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Copyright © 2013 Zhenguo Luo et al. 
is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We acquire some su�cient and realistic conditions for the existence of positive periodic solution of a general neutral impulsive�-species competitive model with feedback control by applying some analysis techniques and a new existence theorem, which is
di�erent from Gaines and Mawhin’s continuation theorem and abstract continuation theory for �-set contraction. As applications,
we also examine some special cases, which have been studied extensively in the literature, some known results are improved and
generalized.

1. Introduction

In this paper, we consider the existence of the positive
periodic solution of the following impulsive �-species com-
petition system with multiple delays and feedback control:

��
� (�) = �� (�) [[�� (�) −

�∑
�=1


�� (�)�� (�)
− �∑

�=1
��� (�) ∫�

−∞
��� (� − )�� () �

− �∑
�=1

��� (�)�� (� − ��� (�))
− �∑

�=1
��� (�)��

� (� − ��� (�)) − �� (�) �� (�)
−�� (�) �� (� − �� (�)) ]] ,

� = 1, 2, . . . , �, � ̸= ��,

��
� (�) = −�� (�) �� (�) + �� (�)�� (�)

+  � (�)�� (� − !� (�)) , � ≥ 0,
Δ�� (��) = ($�� + %��)�� (��) ,

� = 1, 2, . . . , �, � = 1, 2, . . . ,
(1)

with the following initial conditions:

�� (&) = '� (&) , ��
� (&) = '�

� (&) ,
& ∈ [−�, 0] , '� (0) > 0,

'� ∈ - ([−�, 0) , /+)⋂-1 ([−�, 0) , /+)
�� (&) = 4� (&) , & ∈ [−�, 0] , 4� (0) > 0,
4� ∈ - ([−�, 0) , /+) , � = 1, 2, 3, . . . , �,

(2)
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where 
��, ���, ���, ��, ��, ��, ��,  � ∈ -(/, [0, +∞)), ��� ∈-1(/, [0, +∞)), ���, �� ∈ -1(/, /), and ��� ∈ -2(/, /) are con-
tinuous 7-periodic functions; �� ∈ -(/, /) are continuous 7-
periodic functions with ∫	

0 ��(�)�� > 0. 
e growth functions�� are not necessarily positive; since the environment uctu-
ates randomly, in some conditions, �� may be negative. Con-
sider the following: � = max�∈[0,	]{���(�), ���(�), ��(�), !�(�), 1 ≤�, : ≤ �}; and ∫∞

0 ���()� = 1, ∫+∞
0 ���()� < +∞, and�, : = 1, 2, . . . , �. And $�� and %�� represent the birth rate and

the harvesting (or stocking) rate of�� at time ��, respectively.
When %�� > 0, it stands for harvesting, while %�� < 0 means
stocking. For the ecological justi�cation of (1) and the similar
types, refer to [1–14].

In 1991, in [1], Gopalsamy et al. have established the
existence of a positive periodic solution for a periodic neutral
delay logistic equation

���� = � (�)� (�) [1 − � (� − ?@) − � (�)�� (� − ?@)A (�) ] ,
(3)

where A(�), �(�), and �(�) are positive continuous @-periodic
functions with @ > 0 and ? is a positive integer. In 1993, in
[2], Kuang proposed an open problem (Open problem 9.2)
to obtain su�cient conditions for the existence of a positive
periodic solution of the following equation:

���� = � (�) [
 (�) − � (�)� (�) − � (�)� (� − � (�))
−� (�)�� (� − � (�))] . (4)

In [3], Li tried to give an a�rmative answer to the previous
open problem; however, there is a mistake in the proof of

eorem 2 in [3]. With the aim of giving a right answer to
the previous open problem, [4–6] also have investigated the
previous question. However, it is more complex to check the
su�cient conditions of the system [5, 6]. Moreover, in [7],
Li studied the existence of positive periodic solution of the
neutral Lotka-Volterra equation with several delays

�� (�) = � (�) [
 (�) − �∑
�=1
�� (�)� (� − ��)

− �∑
�=1
�� (�)�� (� − ��)] ,

(5)

where 
(�), ��(�), and ��(�) are positive continuous @-periodic
functions and ��, �� (� = 1, . . . , �) are nonnegative constants.
Recently, in [8], Lu and Ge investigated a neutral delay
population model with multiple delays:

���� = � (�) [[
 (�) − � (�)� (�) − �∑
�=1

�� (�)� (� − !� (�))
− �∑
�=1
�� (�)�� (� − �� (�))] .

(6)


ey applied the theory of abstract continuous theorem of�-set contractive operator and some analysis techniques to
obtain some su�cient conditions for the existence of positive
periodic solutions of the model (6).

It is of course very interesting to study the neutral delay
population model for higher dimensional systems. In fact,
in [9], Li has studied the neutral Lotka-Volterra system with
constant delays

��
� (�) = �� (�) [[
� (�) −

�∑
�=1

��� (�)�� (� − ���)

− �∑
�=1

��� (�)��
� (� − ���)]] ,

(7)

where � = 1, . . . , �, and 
�(�), ���(�), and ���(�) are positive
continuous @-periodic functions, and ���, ��� are nonnegative
constants. He obtained su�cient conditions that guarantee
the existence of positive periodic solution of the system
(7), by applying a continuation theorem based on Gaines
and Mawhin’s coincidence degree. Noticing that delays arise
frequently in practical applications, it is di�cult to measure
them precisely. In population dynamics, it is clear that a
constant delay is only a special case. In most situations,
delays are variable, and so in [10], Liu and Chen investigated
the following general neutral Lotka-Volterra system with
unbounded delays:

��
� (�) = �� (�) [[
� (�) −

�∑
�=1

��� (�)�� (�)
− �∑

�=1
��� (�)�� (� − ��� (�))

− �∑
�=1

��� (�)��
� (� − ��� (�))]] , � = 1, 2, . . . , �.

(8)


ey introduced a new existence theorem to obtain a set
of su�cient conditions for the existence of positive periodic
solutions for the system (8), and their results improved and
generalized some known results.

Moreover, in some situations, people may wish to change
the position of the existing periodic solution but keep its sta-
bility.
is is of signi�cance in the control of ecology balance.
One of the methods for its realization is to alter the system
structurally by introducing some feedback control variables
so as to get a population stabilizing at another periodic
solution. 
e realization of the feedback control mechanism
might be implemented by means of some biological control
schemes or by harvesting procedure. In fact, during the last
decade, the qualitative behaviors of the population dynamics
with feedback control have been studied extensively; see
[11, 15–23]. Recently, in [11], Chen considered the following
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neutral Lotka-Volterra competition model with feedback
control of the form:

G�
� (�) = G� (�) [[�� (�) −

�∑
�=1


�� (�) G� (�)
− �∑

�=1
��� (�) G� (� − ��� (�))

− �∑
�=1

��� (�) G�
� (� − ��� (�))

− �� (�) �� (�) −�� (�) �� (� − !� (�)) ]] ,
��
� (�) = −�� (�) �� (�) + �� (�) G� (�)

+ �� (�) G� (� − �� (�)) , � = 1, 2, . . . , �.

(9)

With the help of a continuation theorem based onGaines and
Mawhin’s coincidence degree, he established easily veri�able
criteria for the global existence of positive periodic solutions
of the system (9), and his results extended and improved
existing results.

On the other hand, there are some other perturbations
in the real world, such as �res and oods, that are not
suitable to be considered continually. 
ese perturbations
bring sudden changes to the system. Systems with such
sudden perturbations involving impulsive di�erential equa-
tions have attracted the interest of many researchers in the
past twenty years, see [12–14, 24–30], since they provide a
natural description of several real processes subject to certain
perturbations whose duration is negligible in comparison
with the duration of the process. Such processes are o�en
investigated in various �elds of science and technology such
as physics, population dynamics, ecology, biological systems,
and optimal control. For details, see [31–33].

