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With the aid of symbolic computation, a new extended Jacobi elliptic function expansionmethod is
presented by means of a new ansatz, in which periodic solutions of nonlinear evolution equations,
which can be expressed as a finite Laurent series of some 12 Jacobi elliptic functions, are very
effective to uniformly construct more new exact periodic solutions in terms of Jacobi elliptic
function solutions of nonlinear partial differential equations. As an application of the method,
we choose the generalized shallow water wave (GSWW) equation to illustrate the method. As a
result, we can successfully obtain more new solutions. Of course, more shock wave solutions or
solitary wave solutions can be gotten at their limit condition.

1. Introduction

In recent years, the nonlinear partial differential equations (NPDEs) are widely used to
describe many important phenomena and dynamic processes in physics, mechanics, chem-
istry, biology, and so forth. With the development of soliton theory, There has been a great
amount of activities aiming to find methods for exact solutions of nonlinear differential equa-
tions, such as Bäcklund transformation, Darboux transformation, Cole-Hopf transformation,
similarity reduction method, variable separation approach, Exp-function method, homoge-
neous balance method, varied tanh methods, and varied Jacobi elliptic function methods [1–
21].

Among those, the direct ansätz method [8–21] provides a straightforward and effec-
tive algorithm to obtain such particular solutions for a large number of nonlinear partial
differential equations, in which the starting point is the ansätz that the solution sought is
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expressible as a finite series of special function, such as tanh function, sech function, tan func-
tion, sec function, sine-cosine function,Weierstrass elliptic function, theta function, and Jacobi
elliptic function.

In this paper, a new Jacobi elliptic function expansion method is presented by means
of a new general ansätz and is more powerful to uniformly construct more new exact
doubly-periodic solutions in terms of Jacobi elliptic functions of nonlinear partial differential
equations. The algorithm and its application are demonstrated later.

This paper is organized as follows. In Section 2, we summarize the extended Jacobi elli-
ptic function expansion method. In Section 3, we apply the extended method to the genera-
lized shallow water wave (GSWW) equation and bring out more new solutions. Conclusions
will be presented in finally.

2. Summary of the Extended Jacobi Elliptic Function
Expansion Method

In the following, we would like to outline the main steps of our extended method.

Step 1. For a given nonlinear partial differential equation with some physical fields u(x, y, t)
in three variables x, y, t,

F
(

u, ut, ux, uy, utt, uxt, uyt, uxx, uyy, uxy, . . .
)

= 0, (2.1)

by using the wave transformation

u
(

x, y, t
)

= u(ξ), ξ = k
(

x + ly − ct
)

, (2.2)

where k, l, and c are constants to be determined later. Then the nonlinear partial differential
equation (2.1) is reduced to a nonlinear ordinary differential equation (ODE):

G
(

u, u′, u′′, . . .
)

= 0. (2.3)

Step 2. We introduce some new ansätz in terms of finite Jacobi elliptic function expansion in
the following forms:

(1) sn′ξ/snξ expansion:

u = a0 +
n
∑

i=1

ai

(

sn′(ξ)

sn(ξ)

)i

+ bi

(

sn′(ξ)

sn(ξ)

)−i

, (2.4a)

(2) cn′ξ/cnξ expansion:

u = a0 +
n
∑

i=1

ai

(

cn′(ξ)

cn(ξ)

)i

+ bi

(

cn′(ξ)

cn(ξ)

)−i

, (2.4b)
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(3) dn′ξ/dnξ expansion:

u = a0 +
n
∑

i=1

ai

(

dn′(ξ)

dn(ξ)

)i

+ bi

(

dn′(ξ)

dn(ξ)

)

−i

, (2.4c)

where snξ, cnξ, dnξ are Jacobi elliptic sine function, the Jacobi elliptic cosine function, and
the Jacobi elliptic function of the third kind, which are periodic and possess the following
properties:

(1) properties of triangular functions

cn2ξ + sn2ξ = dn2ξ +m2sn2ξ = 1, (2.5)

(2) derivatives of the Jacobi elliptic functions

sn′ξ = cnξdnξ, cn′ξ = −snξdnξ, dn′ξ = −m2snξcnξ, (2.6)

where m is a modulus. The Jacobi-Glaisher functions for elliptic function can be found in
[22, 23]. It is necessary to point out that above combinations only require solving the recurrent
coefficient relation or derivative relation for the terms of polynomial for computation closed.
Therefore, other Jacobi elliptic functions can be chosen to combine as new ansätz. For
simplicity, we omit them here.

