topological subsets rather than
the complete class of network architectures.”

Design of a near optimal ANN architecture can be for-
mulated as a search problem in the architecture space where
each point represents an architecture. Given some performance
(optimality) criteria, e.g., minimum error, fastest learning,
lowest complexity, etc., about architectures, the performance
level of all architectures forms a surface in the space. The
optimal architecture design is equivalent to finding the highest
point on this surface. There are several characteristics with
such a surface, as indicated by Milleret al. [11], which
make evolutionary algorithms better candidates for searching
the surface than those constructive and pruning algorithms
mentioned above.

This paper describes a new evolutionary system, i.e., EPNet,
for evolving feedforward ANN’s. It combines the architectural
evolution with the weight learning. The evolutionary algorithm
used to evolve ANN’s is based on Fogel’s evolutionary
programming (EP) [1]–[3]. It is argued in this paper that EP is
a better candidate than genetic algorithms (GA’s) for evolving
ANN’s. EP’s emphasis on the behavioral link between parents
and offspring can increase the efficiency of ANN’s evolution.

EPNet is different from previous work on evolving ANN’s
on a number of aspects. First, EPNet emphasises the evolution
of ANN behaviors by EP and uses a number of techniques,
such as partial training after each architectural mutation and
node splitting, to maintain the behavioral link between a
parent and its offspring effectively. While some of previous
EP systems [3], [10], [12]–[15], acknowledged the importance
of evolving behaviors, few techniques have been developed
to maintain the behavioral link between parents and their
offspring. The common practice in architectural mutations was
to add or delete hidden nodes or connections uniformly at
random. In particular, a hidden node was usually added to
a hidden layer with full connections. Random initial weights
were attached to these connections. Such an approach tends to
destroy the behavior already learned by the parent and create
poor behavioral link between the parent and its offspring.

1045–9227/97$10.00 1997 IEEE

YAO AND LIU: NEW EVOLUTIONARY SYSTEM 695

Second, EPNet encourages parsimony of evolved ANN’s
by attempting different mutations sequentially. That is, node
or connection deletion is always attempted before addition.
If a deletion is “successful,” no other mutations will be
made. Hence, a parsimonious ANN is always preferred. This
approach is quite different from existing ones which add
a network complexity (regularization) term in the fitness
function to penalize large ANN’s (i.e., the fitness function
would look like). The difficulty in
using such a function in practice lies in the selection of suitable
coefficient , which often involves tedious trial-and-error
experiments. Evolving parsimonious ANN’s by sequentially
applying different mutations provides a novel and simple
alternative which avoids the problem. The effectiveness of the
approach has been demonstrated by the experimental results
presented in this paper.

Third, EPNet has been tested on a number of bench-
mark problems, including the parity problem of various sizes,
the Australian credit card accessment problem, four medical
diagnosis problems (breast cancer, diabetes, heart disease,
and thyroid), and the Mackey–Glass time series prediction
problem. It was also tested on the two-spiral problem [16].
Few evolutionary systems have been tested on a similar range
of benchmark problems. The experimental results obtained by
EPNet are better than those obtained by other systems in terms
of generalization and the size of ANN’s.

The rest of this paper is organized as follows. Section II
discusses different approaches to evolving ANN architectures
and indicates potential problems with the existing approaches,
Section III describes EPNet in detail and gives motivations
and ideas behind various design choices, Section IV presents
experimental results on EPNet and some discussions, and
finally Section V concludes with a summary of the paper and
a few remarks.

II. EVOLVING ANN ARCHITECTURES

There are two major approaches to evolving ANN archi-
tectures. One is the evolution of “pure” architectures (i.e.,
architectures without weights). Connection weights will be
trained after a near optimal architecture has been found. The
other is the simultaneous evolution of both architectures and
weights. Schafferet al. [17] and Yao [18]–[21] have provided
a comprehensive review on various aspects of evolutionary
artificial neural networks (EANN’s).

A. The Evolution of Pure Architectures

One major issue in evolving pure architectures is to decide
how much information about an architecture should be en-
coded into a chromosome (genotype). At one extreme, all the
detail, i.e., every connection and node of an architecture can be
specified by the genotype, e.g., by some binary bits. This kind
of representation schemes is called the direct encoding scheme
or the strong specification scheme. At the other extreme,
only the most important parameters of an architecture, such
as the number of hidden layers and hidden nodes in each
layer are encoded. Other detail about the architecture is either
predefined or left to the training process to decide. This kind of

representation schemes is called the indirect encoding scheme
or the weak specification scheme. Fig. 1 [20], [21] shows the
evolution of pure architectures under either a direct or an
indirect encoding scheme.

It is worth pointing out that genotypes in Fig. 1 do not
contain any weight information. In order to evaluate them,
they have to be trained from a random set of initial weights
using a training algorithm like BP. Unfortunately, such fitness
evaluation of the genotypes is very noisy because a pheno-
type’s fitness is used to represent the genotype’s fitness. There
are two major sources of noise.

1) The first source is the random initialization of the
weights. Different random initial weights may produce
different training results. Hence, the same genotype may
have quite different fitness due to different random initial
weights used by the phenotypes.

2) The second source is the training algorithm. Different
training algorithms may produce different training re-
sults even from the same set of initial weights. This
is especially true for multimodal error functions. For
example, a BP may reduce an ANN’s error to 0.05
through training, but an EP could reduce the error to
0.001 due to its global search capability.

Such noise can mislead the evolution because of the fact
that the fitness of a phenotype generated from genotypeis
higher than that generated from genotype does not mean
that has higher fitness than . In order to reduce such
noise, an architecture usually has to be trained many times
from different random initial weights. The average results
will then be used to estimate the genotype’s fitness. This
method increases the computation time for fitness evaluation
dramatically. It is one of the major reasons why only small
ANN’s were evolved in previous studies [22]–[24].

In essence, the noise identified in this paper is caused by
the one to many mapping from genotypes to phenotypes.
Angelineet al. [10] and Fogel [3], [25] have provided a more
general discussion on the mapping between genotypes and
phenotypes. It is clear that the evolution of pure architectures
has difficulties in evaluating fitness accurately. As a result, the
evolution would be very inefficient.

B. The Simultaneous Evolution of Both
Architectures and Weights

One way to alleviate the noisy fitness evaluation problem
is to have a one to one mapping between genotypes and
phenotypes. That is, both architecture and weight information
are encoded in individuals and are evolved simultaneously.
Although the idea of evolving both architectures and weights
is not new [3], [10], [13], [26], few have explained why
it is important in terms of accurate fitness evaluation. The
simultaneous evolution of both architectures and weights can
be summarized by Fig. 2.

The evolution of ANN architectures in general suffers
from the permutation problem [27], [28] or called competing
conventions problem [17]. It is caused by the many to one
mapping from genotypes to phenotypes since two ANN’s
which order their hidden nodes differently may have different

696 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

Fig. 1. A typical cycle of the evolution of architectures.

Fig. 2. A typical cycle of the evolution of both architectures and weights. The word “genetic” used above is rather loose and should not be interpreted
in the strict biological sense. Genetic operators are just search operators.

genotypes but are behaviorally (i.e., phenotypically) equiva-
lent. This problem not only makes the evolution inefficient,
but also makes crossover operators more difficult to produce
highly fit offspring. It is unclear what building blocks actually
are in this situation. For example, ANN’s shown in Figs. 3(a)
and 4(a) are equivalent, but they have different genotypic
representations as shown by Figs. 3(b) and 4(b) using a
direct encoding scheme. In general, any permutation of the
hidden nodes will produce behaviorally equivalent ANN’s but
with different genotypic representations. This is also true for
indirect encoding schemes.

C. Some Related Work

There is some related work to evolving ANN architec-
tures. For example, Smalz and Conrad [29] proposed a novel
approach to assigning credits and fitness to neurons (i.e.,

(a) (b)

Fig. 3. (a) An ANN and (b) its genotypic representation, assuming that each
weight is represented by four binary bits. Zero weight implies no connection.

nodes) in an ANN, rather than the ANN itself. This is
quite different from all other methods which only evaluate
a complete ANN without going inside it. The idea is to
identify those neurons which “are most compatible with all
of the network contexts associated with the best performance

YAO AND LIU: NEW EVOLUTIONARY SYSTEM 697

(a) (b)

Fig. 4. (a) An ANN which is equivalent to that given in Fig. 3(a) and (b)
its genotypic representation.

on any of the inputs” [29]. Starting from a population of
redundant, identically structured networks that vary only with
respect to individual neuron parameters, their evolutionary
method first evaluates neurons and then copies with mutation
the parameters of those neurons that have high fitness values
to other neurons in the same class. In other words, it tries
to put all fit neurons together to generate a hopefully fit
network. However, Smalz and Conrad’s evolutionary method
does not change the network architecture, which is fixed [29].
The appropriateness of assigning credit/fitness to individual
neurons also needs further investigation. It is well known
that ANN’s use distributed representation. It is difficult to
identify a single neuron for the good or poor performance of
a network. Putting a group of “good” neurons from different
ANN’s together may not produce a better ANN unless a local
representation is used. It appears that Smalz and Conrad’s
method [29] is best suited to ANN’s such as radial basis
function (RBF) networks.