In [12],Huo studied the following neutral impulsive delay
Lotka-Volterra system:

��
� (�) = �� (�) [[�� (�) − �∑

�=1
��� (�)�� (� − ��� (�))

− �∑
�=1

��� (�)��
� (� − ��� (�))]] ,

� = 1, 2, . . . , �, � ̸= ��,
Δ�� (�) = �� (�+) − �� (��) = ����� (��) ,

� = 1, 2, . . . , �, � = 1, 2, . . . .
(10)

By using some techniques of Mawhin’s coincidence degree
theory, he obtained su�cient conditions for the existence of
periodic positive solutions of the system (10).

In [13],Wang andDai investigated the following periodic
neutral population model with delays and impulse:

�� (�) = � (�) [[
 (�) − � (�)� (�) − �∑
�=1

�� (�)� (� − !� (�))

− �∑
�=1
�� (�)�� (� − �� (�)) ]] , � ̸= ��,

� (�+) = (1 +  �)� (��) , � = 1, 2, . . . .
(11)


ey obtained some su�cient conditions for the existence
of positive periodic solutions of the model (11) by using the
theory of abstract continuous theorem of �-set contractive
operator and some analysis techniques.

Recently, in [14], Luo et al. studied the following �-species
competition system with general periodic neutral delay and
impulse:

��
� (�) = �� (�) [[�� (�) −

�∑
�=1


�� (�)�� (�) − �∑
�=1

��� (�)
× ∫�

−∞
��� (� − )�� () �

− �∑
�=1

��� (�)�� (� − ��� (�))
− �∑
�=1

��� (�)��
� (� − ��� (�))]] ,

� = 1, 2, . . . , �, � ̸= ��,
Δ�� (��) = �� (�+� ) − �� (��) =  ���� (��) ,

� = 1, 2, . . . , �, � = 1, 2, . . . .

(12)


ey obtained some su�cient and realistic conditions for the
existence of positive periodic solutions of the system (12),
by using a new existence theorem, which is di�erent from
Gaines and Mawhin’s continuation theorem and abstract
continuation theory for �-set contraction.

However, to this day, no scholars had done works on the
existence of positive periodic solution of the system (1). One
could easily see that systems (3)–(12) are all special cases of
the system (1). 
erefore, we propose and study the system
(1) in this paper.

For the sake of generality and convenience, we make the
following notations and assumptions: let 7 > 0 be a constant
and

-	 = {H | H ∈ -(/, /), H(� + 7) = H(�)}, with the
norm de�ned by |H|0 = max�∈[0,	]|H(�)|;-1

	 = {H | H ∈ -1(/, /), H(� + 7) = H(�)}, with the

norm de�ned by ‖H‖ = max�∈[0,	]{|H|0, |H�|0};
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J- = {H | H : / → /+, lim�→ �H() = H(�),
if � ̸= ��, lim�→ �−�H(�) = H(��), lim�→ �+�H(�) exists, � ∈M+};J-1 = {H | H : / → /+, H� ∈ J-};J-	 = {H | H ∈ J-, H(� + 7) = H(�)}, with the norm
de�ned by |H|0 = max�∈[0,	]|H(�)|;J-1

	 = {H | H ∈ J-1, H(� + 7) = H(�)}, with the norm

de�ned by ‖H‖ = max�∈[0,	]{|H|0, |H�|0}.

en, the previous spaces are all Banach spaces. We also
denote that

N = 17 ∫	

0
N (�) ��,

N� = min
�∈[0,	]

N (�) , for any N ∈ J-	,
Δ �� = 1 + $�� + %��, � = 1, 2, . . . , �, � = 1, 2, . . . ,

(13)

and make the following assumptions:

(A) 
��, ���, ���, ��, ��, ��, ��,  � ∈ -(/, [0, +∞)),��� ∈ -1(/, [0, +∞)), ���, �� ∈ -1(/, /), and ��� ∈-2(/, /) are continuous 7-periodic functions, and∫∞
0 ���()� = 1, ∫+∞

0 ���()� < +∞, and �, : =1, 2, . . . , �;
(B) [��]�∈� satis�es 0 < �1 < �2 < ⋅ ⋅ ⋅ < �� < ⋅ ⋅ ⋅ and

lim�→∞�� = +∞;

(C) {Δ ��} is a real sequence such that Δ �� > 0,∏0<��<�Δ �� (� = 1, 2, . . . , �, � = 1, 2, . . .) are 7-
periodic functions.


e organization of this paper is as follows. In the
following section, we introduce some lemmas and an impor-
tant existence theorem developed in [34, 35]. In the third
section, we derive some su�cient conditions, which ensure
the existence of positive periodic solution of system (1) by
applying this theorem and some other techniques. Finally,
we study some special cases of system (1), which have been
studied extensively in the literature.
ese examples show that
our su�cient conditions are new, and some known results can
be improved and generalized.

2. Preliminaries

In this section, in order to obtain the existence of a periodic
solution for system (1) and (2), we will give some concepts
and results from [35], and we will state an existence theorem
and some lemmas.

For a �xed � > 0, let - =: -([−�, 0]; /�), if H ∈-([−�, 0]; /�) for some � > 0 and R ∈ /, then H� ∈ - for� ∈ [R, R + �] is de�ned by H�( ) = H(� +  ) for  ∈ [−�, 0].

e supremum norm in - is denoted by ‖ ⋅ ‖, that is, ‖'‖ =
max�∈[−�,0]|'( )| for ' ∈ -, where | ⋅ | denotes the norm in /�

and |�| = ∑�
�=1 |��| for � = (�1, . . . , ��) ∈ /�. Consider the

following neutral functional di�erential equation:

��� [H (�) − � (�, H�)] = � (�, H�) , (14)

where � : / × - → /� is completely continuous, and � : / ×- → /� is continuous. Moreover, we assume the following:

(1) there exists 7 > 0 such that for every (�, ') ∈ / × -,
we have �(� + 7, ') = �(�, ') and �(� +7, ') = �(�, ');

(2) there exists a constant � < 1 such that |�(�, ') −�(�, 4)| ≤ �‖' − 4‖, for � ∈ / and ', 4 ∈ -.
By using the continuation theorem for composite coin-

cidence degree, in [34], Erbe et al. proved the following
existence theorem (see also 
eorem 4.7.1 in [35]).

Lemma 1. Assume that there exists a constantV > 0 such that
(i) for any W ∈ (0, 1) and any 7-periodic solution H of the

system

��� [H (�) − W� (�, H�)] = � (�, H�) . (15)

One has that |H(�)| < V for � ∈ /;
(ii) ℎ(�) =: ∫	

0 �(, �̂)� ̸= 0 for � ∈ Z\�(/�), where\�(/�) = {� ∈ /� : |�| < V}, and �̂ denotes the
constant mapping from [−�, 0] to /� with the value� ∈ /�;

(iii) deg(ℎ, \�(/�)) ̸= 0. 
en, there exists at least one7-periodic solution of the system (14) that satis�es
sup�∈�|H(�)| < V.


e following remark is introduced by Fang (see Remark
1 in [36]).

Remark 2. Lemma 1 remains valid if the assumption (ii) is
replaced by the following:

(ii∗) there exists a constant � < 1 such that |�(�, ') −�(�, 4)| ≤ �‖' − 4‖ for � ∈ / and ', 4 ∈ {' ∈ - : ‖'‖ < V}
withV as given in condition (i) of Lemma 1.

We will also need the following lemmas.

Lemma3 (see [8, 13]). Suppose that! ∈ -1
	 and!�(�) < 1, � ∈[0, 7]. 
en, the function � − !(�) has a unique inverse ^(�)

satisfying ^ ∈ -(/, /) with ^(
 + 7) = ^(
) + 7, ∀
 ∈ /, and
if ℎ ∈ J-	, !�(�) < 1, and � ∈ [0, 7], then ℎ(^(�)) ∈ J-	.