Step 3. In order to obtain the value of n in (2.4a)–(2.4c), we define the degree of u(ξ) as
D[u(ξ)] = n, which gives rise to the degree of other expressions as

D
[

u(α)
]

= n + α, D
[

uβ
(

u(α)
)s]

= nβ + (α + n)s. (2.7)

Therefore, we can get the value of n in (2.4a)–(2.4c). If n is a nonnegative integer, then we
first make the transformation u = ωn.

Step 4. Respectively substitute three cases of (2.4a)–(2.4c) into (2.3) along with (2.5) and (2.6)
and then respectively set all coefficients of sniξcnjξdnkξ (i = 0, 1, 2, . . . ; j = 0, 1; k = 0, 1) to be
zero to get an overdetermined system of nonlinear algebraic equations with respect to a0, ai,
bi, k, l, c (i = 0, 1, 2, . . .).

Step 5. By use of theMaple software package “Charsets” by Dongming Wang, which is based
on the Wu-elimination method [24], solving the overdetermined algebraic equations, we
would end up with the explicit expressions for a0, ai, bi, k, l, c (i = 0, 1, 2, . . .). In this way,
we can get periodic solutions with Jacobi elliptic function.

Since

lim
m→ 1

snξ = tanh ξ, lim
m→ 1

cnξ = sechξ, lim
m→ 1

dnξ = sechξ,

lim
m→ 0

snξ = sin ξ, lim
m→ 0

cnξ = cos ξ, lim
m→ 0

dnξ = 1,
(2.8)

u degenerate respectively as in the following form:
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(1) solitary wave solutions:

u(ξ) = a0 +
n
∑

i=1

aisech
iξcschiξ + bicosh

iξsinhiξ, (2.9a)

u(ξ) = a0 +
n
∑

i=1

ai(− tanh ξ)i + bi(− coth ξ)i, (2.9b)

(2) triangular function formal solutions:

u(ξ) = a0 +
n
∑

i=1

aicot
iξ + bitan

iξ, (2.10a)

u(ξ) = a0 +
n
∑

i=1

ai(− tan ξ)i + bi(−cotξ)
i. (2.10b)

So the new extended Jacobi elliptic function expansion method can obtain more new
solutions, which contain solitary wave solutions, singular solitary solutions, and triangular
function solutions. These new solutions cannot be obtained by other Jacobi elliptic function
methods, such as Fu et al. [13], Fan [14], Yan [15–17], and Chen et al. [18–21].

3. Exact Solutions of the GSWW Equation

The Boussinesq approximation theory [25] for generalized classical shallowwater wave leads
to the GSWW equation:

vxxxt + αvxvxt + βvtvxx − vxt − vxx = 0, (3.1)

where α and β are nonzero constants. Using vx = u in [26], (3.1) can be simplified to

uxxt + αuut − βux∂
−1
x ut − ut − ux = 0, (3.2)

which has recently attracted many attentions from researchers under the following cases.
(1) For the case when α = 2β, the following AKNS-SWW equation:

uxxt + 2βuut − βux∂
−1
x ut − ut − ux = 0 (3.3)

was discussed by Ablowitz et al. [27].
(2) For the case when α = β, the following equation:

uxxt + βuut − βux∂
−1
x ut − ut − ux = 0 (3.4)