Odri et al. [30] proposed a nonpopulation-based learning
algorithm which could change ANN architectures. It uses the
idea of evolutional development. The algorithm is based on
BP. During training, a new neuron may be added to the
existing ANN through “cell division” if an existing neuron
generates a nonzero error [30]. A connection may be deleted
if it does not change very much in previous training steps. A
neuron is deleted only when all of its incoming or all of its
outgoing connections have been deleted. There is no obvious
way to add a single connection [30]. The algorithm was only
tested on the XOR problem to illustrate its ideas [30]. One
major disadvantage of this algorithm is its tendency to generate
larger-than-necessary ANN and overfit training data. It can
only deal with strictly layered ANN’s.

III. EPNET

In order to reduce the detrimental effect of the permutation
problem, an EP algorithm, which does not use crossover,
is adopted in EPNet. EP’s emphasis on the behavioral link
between parents and their offspring also matches well with the
emphasis on evolving ANN behaviors, not just circuitry. In its
current implementation, EPNet is used to evolve feedforward
ANN’s with sigmoid transfer functions. However, this is not
an inherent constraint. In fact, EPNet has minimal constraint
on the type of ANN’s which may be evolved. The feedforward
ANN’s do not have to be strictly layered or fully connected

between adjacent layers. They may also contain hidden nodes
with different transfer functions [4].

The major steps of EPNet can be described by Fig. 5, which
are explained further as follows [16], [31]–[34].

1) Generate an initial population of networks at random.
The number of hidden nodes and the initial connection
density for each network are uniformly generated at ran-
dom within certain ranges. The random initial weights are
uniformly distributed inside a small range.

2) Partially train each network in the population on the train-
ing set for a certain number of epochs using a modified
BP (MBP) with adaptive learning rates. The number of
epochs, , is specified by the user. The error value
of each network on the validation set is checked after
partial training. If has not been significantly reduced,
then the assumption is that the network is trapped in a
local minimum and the network is marked with “failure.”
Otherwise the network is marked with “success.”

3) Rank the networks in the population according to their
error values, from the best to the worst.

4) If the best network found is acceptable or the maximum
number of generations has been reached, stop the evolu-
tionary process and go to Step 11). Otherwise continue.

5) Use the rank-based selection to choose one parent network
from the population. If its mark is “success,” go to Step
6), or else go to Step 7).

6) Partially train the parent network for epochs using the
MBP to obtain an offspring network and mark it in the
same way as in Step 2), where is a user specified
parameter. Replace the parent network with the offspring
in the current population and go to Step 3).

7) Train the parent network with a simulated annealing (SA)
algorithm to obtain an offspring network. If the SA al-
gorithm reduces the error of the parent network sig-
nificantly, mark the offspring with “success,” replace its
parent by it in the current population, and then go to Step
3). Otherwise discard this offspring and go to Step 8).

8) First decide the number of hidden nodes to be
deleted by generating a uniformly distributed random num-
ber between one and a user-specified maximum number.

is normally very small in the experiments, no
more than three in most cases. Then delete hidden
nodes from the parent network uniformly at random.
Partially train the pruned network by the MBP to obtain
an offspring network. If the offspring network is better
than the worst network in the current population, replace
the worst by the offspring and go to Step 3). Otherwise
discard this offspring and go to Step 9).

9) Calculate the approximate importance of each connection
in the parent network using the nonconvergent method.
Decide the number of connections to be deleted in the
same way as that described in Step 8). Randomly delete
the connections from the parent network according to the
calculated importance. Partially train the pruned network
by the MBP to obtain an offspring network. If the offspring
network is better than the worst network in the current pop-
ulation, replace the worst by the offspring and go to Step
3). Otherwise discard this offspring and go to Step 10).

698 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

Fig. 5. Major steps of EPNet.

Fig. 6. A fully connected feedforward ANN [35, p. 273].

10) Decide the number of connections and nodes to be
added in the same way as that described in Step 8).
Calculate the approximate importance of each virtual
connection with zero weight. Randomly add the con-
nections to the parent network to obtainOffspring 1
according to their importance. Addition of each node
is implemented by splitting a randomly selected hidden
node in the parent network. The new grown network
after adding all nodes is Offspring 2. Partially train
Offspring 1 and Offspring 2 by the MBP to obtain a
survival offspring. Replace the worst network in the
current population by the offspring and go to Step 3).

11) After the evolutionary process, train the best network
further on the combined training and validation set until
it “converges.”

The above evolutionary process appears to be rather com-
plex, but its essence is an EP algorithm with five mutations:
hybrid training, node deletion, connection deletion, connection
addition, and node addition. Details about each component of
EPNet are given in the following sections.

A. Encoding Scheme for Feedforward ANN’s

The feedforward ANN’s considered by EPNet are general-
ized multilayer perceptrons [35, pp. 272–273]. The architecture
of such networks is shown in Fig. 6, where and are
inputs and outputs, respectively,

where is the following sigmoid function:

and are the number of inputs and outputs, respectively,
is the number of hidden nodes.

In Fig. 6, there are circles, representing all of
the nodes in the network, including the input nodes. The first

circles are really just copies of the inputs .
Every other node in the network, such as node number,
which calculates and , takes inputs from every node

YAO AND LIU: NEW EVOLUTIONARY SYSTEM 699

that precedes it in the network. Even the last output node (the
th), which generates , takes input from other

output nodes, such as the one which outputs .
The direct encoding scheme is used in EPNet to represent

ANN architectures and connection weights (including biases).
This is necessary because EPNet evolves ANN architectures
and weights simultaneously and needs information about every
connection in an ANN. Two equal size matrices and one vector
are used to specify an ANN in EPNet. The dimension of
the vector is determined by a user-specified upper limit,
which is the maximum number of hidden nodes allowable
in the ANN. The size of the two matrices is

, where and are the number of input
and output nodes, respectively. One matrix is the connectivity
matrix of the ANN, whose entries can only be zero or one.
The other is the corresponding weight matrix whose entries
are real numbers. Using two matrices rather than one is purely
implementation-driven. The entries in the hidden node vector
can be either one, i.e., the node exists, or zero, i.e., the node
does not exist.

Since this paper is only concerned with feedforward ANN’s,
only the upper triangle will be considered in the two matrices.
There will be no connections among input nodes. Architectural
mutations can be implemented easily under such a represen-
tation scheme. Node deletion and addition involve flipping
a bit in the hidden node vector. A zero bit disables all the
connections to and from the node in the connectivity matrix.
Connection deletion and addition involve flipping a bit in
the connectivity matrix. A zero bit automatically disables the
corresponding weight entry in the weight matrix. The weights
are updated by a hybrid algorithm described later.

B. Fitness Evaluation and Selection Mechanism

The fitness of each individual in EPNet is solely determined
by the inverse of an error value defined by (1) [36] over a
validation set containing patterns

(1)

where and are the maximum and minimum values
of output coefficients in the problem representation,is the
number of output nodes, and are actual and desired
outputs of node for pattern .

Equation (1) was suggested by Prechelt [36] to make the
error measure less dependent on the size of the validation set
and the number of output nodes. Hence a mean squared error
percentage was adopted. and were the maximum
and minimum values of outputs [36].

The fitness evaluation in EPNet is different from previous
work in EANN’s since it is determined through a validation
set which does not overlap with the training set. Such use of a
validation set in an evolutionary learning system improves the
generalization ability of evolved ANN’s and introduces little
overhead in computation time.

The selection mechanism used in EPNet is rank based. Let
sorted individuals be numbered as , with

the zeroth being the fittest. Then the th individual is
selected with probability [37]

The selected individual is then modified by the five mutations.
In EPNet, error is used to sort individuals directly rather
than to compute and use to sort them.

C. Replacement Strategy and Generation Gap

The replacement strategy used in EPNet reflects the empha-
sis on evolving ANN behaviors and maintaining behavioral
links between parents and their offspring. It also reflects that
EPNet actually emulates a kind of Lamarckian rather than
Darwinian evolution. There is an on-going debate on whether
Lamarckian evolution or Baldwin effect is more efficient in
simulated evolution [38], [39]. Ackley and Littman [38] have
presented a case for Lamarckian evolution. The experimental
results of EPNet seem to support their view.

In EPNet, if an offspring is obtained through further BP
partial training, it always replaces its parent. If an offspring
is obtained through SA training, it replaces its parent only
when it reduces its error significantly. If an offspring is
obtained through deleting nodes/connections, it replaces the
worst individual in the population only when it is better
than the worst. If an offspring is obtained through adding
nodes/connections, it always replaces the worst individual in
the population since an ANN with more nodes/connections is
more powerful although it’s current performance may not be
very good due to incomplete training.