Lemma 4 (see [27]). Suppose that H(�) is a di�erently con-
tinuous 7-periodic function on / with (7 > 0). 
en, to any�∗ ∈ /, max�∗≤�≤�∗+	|H(�)| ≤ |H(�∗)| + (1/2) ∫	

0 |H�(�)|��.
Lemma 5. Consider that /2�

+ = {(��(�), ��(�)) : ��(0) > 0,��(0) > 0, � = 1, 2, . . . , �} is the positive invariable region of
the system (1) and (2).
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Proof. In view of biological population, we obtain ��(0) >0, ��(0) > 0. By the system (1) and (2), we have

�� (�)
= �� (0) exp{{{∫�

0
[[�� (&) −

�∑
�=1


�� (&)�� (&)
− �∑

�=1
��� (&)

× ∫�

−∞
A�� (& − )�� () �

− �∑
�=1

��� (&)�� (& − ��� (&))
− �∑

�=1
��� (&)��

� (& − ��� (&))
− �� (&) �� (&) − �� (&) ��
× (& − !� (&)) ]]�&}}} ,

� ∈ [0, �1] , � = 1, 2, . . . , �,
�� (�)
= �� (��) exp{{{∫�

��
[[�� (&) −

�∑
�=1


�� (&)�� (&)
− �∑

�=1
��� (&)

× ∫�

−∞
A�� (& − )�� () �

− �∑
�=1

��� (&)�� (& − ��� (&))
− �∑

�=1
��� (&)��

� (& − ��� (&))
− �� (&) �� (&) − �� (&) ��
× (& − !� (&)) ]]�&}}} ,

� ∈ (��, ��+1] , � = 1, 2, . . . , �, � ≥ 1,
�� (�+� ) = �(���+���)�� (��) > 0,

� ∈ �, � = 1, 2, . . . , �,

�� (�) = ∫�+	

�
g� (�, ) [�� ()�� () + h� ()��

× ( − �� ())] � := ('���) (�) ,
(16)

where

g� (�, ) = exp {∫�
� �� (&) �&}

exp {∫�
� �� (&) �&} − 1 . (17)


en, the solution of the systems (1) and (2) is positive.

De�nition 6. A function �� : [−�, 0] → [0, +∞) (� = 1, 2,. . . , �) is said to be a positive solution of (1) and (2) on[−�,∞], if the following conditions are satis�ed:
(a) ��(�) is absolutely continuous on each (��, ��+1);
(b) for each � ∈ M+, ��(�+� ) and��(�−� ) exist, and��(�−� ) =��(��);
(c) ��(�) satis�es the �rst equation of (1) and (2) for

almost everywhere (for short a.e.) in [0,∞] \ {��} and
satis�es ��(�+� ) = Δ ����(��) for � = ��, � ∈ M+ ={1, 2, . . .}.

Consider the following nonimpulsive delay di�erential
equation:

G�
� (�) = G� (�) [[�� (�) −

�∑
�=1

l �� (�) G� (�) − �∑
�=1

\�� (�)
× ∫�

−∞
��� (� − ) G� () �

− �∑
�=1

-�� (�) G� (� − ��� (�))
− �∑

�=1
m�� (�) G�

� (� − ��� (�))
−�� (�) �� (�) − �� (�) �� (� − �� (�)) ]] ,

��� (�)�� = −�� (�) �� (�)+�∗
� (�) G� (�)+ ∗� (�) G� (�−!� (�)) ,

(18)

with the following initial conditions:

G� (&) = '� (&) , G�
� (&) = '�

� (&) ,& ∈ [−�, 0] , '� (0) > 0,
'� ∈ - ([−�, 0] , /+)⋂-1 ([−�, 0] , /+) ,
�� (&) = 4� (&) , & ∈ [−�, 0] , 4� (0) > 0,
4� ∈ - ([−�, 0) , /+) , � = 1, 2, 3, . . . , �,

(19)
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where

l �� (�) = 
�� (�) ∏
0<��<�

Δ ��, \�� (�) = ��� (�) ∏
0<��<�

Δ ��,
-�� (�) = ��� (�) ∏

0<��<�−���(�)
Δ ��,

m�� (�) = ��� (�) ∏
0<��<�−���(�)

Δ ��,
� = max

�∈[0,	]
{��� (�) , ��� (�) , �� (�) , !� (�) , 1 ≤ �, : ≤ �} ,

�∗
� (�) = �� (�) ∏

0<��<�
Δ ��,

 ∗� (�) =  � (�) ∏
0<��<�−��(�)

Δ ��, �, : = 1, 2, . . . , �.

(20)


e following lemmaswill be used in the proofs of our results.

e proof of Lemma 7 is similar to that of 
eorem 1 in [24].

Lemma 7. Suppose that (A)–(C) hold, then

(i) if (G�(�), ��(�))� (� = 1, 2, . . . , �) is a solution of (18)

and (19) on [−�, +∞), then (��(�), ��(�))� (� = 1, 2,. . . , �) is a solution of (1) and (2) on [−�, +∞), where��(�) = ∏0<��<�Δ ��G�(�);
(ii) if (��(�), ��(�))� (� = 1, 2, . . . , �) is a solution of (1) and

(2) on [−�, +∞), then (G�(�), ��(�))� (� = 1, 2, . . . , �) is
a solution of (18) and (19) on [−�, +∞), where G�(�) =∏0<��<�Δ−1

����(�).
Proof. (i) It is easy to see that ��(�) = ∏0<��<�Δ ��G�(�) (� =1, 2, . . . , �) is absolutely continuous on every interval(��, ��+1], � ̸= ��, � = 1, 2, . . .,
��

� (�) − �� (�) [[�� (�) −
�∑

�=1

�� (�)�� (�)

− �∑
�=1

��� (�) ∫�

−∞
��� (� − )�� () �

− �∑
�=1

��� (�)�� (� − ��� (�))
− �∑

�=1
��� (�)��

� (� − ��� (�))
− �� (�) �� (�) − �� (�) �� (� − �� (�)) ]]

= ∏
0<��<�

Δ ��G�
� (�)

− ∏
0<��<�

Δ ��G� (�)
× [[�� (�) −

�∑
�=1


�� (�) ∏
0<��<�

Δ ��G� (�)
− �∑
�=1

��� (�) ∏
0<��<�

Δ �� ∫�

−∞
��� (�−) G�()�

− �∑
�=1

��� (�) ∏
0<��<�−���(�)

Δ ��G� (� − ��� (�))
− �∑

�=1
��� (�) ∏

0<��<�−���(�)
Δ ��G�

� (�−��� (�))
− �� (�) �� (�) − �� (�)
× �� (� − �� (�)) ]]

= ∏
0<��<�

Δ ��
{{{G�

� (�) − G� (�)

× [[�� (�) −
�∑

�=1
l �� (�) G� (�)

− �∑
�=1

\�� (�) ∫�

−∞
��� (� − ) G� () �

− �∑
�=1

-�� (�) G� (� − ��� (�))
− �∑

�=1
m�� (�) G�

� (� − ��� (�))
− �� (�) �� (�) − �� (�) ��
× (� − �� (�)) ]]

}}} = 0,
��
� (�) + �� (�) �� (�) − �� (�)�� (�) −  � (�)�� (� − !� (�))

= ��
� (�) + �� (�) �� (�) − �∗

� (�) G� (�)
−  ∗� (�) G� (� − �� (�)) = 0.

(21)

On the other hand, for any � = ��, � = 1, 2, . . .,
�� (�+� ) = lim

�→ �+�
∏

0<��<�
Δ ��G� (�) = ∏

0<��≤��
Δ ��G� (��) ,

�� (��) = ∏
0<��<��

Δ ��G� (��) , (22)
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thus,

Δ�� (�+� ) = Δ ��G� (��) , (23)

which implies that (��(�), ��(�))� (� = 1, 2, . . . , �) is a solution
of the system (1) and (2). 
erefore, if (G�(�), ��(�))� (� =1, 2, . . . , �) is a solution of the system (18) and (19) on[−�, +∞), we can prove that (��(�), ��(�))� (� = 1, 2, . . . , �)
are solutions of the system (1) and (2) on [−�, +∞).