was discussed by Hirota and Satsuma [28].
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The GSWW equation (3.1) in potential form was studied by Clarkson and Mansfield
[26, 29] who gave a complete catalog of classical and nonclassical symmetry reductions.
The necessary conditions of Painlevé tests were given by Weiss et al. [30] and the complete
integrability of (3.1) for the case when α = 2β and α = β was established by Ablowitz et al.
[31]. It has been proven by Hietarinta [32] that the GSWW equation (3.2) can be expressed
in Hirota’s bilinear form and when α = 2β, (3.2) can be reduced to (3.3) or to (3.4) when
α = β. In other words, both (3.3) and (3.4) are solvable by using Hirota’s bilinear method
[33]. The N-soliton solutions for (3.3) and (3.4) had also been found using this technique
[28]. Although there is no scaling transformation that can reduce (3.3) to (3.4), the classical
methods of Lie, the nonclassical method of Bluman and Cole, and the direct method of
Clarkson and Kruskal can be applied to solve the GSWW equation (3.2) to obtain some kinds
of symmetry reductions [34, 35]. Recently, Elwakil found a lot of exact solutions by using the
modified extended tanh-function method [36]. Yang and Hon employed a rational expansion
to generalize Fan’s method for exact travelling wave solutions for the generalized shallow
water wave (GSWW) equation [37].

According to the above method, to seek travelling wave solutions of (3.1), we make
the following transformation:

u(x, t) = U(ξ), ξ = k(x − ct), (3.5)

where k and c are constants to be determined later. Thus (3.1) becomes

−ck2U′′′ + c
(

β − α
)

UU′ + (c − 1)U′ = 0. (3.6)

Equation (3.6) is integrated at once yielding

−ck2U′′ +
c
(

β − α
)

2
U2 + (c − 1)U = 0. (3.7)

For the following, without loss of generality, we can set the integration constant equal to zero.
Now we consider the system (3.7) in the above three cases, so that (2.4a)–(2.4c).

According to Step 2 and Step 3 in Section 2, by balancing the nonlinear term U2 with the
highest-order differential term U′′ in (3.7), we suppose that (3.7) has the following formal
solutions.

3.1. sn′ξ/snξ Expansion

Now we consider the ansätz (2.4a). For (3.7), the ansätz (2.4a) becomes

u = a0 + a1

(

sn′(ξ)

sn(ξ)

)

+ a2

(

sn′(ξ)

sn(ξ)

)2

+ b1

(

sn′(ξ)

sn(ξ)

)−1

+ b2

(

sn′(ξ)

sn(ξ)

)−2

, (3.8)

where a0, a1, a2, b1, b2, k, l and c are constants to be determined later.
With the aid of Maple, substituting (3.8) along with (2.5) and (2.6) into (3.7), yields

a set of algebraic equations for sniξcnjξdnkξ (i = 0, 1, 2, . . . ; j = 0, 1; k = 0, 1). Setting the
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coefficients of these terms sniξcnjξdnkξ to be zero yields a set of overdetermined algebraic
equations with respect to a0, a1, a2, b1, b2, k, l, and c.

By use of the Maple software package “Charsets” by Dongming Wang, which is based
on the Wu-elimination method [24], solving the overdetermined algebraic equations, we get
the following results.

Case 1.

a0 = −

1 − 48ck2
− c + 2

√

768c2k4 + (c − 1)2

c
(

α − β
) , a1 = a2 = b1 = 0,

b2 =

3

[

64ck2

(

−28ck2 +

√

768c2k4 + (c − 1)2
)

− (c − 1)2
]

4c2k2
(

α − β
) ,

m = ±

√

c

[

−28ck2 +

√

768c2k4 + (c − 1)2
]

2ck
.

(3.9)

Case 2.

a0 = −

1 − 48ck2
− c − 2

√

768c2k4 + (c − 1)2

c
(

α − β
) , a1 = a2 = b1 = 0,

b2 =

3

[

64ck2

(

−28ck2
−

√

768c2k4 + (c − 1)2
)

− (c − 1)2
]

4c2k2
(

α − β
) ,

m = ±

√

c

[

−28ck2
−

√

768c2k4 + (c − 1)2
]

2ck
.