The generation gap in EPNet is minimal. That is, a new
generation starts immediately after the above replacement.
This is very similar to the steady-state GA [40], [41] and
continuous EP [42], although the replacement strategy used
in EPNet is different. It has been shown that the steady-state
GA and continuous EP outperform their classical counterparts
in terms of speed and the quality of solutions [40]–[42].

The replacement strategy and generation gap used in EPNet
also facilitate population-based incremental learning. Vavak
and Forgarty [43] have recently shown that the steady-state
GA outperformed the generational GA in tracking “environ-
mental changes which are relatively small and occur with low
frequency.”

D. Hybrid Training

The only mutation for modifying ANN’s weights in EPNet
is implemented by a hybrid training algorithm consisting of
an MBP and an SA algorithm. It could be regarded as two
mutations driven by the BP and SA algorithm separately. They
are treated as one in this paper for convenience sake.

The classical BP algorithm [44] is notorious for its slow
convergence and convergence to local minima. Hence it is
modified in order to alleviate these two problems. A simple
heuristic is used to adjust the learning rate for each ANN in
the population. Different ANN’s may have different learning
rates. During BP training, the error is checked after every

700 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

epochs, where is a parameter determined by the user. If
decreases, the learning rate is increased by a predefined

amount. Otherwise, the learning rate is reduced. In the latter
case the new weights and error are discarded.

In order to deal with the local optimum problem suffered by
the classical BP algorithm, an extra training stage is introduced
when BP training cannot improve an ANN anymore. The
extra training is performed by an SA algorithm. When the SA
algorithm also fails to improve the ANN, the four mutations
will be used to change the ANN architecture. It is important in
EPNet to train an ANN first without modifying its architecture.
This reflects the emphasis on a close behavioral link between
the parent and its offspring.

The hybrid training algorithm used in EPNet is not a critical
choice in the whole system. Its main purpose is to discourage
architectural mutations if training, which often introduces
smaller behavioral changes in comparison with architectural
mutations, can produce a satisfactory ANN. Other training al-
gorithms which are faster and can avoid poor local minima can
also be used in EPNet. For example, recently proposed new
algorithms, such as guided evolutionary simulated annealing
[45], NOVEL [46] and fast evolutionary programming [47],
can all be used in EPNet. The investigation of the best training
algorithm is outside the scope of this paper and would be the
topic of a separate paper.

E. Architecture Mutations

In EPNet, only when the hybrid training fails to reduce
the error of an ANN will architectural mutations take place.
For architectural mutations, node or connection deletions are
always attempted before connection or node additions in order
to encourage the evolution of small ANN’s. Connection or
node additions will be tried only after node or connection
deletions fail to produce a good offspring. Using the order
of mutations to encourage parsimony of evolved ANN’s
represents a dramatically different approach from using a
complexity (regularization) term in the fitness function. It
avoids the time-consuming trial-and-error process of selecting
a suitable coefficient for the regularization term.

Hidden Node Deletion:Certain hidden nodes are first
deleted uniformly at random from a parent ANN. The
maximum number of hidden nodes that can be deleted is
set by a user-specified parameter. Then the mutated ANN
is partially trained by the MBP. This extra training process
can reduce the sudden behavioral change caused by the node
deletion. If this trained ANN is better than the worst ANN
in the population, the worst ANN will be replaced by the
trained one and no further mutation will take place. Otherwise
connection deletion will be attempted.

Connection Deletion:Certain connections are selected
probabilistically for deletion according to their importance.
The maximum number of connections that can be deleted is
set by a user-specified parameter. The importance is defined
by a significance test for the weight’s deviation from zero
in the weight update process [48]. Denote the weight update

by the local gradient of the linear
error function with

respect to example and weight , the significance of the
deviation of from zero is defined by the test variable [48]

(2)

where denotes the average over the
set . A large value of test variable
indicates higher importance of the connection with weight.

The advantage of the above nonconvergent method [48]
over others is that it does not require the training process
to converge in order to test connections. It does not require
any extra parameters either. For example, Odriet al.’s method
needs to “guess” values for four additional parameters. The
idea behind the test variable (2) is to test the significance of
the deviation of from zero [48]. Equation (2) can also be
used for connections whose weights are zero, and thus can be
used to determine which connections should be added in the
addition phase.

Similar to the case of node deletion, the ANN will be
partially trained by the MBP after certain connections have
been deleted from it. If the trained ANN is better than the the
worst ANN in the population, the worst ANN will be replaced
by the trained one and no further mutation will take place.
Otherwise node/connection addition will be attempted.

Connection and Node Addition:As mentioned before, cer-
tain connections are added to a parent network probabilistically
according to (2). They are selected from those connections
with zero weights. The added connections are initialized with
small random weights. The new ANN will be partially trained
by the MBP and denoted as Offspring 1.

Node addition is implemented through splitting an existing
hidden node, a process called “cell division” by Odriet al.
[30]. In addition to reasons given by Odriet al. [30], growing
an ANN by splitting existing ones can preserve the behavioral
link between the parent and its offspring better than by adding
random nodes. The nodes for splitting are selected uniformly
at random among all hidden nodes. Two nodes obtained by
splitting an existing node have the same connections as
the existing node. The weights of these new nodes have the
following values [30]:

where is the weight vector of the existing node and
are the weight vectors of the new nodes, andis a mutation
parameter which may take either a fixed or random value.
The split weights imply that the offspring maintains a strong
behavioral link with the parent. For training examples which
were learned correctly by the parent, the offspring needs little
adjustment of its inherited weights during partial training.

The new ANN produced by node splitting is denoted as
Offspring 2. After it is generated, it will also be partially
trained by the MBP. Then it has to compete withOffspring
1 for survival. The survived one will replace the worst ANN
in the population.

YAO AND LIU: NEW EVOLUTIONARY SYSTEM 701

TABLE I
THE PARAMETERS USED IN THE EXPERIMENTS WITH THE N PARITY PROBLEM

Fig. 7. The best network evolved by EPNet for the seven-parity problem.

F. Further Training After Evolution

One of the most important goal for ANN’s is to have
a good generalization ability. In EPNet, a training set is
used for the MBP and a validation set for fitness evaluation
in the evolutionary process. After the simulated evolution,
the best evolved ANN is further trained using the MBP on
the combined training and validation set. Then this further
trained ANN is tested on an unseen testing set to evaluate its
performance.

Alternatively, all the ANN’s in the final population can
be trained using the MBP and the one which has the best
performance on a second validation set is selected as EPNet’s
final output. This method is more time-consuming, but it
considers all the information in the final population rather than
just the best individual. The importance of making use of the
information in a population has recently been demonstrated by
evolving both ANN’s [49], [50] and rule-based systems [50],
[51]. The use of a second validation set also helps to prevent
ANN’s from overfitting the combined training and the first
validation set. Experiments using either one or two validation
sets will be described in the following section.

IV. EXPERIMENTAL STUDIES

A. The Parity Problems

EPNet was first tested on the parity problem where
– [34]. All patterns were used in training. No validation

Fig. 8. The best network evolved by EPNet for the eight-parity problem.

sets were used. The parameters used in the experiments are
given in Table I.

Ten runs were conducted for each value from four to
eight for the parity problem. The results are summarized in
Table II, where “number of epochs” indicates the total number
of epochs taken by EPNet when the best network is obtained.

The results obtained by EPNet are quite competitive
in comparison with those obtained by other algorithms.
Table III compares EPNet’s best results with those of cascade-
correlation algorithm (CCA) [5], the perceptron cascade
algorithm (PCA) [7], the tower algorithm (TA) [6], and the
FNNCA [8]. All these algorithms except for the FNNCA
can produce networks with short cut connections. Two
observations can be made from this table. First, EPNet
can evolve very compact networks. In fact, it generated the
smallest ANN among the five algorithms compared here.
Second, the size of the network evolved by EPNet seems to
grow slower than that produced by other algorithms when
the size of the problem (i.e.,) increases. That is, EPNet
seems to perform even better for large problems in terms of
the number of hidden nodes. Since CCA, PCA, and TA are all
fully connected, the number of connections in EPNet-evolved
ANN’s is smaller as well.

Figs. 7 and 8 show the best networks evolved by EPNet for
the seven- and eight-parity problem, respectively. Tables IV
and V give their weights. It is rather surprising that a three-
hidden-node network can be found by EPNet for the eight-

702 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

TABLE II
SUMMARY OF THE RESULTS PRODUCED BY EPNetON THEN PARITY PROBLEM. ALL RESULTS WERE AVERAGED OVER TEN RUNS

TABLE III
COMPARISON BETWEEN EPNetAND OTHER ALGORITHMS IN TERMS OF THE MINIMAL NUMBER OF HIDDEN NODES

IN THE BEST NETWORK GENERATED. THE FIVE-TUPLES IN THE TABLE REPRESENT THENUMBER OF HIDDEN NODES

FOR THE FOUR-, FIVE-, SIX-, SEVEN-, AND EIGHT-PARITY PROBLEM, RESPECTIVELY. “-” M EANS NO RESULT IS AVAILABLE

parity problem. This demonstrates an important point made
by many evolutionary algorithm researchers—an evolutionary
algorithm can often discover novel solutions which are very
difficult to find by human beings. However, EPNet might take
a long time to find a solution to a large parity problem. Some
of the runs did not finish within the user-specified maximum
number of generations.