(ii) Since ��(�) = ∏0<��<�Δ ��G�(�) (� = 1, 2, . . . , �) is
absolutely continuous on every interval (��, ��+1], � ̸= ��, � =1, 2, . . ., and in view of (23), it follows that for any � = 1, 2, . . .,

G� (�+� ) = ∏
0<��≤��

Δ−1
���� (�+� )

= ∏
0<��<��

Δ−1
���� (��) = G� (��) ,

G� (�−� ) = ∏
0<��<��

Δ−1
���� (�−� )

= ∏
0<��≤�−�

Δ−1
���� (�−� ) = G� (��) ,

� = 1, 2, . . . , �,

(24)

which implies that (G�(�), ��(�))� (� = 1, 2, . . . , �) is continu-
ous on [−�, +∞). It is easy to prove that (G�(�), ��(�))� (� =1, 2, . . . , �) is absolutely continuous on [−�, +∞). Similar

to the proof of (i), we can check that (G�(�), ��(�))� (� =1, 2, . . . , �) is a solution of the system (18) and (19) on[−�, +∞). 
e proof of Lemma 7 is completed.

Lemma 8. Consider that (G�(�), ��(�)) is a 7-periodic solution
of (18) and (19) if and only if G�(�) is a 7-periodic solution of
the following system:

�G� (�)�� = G� (�) [[�� (�) −
�∑

�=1
l �� (�) G� (�)

− �∑
�=1

\�� (�) ∫�

−∞
��� (� − ) G� () �

− �∑
�=1

-�� (�) G� (� − ��� (�))
− �∑

�=1
m�� (�) G�

� (� − ��� (�))
− �� (�) (o�G�) (�) − �� (�) (o�G�)
× (� − �� (�)) ]] ,

(25)

where

(o�G�) (�) := ∫�+	

�
g� (�, ) [�∗

� () G� () +  ∗� () G�

× ( − !� ())] �,
(26)

and g�(�, ) is de�ned by (17).
Proof. 
e proof of Lemma 8 is similar to that of Lemma 2.2
in [11], and we omit the details here.

From Lemmas 7 and 8, if we want to discuss the existence
of positive periodic solutions of systems (1) and (2), we only
discuss the existence of positive periodic solutions of systems
(25) and (26).

3. The Main Result

Since ����(�) < 1, ����(�) < 1, � ∈ [0, 7], we see that ���(�), ���(�)
all have their inverse function.
roughout the following part,
we set to h��(�), ]��(�) that represent the inverse function of � −���(�), � − ���(�), respectively. We denote that

Γ�� (�) = l �� (�) + \�� (�) + -�� (h�� (�))1 − ���� (h�� (�)) − m�
�� (]�� (�))1 − ���� (]�� (�)) ,

Γ1� (�) = �� (�) (o�1) (�) , Γ2� (�) = �� (�) (o�1) (� − !� (�)) .
(27)

Remark 9. From Lemma 3, we get that h��(7) = h��(0) +7, ]��(7) = ]��(0) + 7, �, : = 1, 2, . . . , �, then
∫	

0

-�� (h�� ())1 − ���� (h�� ())� = ∫���(	)

���(0)

-�� (�) (1 − ���� (�))1 − ���� (�) ��
= ∫���(0)+	

���(0)
-�� (�) �� = -��7,

�, : = 1, 2, . . . , �.
(28)

Similarly,

∫	

0

m�
�� (]�� ())1 − ���� (]�� ())� = ∫]��(	)

]��(0)

m�
�� (�) (1 − ���� (�))1 − ���� (�) ��

= ∫]��(0)+	

]��(0)
m�

�� (�) �� = 0,
�, : = 1, 2, . . . , �.

(29)


us,

Γ��7 = ∫	

0
Γ�� (�) �� = (l �� + \�� + -��) 7. (30)
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Here, we have the following notations:

q�� = Γ���(1 − ����)�(1 − ����)� + rrrrrm��
rrrrr0 , /� = 17 ∫	

0

rrrr�� (�)rrrr ��,

s0 = max
{{{

�∑
�=1

�∑
�=1

rrrrrm��
rrrrr0, �∑

�=1

�∑
�=1

rrrrrm0,��
rrrrr0}}} ,

V0 = max{ �∑
�=1

rrrrln ^∗
�
rrrr0, u, 127Λ∗ + �∑

�=1
Λ �} ,

u = max
�∈[1,�]

{u�} , u� = ln
��q�� +

�∑
�=1

��q�� + (/� + ��) 7,
Λ∗ = ( �∑

�=1

rrrr��rrrr0 + �∑
�=1

�∑
�=1

rrrrrl ��
rrrrr0���

+ �∑
�=1

�∑
�=1

rrrrr\��
rrrrr0��� + �∑

�=1

�∑
�=1

rrrrr-��
rrrrr0���

+ (rrrr��rrrr0 + rrrr��rrrr0) rrrr�∗
�
rrrr0 + rrrr ∗� rrrr0��

�
���)

×(1 − �∑
�=1

�∑
�=1

rrrrrm0,��
rrrrr0���)

−1,
Λ �

= max

{{{{{{{{{
rrrrrrrrrln ��l �� + \�� + -��

rrrrrrrrr ,
rrrrrrrrrrrln

�� − ∑�
�=1,� ̸= � (l �� + \�� + -��) ���l ��+\��+-��+(�� +��) (rrrr�∗

�
rrrr0+rrrr ∗� rrrr0/��

� )
rrrrrrrrrrr
}}} ,
(31)

where Γ��(�), Γ1� (�), and Γ2� (�) are de�ned by (27), andm0,��(�) =m��(�)(1 − ����(�)).
�eorem 10. Suppose that the following conditions hold:

(1) the system of algebraic equations

�∗ (^) = (�� − �∑
�=1

( (l �� + \�� + -��) ^�
+ (Γ1� + Γ2� ) ^�))

�×1

= 0
(32)

has a unique positive solution ^∗ = (^∗
1 , . . . , ^∗

� );

(2) l �� + \�� + -�� > 0, �� > ∑�
�=1,� ̸= �(l �� + \�� + -��)��� ,����(�) < 1, ����(�) < 1 and Γ��(�) > 0;

(3) A0 =: s0��0 < 1.

en the system (1) and (2) has at least one positive 7-periodic
solution.

To prove the previous theorem, we make the change of
variables

G� (�) = ���(�), � = 1, 2, . . . , �. (33)


en, the system (25) can be rewritten in the following form:

H�
� (�) = �� (�) − �∑

�=1
l �� (�) ���(�)

− �∑
�=1

\�� (�) ∫�

−∞
��� (� − ) ���(�)�

− �∑
�=1

-�� (�) ���(�−���(�))

− �∑
�=1

m0�� (�) H�
� (� − ��� (�)) ���(�−���(�))

− �� (�) (o����) (�)
− �� (�) (o����) (�) (� − �� (�)) .

(34)

Let � denote the linear space of real value continuous 7-
periodic functions on /. 
e linear space � is a Banach
space with the usual norm ‖H‖0 = max�∈�|H(�)| =
max�∈�∑�

�=1 |H�(�)| for a given H = (H1, . . . , H�) ∈ �.

We de�ne the following maps:

� : / × - �→ /�,
� (�, ') = (�1 (�, ') , �2 (�, ') , . . . , �� (�, ')) ,

�� (�, ') = − �∑
�=1

m�� (�) ���(−���(�)),
� : / × - �→ /�,

� (�, ') = (�1 (�, ') , �2 (�, ') , . . . , �� (�, ')) ,
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�� (�, ') = �� (�) − �∑
�=1

l �� (�) ���(0)

− �∑
�=1

\�� (�) ∫0

−∞
��� (� − ) ���(�)�

− �∑
�=1

-�� (�) ���(−���(�))

+ �∑
�=1

m�
�� (�) ���(−���(�)) − �� (�) (o����) (�)

− �� (�) (o����) (� − �� (�)) ,
� = 1, 2, . . . , �, ' = ('1, '2, . . . , '�) ∈ -, � ∈ /.