(3.10)

Case 3.

a0 = −

1 − 48ck2
− c + 2

√

768c2k4 + (c − 1)2

c
(

α − β
) , a1 = b1 = b2 = 0, a2 = −

12k2

α − β
,

m = ±

√

c

[

32ck2 +

√

768c2k4 + (c − 1)2
]

2ck
.

(3.11)
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Case 4.

a0 = −

1 − 48ck2
− c − 2

√

768c2k4 + (c − 1)2

c
(

α − β
) , a1 = b1 = b2 = 0, a2 = −

12k2

α − β
,

m = ±

√

c

[

32ck2
−

√

768c2k4 + (c − 1)2
]

2ck
.

(3.12)

Case 5.

a0 = −

2
(

1 + 12ck2
− c

)

+

√

−192c2k4 + (c − 1)2

2c
(

α − β
) , a1 = b1 = 0, a2 = −

12k2

α − β
,

b2 =

3

[

16ck2

(

8ck2 +

√

−192c2k4 + (c − 1)2
)

− (c − 1)2
]

64c2k2
(

α − β
) ,

m = ±

√

c

[

8ck2 +

√

−192c2k4 + (c − 1)2
]

4ck
.

(3.13)

Case 6.

a0 = −

2
(

1 + 12ck2
− c

)

−

√

−192c2k4 + (c − 1)2

2c
(

α − β
) , a1 = b1 = 0, a2 = −

12k2

α − β
,

b2 =

3

[

16ck2

(

8ck2
−

√

−192c2k4 + (c − 1)2
)

− (c − 1)2
]

64c2k2
(

α − β
) ,

m = ±

√

c

[

−28ck2
−

√

−192c2k4 + (c − 1)2
]

4ck
.

(3.14)

From (3.8) and Cases 1–6, we obtain the following solutions for (3.1).
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Family 1. From (3.9), we obtain the following sn′ξ/snξ expansion solutions for the GSWW
equation as follows:

u1 = −

1 − 48ck2
− c + 2

√

768c2k4 + (c − 1)2

c
(

α − β
)

+

3

[

64ck2

(

−28ck2 +

√

768c2k4 + (c − 1)2
)

− (c − 1)2
]

4c2k2
(

α − β
) sc2(ξ)nd2(ξ),

(3.15)

where m = ±

√

c[−28ck2 +

√

768c2k4 + (c − 1)2]/2ck and c and k are arbitrary constants.

Family 2. From (3.10), we obtain the following sn′ξ/snξ expansion solutions for the GSWW
equation as follows:

u2 = −

1 − 48ck2
− c − 2

√

768c2k4 + (c − 1)2

c
(

α − β
)

+

3

[

64ck2

(

−28ck2
−

√

768c2k4 + (c − 1)2
)

− (c − 1)2
]

4c2k2
(

α − β
) sc2(ξ)nd2(ξ),

(3.16)

where m = ±

√

c[−28ck2
−

√

768c2k4 + (c − 1)2]/2ck and c and k are arbitrary constants.

Family 3. From (3.11), we obtain the following sn′ξ/snξ expansion solutions for the GSWW
equation as follows:

u3 = −

1 − 48ck2
− c + 2

√

768c2k4 + (c − 1)2

c
(

α − β
) −

12k2

α − β
cs2(ξ)dn2(ξ), (3.17)

where m = ±

√

c[32ck2 +

√

768c2k4 + (c − 1)2]/2ck and c and k are arbitrary constants.

Family 4. From (3.12), we obtain the following sn′ξ/snξ expansion solutions for the GSWW
equation as follows:

u4 = −

1 − 48ck2
− c − 2

√

768c2k4 + (c − 1)2

c
(

α − β
) −

12k2

α − β
cs2(ξ)dn2(ξ), (3.18)

where m = ±

√

c[32ck2
−

√

768c2k4 + (c − 1)2]/2ck and c and k are arbitrary constants.
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Family 5. From (3.13), we obtain the following sn′ξ/snξ expansion solutions for the GSWW
equation as follows:

u5 = −

2
(

1 + 12ck2
− c

)

+

√

−192c2k4 + (c − 1)2

2c
(

α − β
) −

12k2

α − β
cs2(ξ)dn2(ξ)

+

3

[

16ck2

(

8ck2 +

√

−192c2k4 + (c − 1)2
)

− (c − 1)2
]

64c2k2
(

α − β
) sc2(ξ)nd2(ξ),

(3.19)

where m = ±

√

c[8ck2 +

√

−192c2k4 + (c − 1)2]/4ck and c and k are arbitrary constants.