Although there is a report on a two-hidden-node ANN which
can solve the parity problem [52], their network was hand-
crafted and used a very special node transfer function, rather
than the usual sigmoid one.

B. The Medical Diagnosis Problems

Since the training set was the same as the testing set in
the experiments with the parity problem, EPNet was only
tested for its ability to evolve ANN’s that learn well but
not necessarily generalize well. In order to evaluate EPNet’s
ability in evolving ANN’s that generalize well, EPNet was
applied to four real-world problems in the medical domain,
i.e., the breast cancer problem, the diabetes problem, the heart
disease problem, and the thyroid problem. All date sets were
obtained from the UCI machine learning benchmark repos-

itory. These medical diagnosis problems have the following
common characteristics [36].

• The input attributes used are similar to those a human
expert would use in order to solve the same problem.

• The outputs represent either the classification of a number
of understandable classes or the prediction of a set of
understandable quantities.

• In practice, all these problems are solved by human
experts.

• Examples are expensive to get. This has the consequence
that the training sets are not very large.

• There are missing attribute values in the data sets.

These data sets represent some of the most challenging prob-
lems in the ANN and machine learning field. They have a
small sample size of noisy data.

The Breast Cancer Data Set:The breast cancer data set
was originally obtained from W. H. Wolberg at the University
of Wisconsin Hospitals, Madison. The purpose of the data set
is to classify a tumour as either benign or malignant based on
cell descriptions gathered by microscopic examination. The
data set contains nine attributes and 699 examples of which
458 are benign examples and 241 are malignant examples.

YAO AND LIU: NEW EVOLUTIONARY SYSTEM 703

TABLE IV
CONNECTION WEIGHTS AND BIASES (REPRESENTED

BY T) FOR THE NETWORK IN FIG. 7

The Diabetes Data Set:This data set was originally do-
nated by Vincent Sigillito from Johns Hopkins University and
was constructed by constrained selection from a larger data-
base held by the National Institute of Diabetes and Digestive
and Kidney Diseases. All patients represented in this data set
are females of at least 21 years old and of Pima Indian heritage
living near Phoenix, AZ.

The problem posed here is to predict whether a patient
would test positive for diabetes according to World Health
Organization criteria given a number of physiological mea-
surements and medical test results.

This is a two class problem with class value one interpreted
as “tested positive for diabetes.” There are 500 examples of
class 1 and 268 of class 2. There are eight attributes for
each example. The data set is rather difficult to classify. The
so-called “class” value is really a binarised form of another
attribute which is itself highly indicative of certain types of
diabetes but does not have a one to one correspondence with
the medical condition of being diabetic.

The Heart Disease Data Set:This data set comes from the
Cleveland Clinic Foundation and was supplied by Robert
Detrano of the V.A. Medical Center, Long Beach, CA. The
purpose of the data set is to predict the presence or absence
of heart disease given the results of various medical tests
carried out on a patient. This database contains 13 attributes,
which have been extracted from a larger set of 75. The
database originally contained 303 examples but six of these
contained missing class values and so were discarded leaving
297. Twenty seven of these were retained in case of dispute,
leaving a final total of 270. There are two classes: presence and
absence (of heart disease). This is a reduction of the number
of classes in the original data set in which there were four
different degrees of heart disease.

The Thyroid Data Set:This data set comes from the “ann”
version of the “thyroid disease” data set from the UCI ma-
chine learning repository. Two files were provided. “ann-
train.data” contains 3772 learning examples. “ann-test.data”
contains 3428 testing examples. There are 21 attributes for
each example.

TABLE V
CONNECTION WEIGHTS AND BIASES (REPRESENTED

BY T) FOR THE NETWORK IN FIG. 8

The purpose of the data set is to determine whether a
patient referred to the clinic is hypothyroid. Therefore three
classes are built: normal (not hypothyroid), hyperfunction and
subnormal functioning. Because 92 percent of the patients are
not hyperthyroid, a good classifier must be significantly better
than 92%.

Experimental Setup:All the data sets used by EPNet were
partitioned into three sets: a training set, a validation set, and
a testing set. The training set was used to train ANN’s by
MBP, the validation set was used to evaluate the fitness of
the ANN’s. The best ANN evolved by EPNet was further
trained on the combined training and validation set before it
was applied to the testing set.

As indicated by Prechelt [36], [53], it is insufficient to
indicate only the number of examples for each set in the
above partition, because the experimental results may vary
significantly for different partitions even when the numbers
in each set are the same. An imprecise specification of the
partition of a known data set into the three sets is one of the
most frequent obstacles to reproduce and compare published
neural-network learning results. In the following experiments,
each data set was partitioned as follows.

• For the breast cancer data set, the first 349 examples were
used for the training set, the following 175 examples for
the validation set, and the final 175 examples for the
testing set.

• For the diabetes data set, the first 384 examples were used
for the training set, the following 192 examples for the
validation set, the final 192 examples for the testing set.

• For the heart disease data set, the first 134 examples were
used for the training set, the following 68 examples for the
validation set, and the final 68 examples for the testing
set.

• For the thyroid data set, the first 2514 examples in “ann-
train.data” were used for the training set, the rest in
“ann-train.data” for the validation set, and the whole
“ann-test.data” for the testing set.

The input attributes of the diabetes data set and heart
disease data set were rescaled to between 0.0 and 1.0 by

704 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

a linear function. The output attributes of all the problems
were encoded using a 1-of- output representation for
classes. The winner-takes-all method was used in EPNet, i.e.,
the output with the highest activation designates the class.

There are some control parameters in EPNet which need to
be specified by the user. It is, however, unnecessary to tune all
these parameters for each problem because EPNet is not very
sensitive to them. Most parameters used in the experiments
were set to be the same: the population size (20), the initial
connection density (1.0), the initial learning rate (0.25), the
range of learning rate (0.1 to 0.75), the number of epochs for
the learning rate adaptation (5), the number of mutated hidden
nodes (1), the number of mutated connections (one to three),
the number of temperatures in SA (5), and the number of
iterations at each temperature (100). The different parameters
were the number of hidden nodes of each individual in the
initial population and the number of epochs for MBP’s partial
training. The number of hidden nodes for each individual in
the initial population was chosen from a uniform distribution
within certain ranges: one to three hidden nodes for the breast
cancer problem; two to eight for the diabetes problem; three
to five for the heart disease problem; and six to 15 for the
thyroid problem.

The number of epochs for training each individual
in the initial population is determined by two user-specified
parameters: the “stage” size and the number of stages. A stage
includes a certain number of epochs for MBP’s training. The
two parameters mean that an ANN is first trained for one
stage. If the error of the network reduces, then another stage is
executed, or else the training finishes. This step can repeat up
to the-number-of-stagestimes. This simple method balances
fairly well between the training time and the accuracy. For
the breast cancer problem and the diabetes problem, the two
parameters were 400 and two. For the heart disease problem,
they were 500 and two. For the thyroid problem, they were
350 and three.

The number of epochs for each partial training during
evolution (i.e.,) was determined in the same way as the
above. The two parameters were 50 and three for the thyroid
problem, 100 and two for the other problems. The number
of epochs for training the best individual on the combined
training and testing data set was set to be the same (1000)
for all four problems. A run of EPNet was terminated if the
average error of the population had not decreased by more
than a threshold value after consecutive generations or
a maximum number of generations was reached. The same
maximum number of generations (500) and the same(10)
were used for all four problems. The threshold valuewas set
to 0.1 for the thyroid problem, and 0.01 for the other three.
These parameters were chosen after some limited preliminary
experiments. They were not meant to be optimal.

Experimental Results:Tables VI and VII show EPNet’s
results over 30 runs. The error in the tables refers to the error
defined by (1). The error rate refers to the percentage of wrong
classifications produced by the evolved ANN’s.

It is clear from the two tables that the evolved ANN’s
have very small sizes, i.e., a small number of hidden nodes
and connections, as well as low error rates. For example,

TABLE VI
ARCHITECTURES OFEVOLVED ARTIFICIAL NEURAL NETWORKS

an evolved ANN with just one hidden node can achieve
an error rate of 19.794% on the testing set for the diabetes
problem. Another evolved ANN with just three hidden nodes
can achieve an error rate of 1.925% on the testing set for the
thyroid problem.