(35)

Clearly, � : / × - → /� and � : / × - → /� are complete
continuation functions, and system (34) takes the form

��� [H (�) − � (�, H�)] = � (�, H�) . (36)

In the proof of ourmain result below,wewill use the following
two important lemmas.

Lemma 11. If the assumptions of 
eorem 10 are satis�ed and
if Ω = {' ∈ - : ‖'‖ < V}, where V > V0 such that � =s0�� < 1, then |�(�, ') − �(�, 4)| ≤ �‖' − 4‖, for � ∈ / and', 4 ∈ Ω.

Proof. For � ∈ / and ', 4 ∈ Ω, we have

rrrr�� (�, ') − �� (�, 4)rrrr ≤ �∑
�=1

m�� (�) rrrrr���(−���(�)) − ���(−���(�))rrrrr
≤ �∑

�=1
m�� (�) ������(−���(�))+(1−���)��(−���(�))

× rrrrr'� (−��� (�)) − 4� (−��� (�))rrrrr ,
(37)

for some !�� ∈ (0, 1). 
en, we get

rrrr�� (�, ') − �� (�, 4)rrrr ≤ �∑
�=1

rrrrrm��
rrrrr0�� ����' − 4���� . (38)

Hence,

rrrr� (�, ') − � (�, 4)rrrr ≤ �∑
�=1

�∑
�=1

rrrrrm��
rrrrr0�� ����' − 4����

≤ s0�� ����' − 4���� = � ����' − 4���� .
(39)


e proof of Lemma 11 is thus completed.

Lemma 12. If the assumptions of
eorem 10 are satis�ed, then
every solution H ∈ � of the system

��� [H (�) − W� (�, H�)] = � (�, H�) , W ∈ (0, 1) (40)

satis�es ‖H‖0 ≤ V0.

Proof. Let (�/��)[H(�) − W�(�, H�)] = �(�, H�), for H ∈ �, that
is,

[[H� (�) + W �∑
�=1

m�� (�) ���(�−���(�))]]
�

= W[[�� (�) −
�∑

�=1
l �� (�) ���(�) − �∑

�=1
\�� (�)

× ∫�

−∞
��� (� − ) ���(�)�

− �∑
�=1

-�� (�) ���(�−���(�))

+ �∑
�=1

m�
�� (�) ���(�−���(�))

− �� (�) (o����) (�) − �� (�) (o����)
× (�) (� − �� (�)) ]] ,
� = 1, 2, . . . , �; W ∈ (0, 1) ,

(41)

which yields, a�er integrating from 0 to 7, that
∫	

0

�∑
�=1

[l �� (�) ���(�) + \�� (�)
× ∫�

−∞
��� (� − ) ���(�)�

+ -�� (�) ���(�−���(�)) − m�
�� (�) ���(�−���(�)) + �� (�)

× (o����) (�) + �� (�) (o����) (�) (� − �� (�))] ��
= ∫	

0

�∑
�=1

Γ�� (�) ���(�)�� + ∫	

0
[�� (�) (o����) (�) + �� (�)
× (o����) (�) (� − �� (�))] ��

= ∫	

0
�� (�) �� = ��7, � = 1, 2, . . . , �,

(42)
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where Γ��(�) is de�ned by (27). From (41), we derive

∫	

0

rrrrrrrrrrrr[[H� (�) + W �∑
�=1

m�� (�) ���(−���(�))]]
rrrrrrrrrrrr
�

��

= W∫	

0

rrrrrrrrrrrr[[�� (�) −
�∑

�=1
l �� (�) ���(�) − �∑

�=1
\�� (�)

× ∫�

−∞
��� (� − ) ���(�)�

− �∑
�=1

-�� (�) ���(�−���(�))

+ �∑
�=1

m�
�� (�) ���(�−���(�))

− �� (�) (o����) (�) − �� (�) (o����)
× (�) (� − �� (�)) ]]

rrrrrrrrrrrr ��
≤ ∫	

0

rrrr�� (�)rrrr �� + ∫	

0

rrrrrrrrrrr
�∑

�=1
[l �� (�) ���(�) + \�� (�)
× ∫�

−∞
��� (� − ) ���(�)�

+ -�� (�) ���(�−���(�))
− m�

�� (�) ���(�−���(�))
+ �� (�) (o����) (�)
+ �� (�) (o����) (�)
× (� − �� (�)) ]

rrrrrrrrrrr ��.

(43)

It follows from (41)–(43) that

∫	

0

rrrrrrrrrrrr[[H� (�) + W �∑
�=1

m�� (�) ���(−���(�))]]
rrrrrrrrrrrr
�

�� ≤ (/� + ��) 7,
� = 1, 2, . . . , �.

(44)

By ampli�cation, it follows from (42) that

��7 ≥ �∑
�=1

∫	

0
Γ�� (�) ���(�)��

= �∑
�=1

∫	

0
[Γ�� (�) ���(�) − (q�����(�) + q��m�� (�) ���(�−���(�)))

+ (q�����(�) + q��m�� (�) ���(�−���(�)))] ��

= �∑
�=1

∫	

0
[Γ�� (�) ���(�) − (q�����(�) + q��m�� (�) ���(�−���(�)))] ��

+ �∑
�=1

∫	

0
[q�����(�) + q��m�� (�) ���(�−���(�))] ��.

(45)

In view of Remark 9 and by a similar analysis, we obtain

�∑
�=1

∫	

0
[Γ�� (�) ���(�) − (q�����(�) + q��m�� (�) ���(�−���(�)))] ��
= �∑

�=1
∫	

0
[[Γ�� () − q�� − q�� m�� (]�� ())1 − ���� (]�� ()) ]] ���(�)��.

(46)

As q�� = Γ���(1 − ����)�/((1 − ����)� + |m��|0), it follows that Γ��() −q�� − q��(m��(]��())/(1 − ����(]��()))) ≥ 0. So we �nd from (45)

that

��7 ≥ �∑
�=1

∫	

0
[q�����(�) + q��m�� (�) ���(�−���(�))] ��. (47)


at is,

��7 ≥ ∫	

0

�∑
�=1

[q�����(�) + q��m�� (�) ���(�−���(�))] ��. (48)

By the mean value theorem, we see that there exist points �� ∈[0, 7], (� = 1, . . . , �) such that

�� ≥ �∑
�=1

q�����( �) + �∑
�=1

q��m�� (��) ���( �−���( �)), � = 1, . . . , �,
(49)

which implies that

H� (��) ≤ ln
��q�� ,

m�� (��) ���( �−���( �)) ≤ ��q�� ,
� = 1, . . . , �.

(50)
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By (44) and (50), we can see that

H� (�) + W �∑
�=1

m�� (�) ���(�−���(�))

≤ H� (��) + W �∑
�=1

m�� (��) ���( �−���( �))

+ ∫	

0

rrrrrrrrrrrrr
[[H� (�) + W �∑

�=1
m�� (�) ���(�−���(�))]]

�rrrrrrrrrrrrr ��
≤ ln

��q�� +
�∑

�=1

��q�� + (/� + ��) 7 =: u�, � = 1, 2, . . . , �.
(51)

For W∑�
�=1 m��(�)���(�−���(�)) ≥ 0, one can �nd that

H� (�) ≤ u�, � = 1, . . . , �. (52)

Besides, from (41), we have

H�
� (�) = W[[�� (�) −

�∑
�=1

l �� (�) ���(�) − �∑
�=1

\�� (�)
× ∫�

−∞
��� (� − ) ���(�)� − �∑

�=1
-�� (�) ���(�−���(�))

− �∑
�=1

m0,�� (�) H�
� (� − ��� (�)) ���(�−���(�))

− �� (�) (o����) (�) − �� (�) (o����) (�)
× (� − �� (�)) ]] , � = 1, 2, . . . , �.