In order to observe the evolutionary process in EPNet,
Figs. 9–12 show the evolution of the mean of average numbers
of connections and the mean of average classification accuracy
of ANN’s over 30 runs for the four medical diagnosis prob-
lems. The evolutionary processes are quite interesting. The
number of connections in ANN’s decreases in the beginning
of the evolution. After certain number of generations, the
number starts increasing in some cases, e.g., Fig. 9. This
phenomenon illustrates the effectiveness of the ordering of
different mutations in EPNet. There is an obvious bias toward
parsimonious ANN’s.

In the beginning stage of the evolution, very few ANN’s
will be fully trained and thus most of them will have high
errors. Deleting a few connections from an ANN will not
affect its high error very much. After each deletion, further
training is always performed, which is likely to reduce the
high error. Hence deletion will be successful and the number
of connections will be reduced. After certain number of gener-
ations, ANN’s in the population will have fewer connections
and lower errors than before. They have reached such a level
that further deletion of connections will increase their errors
in spite of further training due to the insufficient capacity
of the ANN. Hence deletion is likely to fail and addition
is likely to be attempted. Since further training after adding

YAO AND LIU: NEW EVOLUTIONARY SYSTEM 705

TABLE VII
ACCURACIES OF EVOLVED ARTIFICIAL NEURAL NETWORKS

Fig. 9. Evolution of ANN’s connections and accuracy for the breast cancer problem.

extra connections to an ANN often reduces its error because
of a more powerful ANN, addition is likely to succeed. Hence
the number of connections increases gradually while the error
keeps reducing. Such trend is not very clear in Figs. 11 and 12,
but it is expected to appear if more generations were allowed
for the experiments. The heart disease and thyroid problems
are larger than the breast cancer and diabetes problems. They
would need more time to reach the lowest point for the number
of connections.

Comparisons with Other Work:Direct comparison with
other evolutionary approaches to designing ANN’s is very
difficult due to the lack of such results. Instead, the best
and latest results available in the literature, regardless of
whether the algorithm used was an evolutionary, a BP or a
statistical one, were used in the comparison. It is possible that
some papers which should have been compared with were
overlooked. However, the aim of this paper is not to compare
EPNet exhaustively with all other algorithms.

706 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

Fig. 10. Evolution of ANN’s connections and accuracy for the diabetes problem.

Fig. 11. Evolution of ANN’s connections and accuracy for the heart disease problem.

Fig. 12. Evolution of ANN’s connections and accuracy for the thyroid problem. All 30 runs took less than 100 generations to finish. Some of them took
less than 50 generations to finish. In those cases, the average number of connections and accuracy between the last generation and the 50th one were
set to be the same as those at the last generation in order to draw this figure.

YAO AND LIU: NEW EVOLUTIONARY SYSTEM 707

TABLE VIII
COMPARISON AMONG FNNCA [8], A HAND-DESIGNED ANN [36], AND EPNetON THE BREAST CANCER PROBLEM. ANN’s DESIGNED MANUALLY AND BY FNNCA
HAVE MORE CONNECTIONS THAN THOSEEVOLVED BY EPNet, EVEN WHEN THE NUMBER OF HIDDEN NODES IS THE SAME SINCE EPNet CAN GENERATE SPARSELY

CONNECTED ANN’s. ONLY THE AVERAGE RESULTS FROM EPNet ARE SHOWN HERE.EPNet’s BEST RESULTS ARE CLEARLY SUPERIOR, ASINDICATED BY TABLE VII

TABLE IX
COMPARISON BETWEEN EPNetAND OTHERS [54] IN TERMS OF THE AVERAGE TESTING ERROR RATE ON THE DIABETES PROBLEM

TABLE X
COMPARISON AMONG MSM1 [56], A HAND-DESIGNED ANN [36], AND EPNetON THE HEART DISEASE PROBLEM.

THE SMALLEST ERROR RATE ACHIEVED BY EPNet WAS 0.13235. “-” IN THE TABLE MEANS “ NOT AVAILABLE ”

The breast cancer problem:Setiono and Hui [8] have
recently published a new ANN constructive algorithm called
FNNCA. Prechelt [36] also reported results on manually
constructed ANN’s. He tested a number of different ANN
architectures for the breast cancer problem. The best results
produced by FNNCA [8] and by hand-designed ANN’s (de-
noted as HDANN’s) [36] are compared to the average results
produced by EPNet in Table VIII.

Although EPNet can evolve very compact ANN’s which
generalize well, they come with the cost of additional compu-
tation time in order to perform search. The total time used by
EPNet could be estimated by adding the initial training time
(epochs), the evolving time (approximately
200 epochs per generation for maximally 500 generations),
and the final training time (1000 epochs) together. That is, it
could require roughly 109 000 epochs for a single run. The
actual time was less since few runs reached the maximal
number of generations. Similar estimations can be applied to
other problems tested in this paper. For many applications, the
training time is less important than generalization. Section I
has explained why the evolutionary approach is necessary and
better than constructive algorithms for such applications.

The diabetes problem:The diabetes problem is one of
the most challenging problems in ANN and machine learning
due to its relatively small data set and high noise level. In the
medical domain, data are often very costly to obtain. It would

be unreasonable if an algorithm relies on more training data
to improve its generalization.

Table IX compares EPNet’s result with those produced by a
number of other algorithms [54]. It is worth pointing out that
the other results were obtained by 12-fold cross validation [54].
They represented the best 11 out of 23 algorithms tested [54].

In terms of best results produced, Prechelt [36] tried dif-
ferent ANN’s manually for the problem and found an eight-
hidden-node ANN which achieved the testing error rate of
0.2135 (21.35%), while EPNet achieved the testing error rate
of 0.1927 (19.27%). The largest ANN evolved by EPNet
among 30 runs had only six hidden nodes. The average was
3.4.

The heart disease problem:Table X shows results from
EPNet and other neural and nonneural algorithms. The GM
algorithm [55] is used to construct RBF networks. It produced
a RBF network of 24 Gaussians with 18.18% testing error.
Bennet and Mangasarian [56] reported a testing error rate of
16.53% with their MSM1 method, 25.92% with their MSM
method, and about 25% with BP, which is much worse than
the worst ANN evolved by EPNet. The best manually designed
ANN achieved 14.78% testing error [36], which is worse than
the best result of EPNet, 13.235%.

The thyroid problem:Schiffmann et al. [57] tried this
problem using a 21-20-3 network. They found that several
thousand learning passes were necessary to achieve a testing

708 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

TABLE XI
COMPARISON AMONG SCHIFFMANN ET AL.’S BEST RESULTS [56], A HAND-DESIGNED ANN [36], AND

EPNet ON THE THYROID PROBLEM. THE SMALLEST ERROR RATE ACHIEVED BY EPNet WAS 0.01634

TABLE XII
ARCHITECTURES OFEVOLVED ANN’s FOR

THE AUSTRALIAN CREDIT CARD DATA SET

error rate of 2.6% for this network. They also used their
genetic algorithm to train multilayer ANN’s on the reduced
training data set containing 713 examples. They obtained a
network with 50 hidden nodes and 278 connections, which had
testing error rate 2.5%. These results are even worse than those
generated by the worst ANN evolved by EPNet. However, the
best manually designed ANN [36] has a testing error rate of
1.278%, which is better than EPNet’s best result, 1.634%. This
is the only case where the best manually designed ANN [36]
outperforms EPNet’s best. Table XI summarizes the above
results.

C. The Australian Credit Card Assessment Problem

One of things which have often been overlooked in evolu-
tionary algorithms is the information contained in the final
population of the evolution. Most people just use the best
individual in the population without thinking of exploring
possible useful information in the rest of the population. In
EPNet, simulated evolution is driven by an EP algorithm
without any recombination operator. Due to the many to many
mapping between genotypes and phenotypes [3], [25], different
individuals in the final population may have similar error rates
but quite different architectures and weights. Some of them
may have overfitted the training and/or validation set, and
some may not. In order to avoid overfitting and achieve better
generalization, a second validation set has been proposed to
stop training in the last step of EPNet.

In the following experiment, the original validation set was
divided into two equal subsets; the first (V-set 1) was used
in the fitness evaluation and the second (V-set 2) was used
in the last step of EPNet. In the last step, all individuals
in the final population were first trained by the MBP on
the combined training set and V-set 1. Then the one which
produced the minimum error rate on V-set 2 was chosen as
the final output from EPNet and tested on the testing set. Ties
were broken in favor of the network with the minimum number
of connections. If there was still a tie, it was broken at random.

The effectiveness of using a second validation set in EPNet

was tested on another difficult problem—the Australian credit
card assessment problem. The problem is to assess applications
for credit cards based on a number of attributes. There are 690
cases in total. The output has two classes. The 14 attributes
include six numeric values and eight discrete ones, the latter
having from two to 14 possible values. This data set was also
obtained from the UCI machine learning repository. The input
attributes used for ANN’s are rescaled to between 0.0 and 1.0
by a linear function.