(53)

Notice that for all � ∈ /, one has
(o�) (�) = ∫�+	

�
g� (�, ) [�∗

� () +  ∗� ()] �
= ∫�+	

�
g� (�, ) �� () �∗

� () +  ∗� ()�� () �
≤ rrrr�∗

�
rrrr0 + rrrr ∗� rrrr0��

�
∫�+	

�
g� (�, ) �� () �

= rrrr�∗
�
rrrr0 + rrrr ∗� rrrr0��

�
, � = 1, . . . , �.

(54)


en, by (52) and (54), we get

rrrrrH�
�
rrrrr0 ≤

rrrrrrrrrrr�� (�) +
�∑

�=1
l �� (�) ���(�) + �∑

�=1
\�� (�)

× ∫�

−∞
��� (� − ) ���(�)� + �∑

�=1
-�� (�) ���(�−���(�))

+ �∑
�=1

m0,�� (�) H�
� (� − ��� (�)) ���(�−���(�)) + �� (�)

× (o����) (�) + �� (�) (o����) (�) (� − �� (�))
rrrrrrrrrrr

≤ rrrr��rrrr0 + �∑
�=1

rrrrrl ��
rrrrr0��� + �∑

�=1

rrrrr\��
rrrrr0���

+ �∑
�=1

rrrrr-��
rrrrr0��� + �∑

�=1

rrrrrm0,��
rrrrr0rrrrrH�

�
rrrrr0��� + (rrrr��rrrr0 + rrrr��rrrr0)

× rrrr�∗
�
rrrr0 + rrrr ∗� rrrr0��

�
��� ,

� = 1, 2, . . . , �.
(55)

Furthermore, we have

�����H������0 = �∑
�=1

rrrrrH�
�
rrrrr0

≤ �∑
�=1

rrrr��rrrr0 + �∑
�=1

�∑
�=1

rrrrrl ��
rrrrr0���

+ �∑
�=1

�∑
�=1

rrrrr\��
rrrrr0���

+ �∑
�=1

�∑
�=1

rrrrr-��
rrrrr0��� + (rrrr��rrrr0 + rrrr��rrrr0) rrrr�∗

�
rrrr0 + rrrr ∗� rrrr0��

�
���

+ �∑
�=1

�∑
�=1

rrrrrm0,��
rrrrr0�����H������0��� .

(56)

By the assumption (3) of 
eorem 10, we see that

�∑
�=1

�∑
�=1

rrrrrm��
rrrrr0��� ≤ �∑

�=1

�∑
�=1

rrrrrm0,��
rrrrr0��

≤ �∑
�=1

�∑
�=1

rrrrrm0,��
rrrrr0��0 < 1.

(57)
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en, we have

�����H������0 ≤ ( �∑
�=1

rrrr��rrrr0 + �∑
�=1

�∑
�=1

rrrrrl ��
rrrrr0���

+ �∑
�=1

�∑
�=1

rrrrr\��
rrrrr0���

+ �∑
�=1

�∑
�=1

rrrrr-��
rrrrr0���

+ (rrrr��rrrr0 + rrrr��rrrr0) rrrr�∗
�
rrrr0 + rrrr ∗� rrrr0��

�
���)

× (1 − �∑
�=1

�∑
�=1

rrrrrm0,��
rrrrr0���)

−1 =: Λ∗.

(58)

Since H(�) = (H1(�), . . . , H�(�)) ∈ �, there exists a &� ∈ [0, 7]
such that

H� (&�) = inf
�∈[0,	]

H� (�) , � = 1, . . . , �. (59)

It follows from (42) that

��7 ≥ �∑
�=1

∫	

0
Γ�� (�) ���(�)��

= �∑
�=1

���(!�) ∫	

0
Γ�� (�) ��, � = 1, . . . , �.

(60)

It follows from (30) and (60) that

�� ≥ �∑
�=1

���(!�) (l �� + \�� + -��) , � = 1, . . . , �. (61)

From (61), we obtain

���(!�) (l �� + \�� + -��) ≤ ��, � = 1, . . . , �. (62)

As l �� + \�� + -�� > 0, it follows from the previous formula
that

H� (&�) ≤ ln
��l �� + \�� + -��

, � = 1, . . . , �. (63)

On the other hand, there also exists a R� ∈ [0, 7] such that

H� (R�) = sup
�∈[0,	]

H� (�) , � = 1, . . . , �. (64)

It follows from (42), (54), and (64) that

�� ≤ �∑
�=1

Γ�����("�) + (�� + ��) rrrr�∗
�
rrrr0 + rrrr ∗� rrrr0��

�
���("�)

= �∑
�=1,� ̸= �

Γ�����("�)

+ [Γ�� + (�� + ��) rrrr�∗
�
rrrr0 + rrrr ∗� rrrr0��

�
] ���("�),

� = 1, . . . , �.

(65)

From (41), (54), and (64), we can have

[l �� + \�� + -�� + (�� + ��) rrrr�∗
�
rrrr0 + rrrr ∗� rrrr0��

�
] ���("�)

≥ �� − �∑
�=1,� ̸= �

(l �� + \�� + -��) ���("�)

≥ �� − �∑
�=1,� ̸= �

(l �� + \�� + -��) ��� , � = 1, . . . , �.
(66)


at is,

H� (R�) ≥ ln
�� − ∑�

�=1,� ̸= � (l �� + \�� + -��) ���l �� + \�� + -�� + (�� + ��) (rrrr�∗
�
rrrr0 + rrrr ∗� rrrr0/��

� ) ,
� = 1, . . . , �.

(67)

Now, from (60) and (63) we know that there exist �� ∈[0, 7] (� = 1, . . . , �) such thatrrrrH� (��)rrrr
≤ max

{{{
rrrrrrrrrln ��l �� + \�� + -��

rrrrrrrrr ,
rrrrrrrrrrrln

�� − ∑�
�=1,� ̸= � (l �� + \�� + -��) ���l ��+\��+-��+ (�� + ��) (rrrr�∗

�
rrrr0+rrrr ∗� rrrr0/��

� )
rrrrrrrrrrr
}}}

=: Λ �, � = 1, . . . , �.
(68)

From (54), (64), and Lemma 3, we haverrrrH�
rrrr ≤ rrrrH� (��)rrrr + 12 ∫	

0

rrrrrH�
� (�)rrrrr ��

≤ Λ � + 12 ∫	

0

rrrrrH�
�
rrrrr ��, � = 1, . . . , �. (69)


en,

‖H‖0 ≤ �∑
�=1

rrrrH�
rrrr ≤ �∑

�=1
Λ � + 12 ∫	

0

�����H������0��
< �∑

�=1
Λ � + 12Λ∗7 ≤ V0.

(70)
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Obviously,V0 is independent of W; the proof of Lemma 12 is
completed.

Based on the previous results, we can now apply Lemma 1
and Remark 2 to (34) and obtain a proof of 
eorem 10.

Proof. Obviously, for V as given in Lemma 11, condition (i)
in Lemma 1 is satis�ed. Let ℎ(^) = (ℎ1(^), . . . , ℎ�(^)). Since

ℎ� (^) = ∫	

0
�� (, ̂̂) �

= ∫	

0
�� (�) �� − �∑

�=1
∫	

0
l �� (�) ���#�

− �∑
�=1

∫	

0
\�� (�) ���#� − �∑

�=1
∫	

0
-�� (�) ���#�

− ∫	

0
[�� (�) + �� (�)] ���#�

= {{{�� − �∑
�=1

[l �� + \�� + -���#�

+ (�� + ��) ]}}}7

(71)

andV > ∑�
�=1 | ln ^∗

� |, we have ℎ(^) ̸= 0 for any ^ ∈ Z\�(/�).

at is, condition (ii) in Lemma 1 holds. At last, we verify
that condition (iii) of Lemma 1 also holds. By assumption
(1) of 
eorem 10 and the formula for the Brouwer degree
(see 
eorem 2.2.3 in [35, 36]), a straightforward calculation
shows that

deg (ℎ, \� (/�)) = ∑
#∈ℎ−1(0)⋂&�(��)

signdetmℎ (^)
= sign {(−1)� det

× [(l �� + \�� + -��) �∑��=1 #∗�
+ (�� + ��) �#∗� ]} ̸= 0.