Experimental Results and Comparisons:The whole data
set was first randomly partitioned into training data (518
cases) and testing data (172 cases). The training data was then
further partitioned into three subsets: (1) the training subset
(346 cases); (2) validation set 1 (86 cases); and (3) validation
set 2 (86 cases).

The experiments used the same parameters as those for
the diabetes problem except for the maximum number of
generations which was set at 100. The average results over
30 runs are summarized in Tables XII-XIII. Very good results
have been achieved by EPNet. For example, an ANN with
only two hidden nodes and 43 connections could achieve an
error rate of 10.47% on the testing set. Table XIV compares
EPNet’s results with those produced by other algorithms [54].
It is worth pointing out that the other results were obtained by
ten-fold cross validation [54]. They represented the best 11 out
of 23 algorithms tested [54]. It is clear that EPNet performed
much better than others even though they used ten-fold cross
validation.

The evolution of the mean of average numbers of con-
nections and the mean of average classification accuracy by
evolved ANN’s over 30 runs for the Australian credit card
assessment problem is shown in Fig. 13.

D. The MacKey–Glass Chaotic Time Series Prediction Problem

This section describes EPNet’s application to a time series
prediction problem. The problem is different from previous
ones in that its output is continuous. It is not a classification
problem. This problem is used to illustrate that EPNet is
applicable to a wide range of problems since it does not assume
any a priori knowledge of the problem domain. The only
part of EPNet which needs changing in order to deal with
the continuous output is the fitness evaluation module.

The MacKey–Glass time series investigated here is gener-
ated by the following differential equation:

(3)

YAO AND LIU: NEW EVOLUTIONARY SYSTEM 709

TABLE XIII
ACCURACY OF EVOLVED ANN’s FOR THE AUSTRALIAN CREDIT CARD DATA SET

TABLE XIV
COMPARISON BETWEEN EPNet AND OTHERS [54] IN TERMS OF THE AVERAGE TESTING ERROR RATE

Fig. 13. Evolution of ANN’s connections and accuracy for the Australian credit card assessment problem.

where [58], [59]. As mentioned
by Martinetzet al. [60], is quasiperiodic and chaotic with
a fractal attractor dimension for the above parameters.

The input to an ANN consists of four past data points,
and . The output is . In

order to make multiple step prediction (i.e.,) during
testing, iterative predictions of
will be made. During training, the true value of was
used as the target value. Such experimental setup is the same
as that used by Martinetzet al. [60].

In the following experiments, the data for the
MacKey–Glass time series was obtained by applying
the fourth-order Runge–Kutta method to (3) with initial
condition for , and the
time step is one. The training data consisted of point 118
to 617 (i.e., 500 training patterns). The following 500 data
points (starting from point 618) were used as testing data.
The values of training and testing data were rescaled linearly

to between 0.1 and 0.9. No validation sets were used in the
experiments. Such experimental setup was adopted in order
to facilitate comparison with other existing work.

The normalized root-mean-square (RMS) errorwas used
to evaluate the performance of EPNet, which is determined by
the RMS value of the absolute prediction error for ,
divided by the standard deviation of [58], [60]

(4)

where is the prediction of from the
current state and represents the expectation of. As
indicated by Farmer and Sidorowich [58], “If , the
predictions are perfect; indicates that the performance
is no better than a constant predictor ”.

The following parameters were used in the experiments:
the maximum number of generations (200), the number of
hidden nodes for each individual in the initial population (eight

710 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

TABLE XV
THE AVERAGE RESULTS PRODUCED BY EPNet OVER 30 RUNS

FOR THE MACKEY–GLASS TIME-SERIESPREDICTION PROBLEM

to 16), the initial learning rate (0.1), the range of learning
rate (0.1 to 0.75), the number of mutated hidden nodes (1),
the two parameters for training each individual in the initial
population (1000 and five), and the two parameters for each
partial training during evolution (200 and five). All other
parameters were the same as those for the medical diagnosis
problems.

Experimental Results and Comparisons:Table XV shows
the average results of EPNet over 30 runs. The error in the
table refers to the error defined by (4). Table XVI compares
EPNet’s results with those produced by BP and the CC
learning [61]. EPNet evolved much compact ANN’s than
the cascade-correlation networks, which are more than six
times larger than the EPNet-evolved ANN’s. EPNet-evolved
ANN’s also generalize better than the cascade-correlation
networks. Compared with the networks produced by BP, the
EPNet-evolved ANN’s used only 103 connections (the median
size) and achieved comparable results.

For a large time span , EPNet’s results also
compare favorably with those produced by Martinetzet al.
[60] which had been shown to be better than Moody and
Darken [62]. The average number of connections (weights) in
an EPNet-evolved ANN is 103.33, while the smallest “neural-
gas” network has about 200 connections (weights) [60], which
is almost twice as large as the average size of EPNet-evolved
ANN. To achieve a prediction error of 0.05, a “neural-gas”
network had to use 1000 training data points and a size about
500 connections (weights) [60]. The smallest prediction error
among 30 EPNet runs was 0.049, while the average prediction
error was 0.065. For the same training set size of 500 data
points, the smallest prediction error achieved by “neural-gas”
networks was about 0.06. The network achieving the smallest
prediction error had 1800 connections (200 hidden nodes),
which is more than ten times larger than the largest EPNet-
evolved ANN.

Further Discussions:In order to observe the evolutionary
process of EPNet, Figs. 14 shows the evolution of the mean of
average numbers of connections and hidden nodes, the mean
of average normalized RMS errors, and the average numbers
of five mutations used over 30 runs for the Mackey–Glass
time-series prediction problem. Several observations can be
made from these results.

First, EPNet is capable of finding a near optimal ANN
through the evolutionary process. It can grow and prune
ANN’s dynamically during evolution, depending on whether
the current networks are larger or smaller than necessary.

TABLE XVI
GENERALIZATION RESULTS COMPARISON AMONG EPNet, BP,AND CC

LEARNING FOR THE MACKEY–GLASS TIME-SERIES PREDICTION PROBLEM

For example, the initial number of hidden nodes for the
MacKey–Glass problem was generated uniformly at random
between eight and 16, which was relatively large for this
problem. EPNet was able to prune ANN’s significantly (see
Fig. 14(b)) in the first part of the evolution because there was
a bias in mutations to favor compact ANN’s. The deletion
mutations were successful most of the time during this period
because the pruned ANN’s were able to reduce the training
error. When the ANN’s were pruned to a certain size, further
reduction in the network size would cause significant dete-
rioration of the network performance (training error). Hence
the deletion mutations were unlikely to be successful. The
addition mutations would be used. That is why the number of
connections and nodes increased again in the second part of
the evolution in order to reduce the training error.

Second, ordering of the five mutations in EPNet has resulted
in very compact ANN’s due to the bias toward connection
and node deletions. The effectiveness of such ordering in
encouraging parsimony was illustrated by the above discussion
and Fig. 14(c).

Third, connections were modified more frequently than
hidden nodes because connection mutations caused less disrup-
tions to ANN’s behavior than node mutations. This is exactly
what EPNet prefers to do due to its emphasis on behavioral
evolution.

Fourth, EPNet was able to produce ANN’s with good
generalization ability. It is worth noting that all comparisons
carried out in this section used EPNet’s average results over 30
runs, not the best results. It is also worth mentioning that the
conventional BP algorithm has a lot of difficulties in dealing
with compact ANN’s. It either trains slowly or cannot find a
near global minimum of the error function at all. EPNet, on
the other hand, can achieve very low error for a very compact
ANN.

V. CONCLUSION

This paper describes a new EP based system, EPNet, for
evolving feedforward ANN’s. The idea behind EPNet is to
put more emphasis on evolving ANN behaviors, rather than
just its circuitry. EP [1], [2], [3] is better suited for evolving
behaviors due to its emphasis on maintaining behavioral links
between a parent and its offspring. EP also helps to avoid the
permutation problem suffered by many EANN systems.

A number of techniques have been adopted in EPNet to
maintain a close behavioral link between parents and their
offspring. For example, partial training is always employed

YAO AND LIU: NEW EVOLUTIONARY SYSTEM 711

(a)

(b)

(c)

Fig. 14. The Mackey–Glass time-series prediction problem: (a) The system’s and the best ANN’s outputs (left). The error between the system’s and the best
ANN’s outputs. The time span is�t = 6 (middle). The best ANN’s prediction errorfor the increased number of prediction steps (right), (b) Evolution of
ANN’s connections and hidden nodes, (c) Evolution of ANN’s performance and mutations. The average results over 30 runs are shown in (b) and (c).

after each architectural mutation in order to reduce the be-
havioral disruption to an individual. The training mutation is
always attempted first before any architectural mutation since
it causes less behavioral disruption. A hidden node is not added
to an existing ANN at random, but through splitting an existing
node.