(72)

By now, all the assumptions required in Lemma 1 hold. It
follows from Lemma 1 and Remark 2 that system (34) has

an 7-periodic solution. Returning to G�(�) = ���(�), we
infer that systems (18) and (19) have at least one positive7-periodic solution. By Lemmas 7 and 8, (�∗(�), �∗(�))� =(�∗

1 (�), . . . , �∗
� (�), �∗

1 (�), . . . , �∗
� (�))� is the unique positive

periodic solution of the system (1) and (2), where �∗
� (�) =∏0<��<�Δ ��G∗

� (�) (� = 1, 2, . . . , �). 
e proof of 
eorem 10 is
complete.

Consider the following:

��
� (�) = �� (�) [[�� (�) −

�∑
�=1


�� (�)�� (�)
− �∑

�=1
��� (�) ∫�

−∞
��� (� − )�� () �

− �∑
�=1

��� (�)�� (� − ��� (�))
− �∑

�=1
��� (�)��

� (� − ��� (�)) − �� (�) �� (�)

−�� (�) �� (� − �� (�)) ]] ,
��
� (�) = −�� (�) �� (�) + �� (�)�� (�)

+  � (�)�� (� − !� (�)) , � = 1, 2, . . . , �,
(73)

which is a special case of system (1) without impulse. We
get easily the following result. Here, we have the following
notations:

q∗
�� = Γ∗��� (1 − ����)�(1 − ����)� + rrrrr���

rrrrr0 , /� = 17 ∫	

0

rrrr�� (�)rrrr ��,

s∗ = max
{{{

�∑
�=1

�∑
�=1

rrrrr���
rrrrr0, �∑

�=1

�∑
�=1

rrrrr�0,��
rrrrr0}}} ,

V∗ = max{ �∑
�=1

rrrrln ^∗
�
rrrr0, u∗, 127Θ∗ + �∑

�=1
Δ �} ,

u∗ = max
�∈[1,�]

{u∗
� } , u∗

� = ln
��q∗
��
+ �∑

�=1

��q∗
��
+ (/� + ��) 7,

Θ∗ = ( �∑
�=1

rrrr��rrrr0 + �∑
�=1

�∑
�=1

rrrrr
��rrrrr0��∗�
+ �∑

�=1

�∑
�=1

rrrrr���rrrrr0��∗�

+ �∑
�=1

�∑
�=1

rrrrr���rrrrr0��∗� + (rrrr��rrrr0 + rrrr��rrrr0) rrrr��
rrrr0 + rrrr �rrrr0��

�
��∗� )

× (1 − �∑
�=1

�∑
�=1

rrrrr�0,��
rrrrr0��∗� )

−1,
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Θ�

= max
{{{
rrrrrrrrrrln

��
�� + ��� + ���
rrrrrrrrrr ,

rrrrrrrrrrrln
�� − ∑�

�=1,� ̸= � (
�� + ��� + ���) ��∗�
�� + ��� + ��� + (�� + ��) (rrrr��
rrrr0 + rrrr �rrrr0/��

� )
rrrrrrrrrrr
}}} ,

Γ∗�� (�) = 
�� (�) + ��� (�) + ��� (h�� (�))1 − ���� (h�� (�))
− ��

�� (]�� (�))1 − ���� (]�� (�)) ,
Γ1� (�) = �� (�) (o�1) (�) ,
Γ2� (�) = �� (�) (o�1) (� − !� (�)) ,
�0,�� (�) = ��� (�) (1 − ���� (�)) ,

(74)

and h��(�), ]��(�) represent the inverse function of � − ���(�), � −���(�) (�, : = 1, 2, . . . , �), respectively.
Corollary 13. Suppose that the following conditions hold;

(1) the system of algebraic equations

�∗ (^) = (�� − �∑
�=1

( (
�� + ��� + ���) ^�
+ (Γ1� + Γ2� ) ^�))

�×1

= 0
(75)

has a unique positive solution ^∗ = (^∗
1 , . . . , ^∗

� );
(2) 
��+���+��� > 0, �� > ∑�

�=1,� ̸= �(
��+���+���)��∗� , ����(�) < 1,����(�) < 1 and Γ∗�� (�) > 0;
(3) A∗ =: s∗��∗ < 1. 
en, (73) has at least one positive7-periodic solution.

Proof. Its proof is similar to the proof of 
eorem 10. Here,
we omit it.

Similarly, we can get the following results.

�eorem 14. Assume that conditions of 
eorem 10 hold, and
then, the conclusion of 
eorem 10 holds for the following
system:

��
� (�) = −�� (�) [[�� (�) −

�∑
�=1


�� (�)�� (�)
− �∑

�=1
��� (�) ∫�

−∞
��� (� − )�� () �

− �∑
�=1

��� (�)�� (� − ��� (�))
− �∑

�=1
��� (�)��

� (� − ��� (�)) − �� (�) �� (�)
− �� (�) �� (� − �� (�)) ]] ,
� = 1, 2, . . . , �, � ̸= ��,

��
� (�) = −�� (�) �� (�) + �� (�)�� (�)

+  � (�)�� (� − !� (�)) , � ≥ 0,
Δ�� (��) = ($�� + %��)�� (��) ,

� = 1, 2, . . . , �, � = 1, 2, . . . .
(76)

Proof. Its proof is similar to the proof of 
eorem 10. Here,
we omit it.

Corollary 15. Assume that conditions of Corollary 13 hold,
and then, the conclusion of Corollary 13 holds for the following
system:

��
� (�) = −�� (�) [[�� (�) −

�∑
�=1


�� (�)�� (�)
− �∑

�=1
��� (�) ∫�

−∞
��� (� − )�� () �

− �∑
�=1

��� (�)�� (� − ��� (�))
− �∑
�=1

��� (�)��
� (� − ��� (�))]] ,

��
� (�) = −�� (�) �� (�) + �� (�)�� (�)

+  � (�)�� (� − !� (�)) , � = 1, 2, . . . , �.

(77)

Proof. Its proof is similar to the proof of 
eorem 10. Here,
we omit it.
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Remark 16. When ��(�) = ��(�) =  �(�) = 0, we can derive
some immediate corollaries from 
eorems 10 and 14; thus,
our results generalize the corresponding results in [14].

4. Applications

In order to illustrate some features of our main result, in the
following, we will apply 
eorem 10 to some special cases,
which have been studied extensively in the literature.

Application 17. We consider an �-species neutral delay com-
petition system in a periodic environment with impulse:

��
� (�) = ±�� (�) [[
� (�) −

�∑
�=1

��� (�)�� (�)
− �∑

�=1
��� (�)�� (� − ��� (�))

− �∑
�=1

��� (�)��
� (� − ��� (�))

− �� (�) �� (�) − �� (�) ��
× (� − �� (�)) ]] ,

� = 1, 2, . . . , �, � ̸= ��,
��
� (�) = −�� (�) �� (�) + �� (�)�� (�)

+  � (�)�� (� − !� (�)) , � ≥ 0,
Δ�� (��) = ($�� + %��)�� (��) ,

� = 1, 2, . . . , �, � = 1, 2, . . . ,

(78)

where ���, ���, ��, ��, ��, ��,  � ∈ -(/, [0, +∞)), ��� ∈ -1(/,[0, +∞)), ��� ∈ -1(/, /), and ��� ∈ -2(/, /) are continuous7-periodic functions. And 
� ∈ -(/, /) are continuous 7-
periodic functions with ∫	

0 
�(�)�� > 0. Here, we give the

following notations:

l � = 17 ∫	

0

rrrr
� (�)rrrr ��,
\�� (�) = ��� (�) ∏

0<��<�
(1 + $�� + %��) ,

-�� (�) = ��� (�) ∏
0<��<�−���(�)

(1 + $�� + %��) ,
m�� (�) = ��� (�) ∏

0<��<�−���(�)
(1 + $�� + %��) ,

m0,�� (�) = m�� (�) (1 − ���� (�)) ,
�∗
� (�) = �� (�) ∏

0<��<�
(1 + $�� + %��) ,

 ∗� (�) =  � (�) ∏
0<��<�

(1 + $�� + %��) ,
Γ�� (�) = l �� (�) + \�� (�)

+ -�� (h�� (�))1 − ���� (h�� (�)) − m�
�� (]�� (�))1 − ���� (]�� (�)) ,

Γ1� (�) = �� (�) (o�1) (�) ,
Γ2� (�) = �� (�) (o�1) (� − !� (�)) ,

s1 = max
{{{

�∑
�=1

�∑
�=1

rrrrrm��
rrrrr0, �∑

�=1

�∑
�=1

rrrrrm0,��
rrrrr0}}} ,

V1 = max{ �∑
�=1

rrrrln ^∗
�
rrrr0, u∗, 127Λ∗ + �∑

�=1
Λ �} ,

u∗ = max
�∈[1,�]

{u∗
� } ,

u∗
� = ln


�q∗
��
+ �∑

�=1


�q∗
��
+ (l � + 
�) 7,

q∗
�� = Γ∗��� (1 − ����)�(1 − ����)� + rrrrrm��

rrrrr0 ,

Λ∗ = ( �∑
�=1

rrrr
�rrrr0 + �∑
�=1

�∑
�=1

rrrrr\��
rrrrr0��∗�

+ �∑
�=1

�∑
�=1

rrrrr-��
rrrrr0��∗�

+ (rrrr��rrrr0 + rrrr��rrrr0) rrrr�∗
�
rrrr0 + rrrr ∗� rrrr0��

�
��∗� )

× (1 − �∑
�=1

�∑
�=1

rrrrrm0,��
rrrrr0��∗� )

−1,
Λ �

= max
{{{
rrrrrrrrrln 
�\�� + -��

rrrrrrrrr ,
rrrrrrrrrrrln


� − ∑�
�=1,� ̸= � (\�� + -��) ��∗�\�� + -�� + (�� + ��) ((rrrr�∗

�
rrrr0 + rrrr ∗� rrrr0) /��

� )
rrrrrrrrrrr
}}} ,

�, : = 1, 2, . . . , �,
(79)
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where h��(�), ]��(�) represent the inverse function of � −���(�), � − ���(�), respectively. Applying
eorem 10 to (78), we
can obtain the following theorem.

�eorem 18. Assume that the following conditions are satis-
�ed:

(1) the system of algebraic equations

�∗ (^) = (
� − �∑
�=1

((\�� + -��) ^� + (Γ1� + Γ2� ) ^�))
�×1

= 0
(80)

has a unique positive solution ^∗ = (^∗
1 , . . . , ^∗

� );
(2) \�� + -�� > 0, 
� > ∑�

�=1,� ̸= �(\�� + -��)��� , ����(�) < 1,����(�) < 1, and Γ��(�) > 0;
(3) A1 =: s1��1 < 1.

en, (78) has at least one positive 7-periodic solution.

Remark 19. When ��(�) = ��(�) =  �(�) = ��(�) = 0,$��+ %�� = 0, we can derive some immediate corollaries of

eorem 18, then, 
eorem 18 generalizes the corresponding
results in [9, 10]. On the other hand, when $�� + %�� = 0,
we can derive an immediate corollary of 
eorem 18, then,

eorem 18 generalizes the corresponding results in [11].

Application 20. We consider the single specie neutral delay
logistic equation with impulse:

�� (�) = ±� (�) [
 (�) − � (�)� (�)
− �∑

�=1
�� (�) ∫�

−∞
�� (� − )� () �

− �∑
�=1

�� (�)� (� − �� (�))
− �∑

*=1
�* (�)�� (� − �* (�)) − � (�) � (�)

−N (�) � (� − � (�)) ] , � ̸= ��,
�� (�) = −� (�) � (�) + � (�)� (�)

+  (�)� (� − ! (�)) , � ≥ 0,
� (�+� ) = ($� + %�)� (��) , � = 1, 2, . . . .,

(81)

where �, ��, ��, �, N, �, �,  ∈ -(/, [0, +∞)), �* ∈ -1(/,[0, +∞)), �� ∈ -1(/, /), and �* ∈ -2(/, /) are continuous7-periodic functions. And 
 ∈ -(/, /) are continuous

7-periodic functions with ∫	
0 
(�)�� > 0. Here, we have the

following notations:

l = 17 ∫	

0
|
 (�)| ��,

\ (�) = � (�) ∏
0<��<�

(1 + $� + %�) ,
-� (�) = �� (�) ∏

0<��<�
(1 + $� + %�) ,

m� (�) = �� (�) ∏
0 <��<�−��(�)

(1 + $� + %�) ,
�* (�) = �* (�) ∏

0<��<�−��(�)
(1 + $� + %�) ,

�0,* (�) = �* (�) (1 − ��* (�)) ,
�∗ (�) = � (�) ∏

0<��<�
(1 + $�� + %��) ,

 ∗ (�) =  (�) ∏
0<��<�

(1 + $�� + %��) ,

q = Γ�1 (1 − ��* )�(1 − ��* )� + rrrr�*
rrrr0 ,

s2 = max{ �∑
*=1

rrrr�*
rrrr0, �∑

*=1

rrrr�0,*
rrrr0} ,

V2 = max {u∗, Δ∗} ,
u∗ = ln


q + 
q + (l + |
) 7,
Δ∗ = 72 (|
|0 + [|\|0 + �∑

�=1

rrrr-�
rrrr0

+ �∑
�=1

rrrrrm�
rrrrr0 + (rrrr�rrrr0 + rrrrNrrrr0)

× rrrr�∗rrrr0 + rrrr ∗rrrr0�� ] ��∗)
× (1 − rrrr�0,*

rrrr0��∗)−1

+ rrrrrrrrrrrln

\ + ∑�

�=1 -� + ∑�
�=1 m� + Γ2 + Γ3

rrrrrrrrrrr ,
Γ1 (�) = \ (�) + �∑

�=1
-� (�)

+ �∑
�=1

m� (^� (�))1 − !� (^� (�)) − �∑
*=1

��
* (]* (�))1 − ��* (]* (�)) ,
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Γ2 (�) = � (�) (o1) (�) ,
Γ3 (�) = N (�) (o1) (� − ! (�)) ,

(82)

and ^�(�), ]*(�) represent the inverse function of � − ��(�), � −�*(�), respectively. Applying
eorem 10 to (81), we can obtain
the following theorem.

�eorem 21. Assume that the following conditions are satis-
�ed:

(1) \+∑�
�=1 -� +∑�

�=1 m� +Γ2 +Γ3 > 0, ���(�) < 1, ��* (�) < 1
and Γ1(�) > 0;

(2) A2 =: s2��2 < 1.

en, system (81) has at least one positive 7-periodic

solution.

Remark 22. When � = 0, : = � = 1, �(�) = �(�) =  (�) =�(0) = 0, !�(�) = �*(�), and $� + %� = 0, we can derive an
immediate corollary of 
eorem 21, which is also an answer
to the open problem 9.2 due to Kuang [2]. On the other hand,
when � = 0, �(�) = �(�) =  (�) = �(�) = 0, and $� +%� = 0, we
can derive some immediate corollaries of 
eorem 21 (that
is the corresponding results in [7, 8]), therefore, our result
improves and generalizes the corresponding result in [7, 8].
Moreover, when � = 0, �(�) = �(�) =  (�) = �(�) = 0, we
can see that our
eorem 21 can hold without the assumption
 > 0. When 
 < 0, Wang’s main result (see 
eorem
3.1 in [13]) cannot be applied. 
erefore, in comparison with
[13], our result improves and generalizes the result in [13].
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