In order to reduce the noise in fitness evaluation, EPNet
evolves ANN architectures and weights simultaneously. Each
individual in a population evolved by EPNet is an ANN with

weights. The evolution simulated by EPNet is closer to the
Lamarckian evolution than to the Darwinian one. Learned
weights and architectures in one generation are inherited by
the next generation. This is quite different from most genetic
approaches where only architectures not weights are passed to
the next generation.

EPNet encourages parsimony of evolved ANN’s by ordering
its mutations, rather than using a complexity (regularization)
term in the fitness function. It avoids the tedious trial-and-

712 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

error process to determine the coefficient for the complexity
term. The effectiveness of the method has been shown by the
compact ANN’s evolved by EPNet, which have very good
generalization ability.

EPNet has been tested on a number of benchmark problems,
including the parity problem, the two-spiral problem [16],
the four medical diagnosis problems, the Australian credit card
assessment problem, and the Mackey–Glass time series predic-
tion problem. Very competitive results have been produced by
EPNet in comparison with other algorithms. EPNet imposes
very few constraints on feasible ANN architectures, and thus
faces a huge search space of different ANN’s. It can escape
from structural local minima due to its global search capability.
The experimental results have shown that EPNet can explore
the ANN space effectively. It can discover novel ANN’s which
would be very difficult to design by human beings.

EPNet would be most useful for applications where the
ANN designing and training time is not critical, since it
searches a much larger space than that searched by most
other constructive or pruning algorithms and thus may require
longer computation time. The computation time of EPNet
could be estimated by the method given in Section IV-B7.
In its current implementation, EPNet may have too many
user specified parameters although this is not unusual in the
field. Fortunately, these parameters are not very sensitive
to moderate changes. No attempts were made in EPNet’s
experiments to optimize parameters. Parameters were set after
some limited preliminary experiments. One of the future
improvements to EPNet would be to reduce the number of
parameters or make them adaptive.

ACKNOWLEDGMENT

The authors are grateful to anonymous referees for their
constructive comments which helped to improve the paper
significantly.

REFERENCES

[1] L. J. Fogel, A. J. Owens, and M. J. Walsh,Artificial Intelligence Through
Simulated Evolution. New York: Wiley, 1966.

[2] D. B. Fogel, System Identification Through Simulated Evolution: A
Machine Learning Approach to Modeling. Needham Heights, MA:
Ginn, 1991.

[3] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. New York: IEEE Press, 1995.

[4] Y. Liu and X. Yao, “Evolutionary design of artificial neural networks
with different nodes,” inProc. 1996 IEEE Int. Conf. Evolutionary
Computation (ICEC’96), Nagoya, Japan, 1996, pp. 670–675.

[5] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning ar-
chitecture,” in Advances in Neural Information Processing Systems 2,
D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp.
524–532.

[6] J.-P. Nadal, “Study of a growth algorithm for a feedforward network,”
Int. J. Neural Syst., vol. 1, pp. 55–59, 1989.

[7] N. Burgess, “A constructive algorithm that converges for real-valued
input patterns,”Int. J. Neural Syst., vol. 5, no. 1, pp. 59–66, 1994.

[8] R. Setiono and L. C. K. Hui, “Use of a quasinewton method in
a feedforward neural-network construction algorithm,”IEEE Trans.
Neural Networks, vol. 6, pp. 273–277, 1995.

[9] R. Reed, “Pruning algorithms—A survey,”IEEE Trans. Neural Net-
works, vol. 4, pp. 740–747, 1993.

[10] P. J. Angeline, G. M. Sauders, and J. B. Pollack, “An evolutionary
algorithm that constructs recurrent neural networks,”IEEE Trans. Neural
Networks, vol. 5, pp. 54–65, 1994.

[11] G. F. Miller, P. M. Todd, and S. U. Hegde, “Designing neural networks
using genetic algorithms,” inProc. 3rd Int. Conf. Genetic Algorithms
Their Applications, J. D. Schaffer, Ed. San Mateo, CA: Morgan
Kaufmann, 1989, pp. 379–384.

[12] D. B. Fogel, L. J. Fogel, and V. W. Porto, “Evolving neural networks,”
Biol. Cybern., vol. 63, pp. 487–493, 1990.

[13] J. R. McDonnell and D. Waagen, “Evolving recurrent perceptrons for
time-series modeling,”IEEE Trans. Neural Networks, vol. 5, pp. 24–38,
1994.

[14] , “Neural-network structure design by evolutionary program-
ming,” in Proc. 2nd Annu. Conf. Evolutionary Programming, D. B. Fogel
and W. Atmar, Eds. La Jolla, CA: Evolutionary Programming Soc.,
1993, pp. 79–89.

[15] D. B. Fogel, “Using evolutionary programming to create neural networks
that are capable of playing tic-tac-toe,” inProc. 1993 Int. Joint Conf.
Neural Networks (IJCNN’93). New York, NY: IEEE Press, 1993, pp.
875–880.

[16] X. Yao and Y. Liu, “Toward designing artificial neural networks by
evolution,” in Proc. Int. Symp. Artificial Life and Robotics (AROB),
Beppu, Oita, Japan, Feb. 18–20, 1996, pp. 265–268.

[17] J. D. Schaffer, D. Whitley, and L. J. Eshelman, “Combinations of genetic
algorithms and neural networks: A survey of the state of the art,” in
Proc. Int. Wkshp. Combinations Genetic Algorithms Neural Networks
(COGANN-92), D. Whitley and J. D. Schaffer, Eds. Los Alamitos,
CA: IEEE Computer Soc. Press, 1992, pp. 1–37.

[18] X. Yao, “Evolution of connectionist networks,” inPreprints Int. Symp.
AI, Reasoning and Creativity, T. Dartnall, Ed. Queensland, Australia:
Griffith Univ., pp. 49–52, 1991.

[19] X. Yao, “A review of evolutionary artificial neural networks,”Int. J.
Intell. Syst., vol. 8, no. 4, pp. 539–567, 1993.

[20] , “Evolutionary artificial neural networks,”Int. J. Neural Syst.,
vol. 4, no. 3, pp. 203–222, 1993.

[21] , “Evolutionary artificial neural networks,” inEncyclopedia of
Computer Science and Technology, A. Kent and J. G. Williams, Eds.
New York: Marcel Dekker, vol. 33, pp. 137–170, 1995.

[22] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and
neural networks: Optimizing connections and connectivity,”Parallel
Computing, vol. 14, pp. 347–361, 1990.

[23] D. Whitley and T. Starkweather, “Optimizing small neural networks
using a distributed genetic algorithm,” inProc. Int. Joint Conf. Neu-
ral Networks. Hillsdale, NJ: Lawrence Erlbaum, vol. I, 1990, pp.
206–209.

[24] X. Yao and Y. Shi, “A preliminary study on designing artificial neural
networks using co-evolution,” inProc. IEEE Singapore Int. Conf. Intell.
Contr. Instrumentation, Singapore, June 1995, pp. 149–154.

[25] D. B. Fogel, “Phenotypes, genotypes, and operators in evolutionary
computation,” inProc. 1995 IEEE Int. Conf. Evolutionary Computation
(ICEC’95). New York: IEEE Press, 1995, pp. 193–198.

[26] V. Maniezzo, “Genetic evolution of the topology and weight distribution
of neural networks,”IEEE Trans. Neural Networks, vol. 5, pp. 39–53,
1994.

[27] R. K. Belew, J. McInerney, and N. N. Schraudolph, “Evolving networks:
Using genetic algorithm with connectionist learning,” Computer Sci.
Eng. Dept., Univ. California-San Diego, Tech. Rep. CS90-174 revised,
Feb. 1991.

[28] P. J. B. Hancock, “Genetic algorithms and permutation problems:
A comparison of recombination operators for neural net structure
specification,” inProc. Int. Wkshp. Combinations of Genetic Algorithms
and Neural Networks (COGANN-92), D. Whitley and J. D. Schaf-
fer, Eds. Los Alamitos, CA: IEEE Computer Soc. Press, 1992, pp.
108–122.

[29] R. Smalz and M. Conrad, “Combining evolution with credit apportion-
ment: A new learning algorithm for neural nets,”Neural Networks, vol.
7, no. 2, pp. 341–351, 1994.

[30] S. V. Odri, D. P. Petrovacki, and G. A. Krstonosic, “Evolutional
development of a multilevel neural network,”Neural Networks, vol.
6, no. 4, pp. 583–595, 1993.

[31] X. Yao and Y. Liu, “Evolving artificial neural networks for medical
applications,” inProc. 1995 Australia–Korea Joint Wkshp. Evolutionary
Computa., Kaist, Taejon, Korea, Sept. 1995, pp. 1–16.

[32] , “Evolving artificial neural networks through evolutionary pro-
gramming,” in Evolutionary Programming V: Proc. 5th Annu. Conf.
Evolutionary Programming, L. Fogel, P. Angeline, and T. B̈ack, Eds.
Cambridge, MA: MIT Press, 1996, pp. 257–266.

[33] , “Evolutionary artificial neural networks that learn and generalize
well,” in 1996 IEEE Int. Conf. Neural Networks, Washington, DC, vol.
on Plenary, Panel, and Special Sessions. New York: IEEE Press, June
3–6, 1996, pp. 159–164.

YAO AND LIU: NEW EVOLUTIONARY SYSTEM 713

[34] Y. Liu and X. Yao, “A population-based learning algorithm which learns
both architectures and weights of neural networks,”Chinese J. Advanced
Software Res., vol. 3, no. 1, pp. 54–65, 1996.

[35] P. J. Werbos,The Roots of Backpropagation: From Ordered Derivatives
to Neural Networks and Political Forecasting. New York: Wiley, 1994.

[36] L. Prechelt, “Proben1—A set of neural network benchmark problems
and benchmarking rules,” Fakultät für Informatik, Univ. Karlsruhe,
Karlsruhe, Germany, Tech. Rep. 21/94, Sept. 1994.

[37] X. Yao, “An empirical study of genetic operators in genetic algorithms,”
Microprocessing Microprogramming, vol. 38, pp. 707–714, 1993.

[38] D. H. Ackley and M. S. Littman, “A case for Lamarckian evolution,”
in Artificial Life III, SFI Studies in the Sciences of Complexity, C. G.
Langton, Ed. Reading, MA: Addison-Wesley, vol. XVIII, 1994, pp.
487–509.

[39] D. Whitley, S. Gordon, and K. Mathias, “Lamarkian evolution, the
Baldwin effect, and function optimization,” inParallel Problem Solving
from Nature (PPSN) III, Y. Davidor, H.-P. Schwefel, and R. M¨anner,
Eds. Berlin: Springer-Verlag, 1994, pp. 6–15.

[40] D. Whitley and T. Starkweather, “GENITOR II: A distributed genetic
algorithm,” J. Experimental Theoretical Artificial Intell., vol. 2, pp.
189–214, 1990.

[41] G. Syswerda, “A study of reproduction in generational and steady-state
genetic algorithms,” inFoundations of Genetic Algorithms, G. J. E.
Rawlins, Ed. San Mateo, CA: Morgan Kaufmann, 1991, pp. 94–101.

[42] G. B. Fogel and D. B. Fogel, “Continuous evolutionary programming:
Analysis and experiments,”Cybern. Syst., vol. 26, pp. 79–90, 1995.

[43] F. Vavak and T. C. Forgarty, “Comparison of steady-state and gener-
ational genetic algorithms for use in nonstationary environments,” in
Proc. 1996 IEEE Int. Conf. Evolutionary Computa. (ICEC’96). New
York: IEEE Press, 1996, pp. 192–195.

[44] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” inParallel Distributed Process-
ing: Explorations in the Microstructures of Cognition, D. E. Rumelhart
and J. L. McClelland, Eds. Cambridge, MA: MIT Press, vol. I, 1986,
pp. 318–362.

[45] P. P. C. Yip and Y.-H. Pao, “Growing neural networks using guided
evolutionary simulated annealing,” in Proc. 3d Annu. Conf. Evolutionary
Prog., A. V. Sebald and L. J. Fogel, Eds. Singapore: World Scientific,
1994, pp. 17–25.

[46] Y. Shang and B. Wah, “Global optimization for neural network training,”
IEEE Computer, vol. 29, no. 3, pp. 45–54, 1996.

[47] X. Yao and Y. Liu, “Fast evolutionary programming,” in Evolutionary
Programming V: Proc. 5th Annu. Conf. Evolutionary Programming, L.
Fogel, P. Angeline, and T. B̈ack, Eds. Cambridge, MA: MIT Press,
1996, pp. 451–460.

[48] W. Finnoff, F. Hergent, and H. G. Zimmermann, “Improving model
selection by nonconvergent methods,”Neural Networks, vol. 6, pp.
771–783, 1993.

[49] X. Yao and Y. Liu, “Ensemble structure of evolutionary artificial
neural networks,” inProc. 1996 IEEE Int. Conf. Evolutionary Computa.
(ICEC’96) New York: IEEE Press, 1996, pp. 659–664.

[50] X. Yao, Y. Liu, and P. Darwen, “How to make best use of evolutionary
learning,” in Complex Systems: From Local Interactions to Global
Phenomena, R. Stocker, H. Jelinek, and B. Durnota, Eds. Amsterdam,
The Netherlands: IOS, 1996, pp. 229–242.

[51] P. Darwen and X. Yao, “Automatic modularization by speciation,” in
Proc. 1996 IEEE Int. Conf. Evolutionary Computa. (ICEC’96). New
York: IEEE Press, 1996, pp. 88–93.

[52] D. Stork and J. Allen, “How to solve theN -bit parity problem with two
hidden units,”Neural Networks, vol. 5, no. 6, pp. 923–926, 1992.

[53] L. Prechelt, “Some notes on neural learning algorithm benchmarking,”
Neurocomputing, vol. 9, no. 3, pp. 343–347, 1995.

[54] D. Michie, D. J. Spiegelhalter, and C. C. Taylor,Machine Learning,
Neural and Statistical Classification. London: Ellis Horwood, 1994.

[55] A. Roy, S. Govil, and R. Miranda, “An algorithm to generate radial basis
function (RBF)-like nets for classification problems,”Neural Networks,
vol. 8, pp. 179–201, 1995.

[56] K. P. Bennett and O. L. Mangasarian, “Robust linear programming
discrimination of two linearly inseparable sets,”Optimization Methods
Software, vol. 1, pp. 23–34, 1992.

[57] W. Schiffmann, M. Joost, and R. Werner, “Synthesis and performance
analysis of multilayer neural network architectures,” Univ. Koblenz,
Inst. für Physics, Koblenz, Germany, Tech. Rep. 16/1992, 1992.

[58] J. D. Farmer and J. J. Sidorowich, “Predicting chaotic time series,”Phys.
Rev. Lett., vol. 59, no. 8, pp. 845–847, 1987.

[59] M. Mackey and L. Glass, “Oscillation and chaos in physiological control
systems,”Sci., vol. 197, p. 287, 1977.

[60] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten, “‘Neural-
gas’ network for vector quantization and its application to time-series
prediction,” IEEE Trans. Neural Networks, vol. 4, pp. 558–569, 1993.

[61] R. S. Crowder, “Predicting the Mackey–Glass time series with cascade-
correlation learning,” inProc. 1990 Connectionist Models Summer
School, 1990, pp. 117–123.

[62] J. Moody and C. J. Darken, “Fast learning in networks of locally tuned
processing units,”Neural Computa., vol. 1, pp. 281–294, 1989.

Xin Yao (M’91–SM’96) received the B.Sc. degree
from the University of Science and Technology of
China (USTC), Hefei, Anhui, P.R.C., in 1982, the
M.Sc. degree from the North China Institute of
Computing Technologies (NCI), Beijing, P.R.C., in
1985, and the Ph.D. degree from USTC in 1990.

He is currently a Senior Lecturer in the School of
Computer Science, University College, the Univer-
sity of New South Wales, Australian Defence Force
Academy (ADFA), Canberra. He held postdoctoral
fellowships in the Australian National University

(ANU) and the Commonwealth Scientific and Industrial Research Organiza-
tion (CSIRO), Division of Building, Constructions, and Engienering (DBCE),
before joining ADFA in 1992. He has published a number of papers in the
fields of evolutionary computation and neural networks.

Dr. Yao is the Program Committee Cochair for the IEEE ICEC’97 in
Indianapolis and covice-chair for IEEE ICEC’98 in Anchorage. He is also
the Program Committee Chair for the Eighth Australian Joint Conference
on AI (AI’95), Cochair for the First Asia-Pacific Conference on Simulated
Evolution And Learning (SEAL’96), and a Program Committee Member of
many other international conferences. He is an Associate Editor of the IEEE
TRANSACTIONS ON EVOLUTIONARY COMPUTATION and a Member of the IEEE
NNC Technical Committee on Evolutionary Computation.

Yong Liu was born in Wuhan, P.R. China, in 1966.
He received the BSc degree from Wuhan University,
P.R. China, in 1988, and the M.Sc. degree from
Huazhong University of Science and Technology,
P.R. China, in 1991, both in computational mathe-
matics.

In 1994, he was a Lecturer at Wuhan University.
Since the end of 1994 to 1995, he was a Visiting
Fellow in the School of Computer Science, Univer-
sity College, the University of New South Wales,
Australian Defence Force Academy, Canberra. He

is currently a Ph.D. candidate at the same university.
He has published a number of papers in international journals and con-

ferences, and is the coauthor of the bookGenetic Algorithms(Beijing,
China: Science Press, 1995). His research interests include neural networks,
evolutionary algorithms, parallel computing, and optimization.