Family 6. From (3.14), we obtain the following sn′ξ/snξ expansion solutions for the GSWW
equation as follows:

u6 = −

2
(

1 + 12ck2
− c

)

−

√

−192c2k4 + (c − 1)2

2c
(

α − β
) −

12k2

α − β
cs2(ξ)dn2(ξ)

+

3

[

16ck2

(

8ck2
−

√

−192c2k4 + (c − 1)2
)

− (c − 1)2
]

64c2k2
(

α − β
) sc2(ξ)nd2(ξ),

(3.20)

where m = ±

√

c[−28ck2
−

√

−192c2k4 + (c − 1)2]/4ck and c and k are arbitrary constants.

Remark 3.1. Here we find that the modulusm of the Jacobi elliptic functions has relations with
c and k in Cases 1–6. To further analyze their relations, we take the solutions (3.9), (3.11), and
(3.13) as samples by three figures (see Figures 1, 2, and 3).

3.2. cn′ξ/cnξ Expansion

Now we consider the ansätz (2.4b). For (3.7), the ansätz (2.4b) becomes

u = a0 + a1

(

cn′(ξ)

cn(ξ)

)

+ a2

(

cn′(ξ)

cn(ξ)

)2

+ b1

(

cn′(ξ)

cn(ξ)

)−1

+ b2

(

cn′(ξ)

cn(ξ)

)−2

, (3.21)

where a0, a1, a2, b1, b2, k, l, and c are constants to be determined later. Following the same
steps in Section 3.1, we can obtain the following cn′ξ/cnξ expansion solutions.



10 Journal of Applied Mathematics

m

k

c

100
80

60
40

20
0

0.2

0.1

0

−0.1

−0.2

−0.3

−15

−10

−5

0

5

10

15

Figure 1: Figure ofm in (3.9).
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Figure 2: Figure ofm in (3.11).

Family 7.

u7 =
c − 1 +

√

48c2k4 + (c − 1)2

c
(

α − β
) −

12k2

α − β
cs2(ξ)nd2(ξ), (3.22)

where m = ±

√

c(8ck2 +

√

48c2k4 + (c − 1)2)/4ck and c and k are arbitrary constants.
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Figure 3: Figure ofm in (3.13).

Family 8.

u8 =
c − 1 −

√

48c2k4 + (c − 1)2

c
(

α − β
) −

12k2

α − β
cs2(ξ)nd2(ξ), (3.23)

where m = ±

√

c(8ck2
−

√

48c2k4 + (c − 1)2)/4ck and c and k are arbitrary constants.

Family 9.

u9 =
c − 1 +

√

48c2k4 + (c − 1)2

c
(

α − β
) −

12k2

α − β
sc2(ξ)dn2(ξ), (3.24)

where m = ±

√

c(8ck2 +

√

48c2k4 + (c − 1)2)/4ck and c and k are arbitrary constants.

Family 10.

u10 =
c − 1 −

√

48c2k4 + (c − 1)2

c
(

α − β
) −

12k2

α − β
sc2(ξ)dn2(ξ), (3.25)

where m = ±

√

c(8ck2
−

√

48c2k4 + (c − 1)2)/4ck and c and k are arbitrary constants.
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Family 11.

u11 =
c − 1 +

√

−192c2k4 + (c − 1)2

c
(

α − β
) −

12k2

α − β

(

sc2(ξ)dn2(ξ) + cs2(ξ)nd2(ξ)
)

, (3.26)

where m = ±

√

c(8ck2 +

√

−192c2k4 + (c − 1)2)/4ck and c and k are arbitrary constants.

Family 12.

u12 =
c − 1 −

√

−192c2k4 + (c − 1)2

c
(

α − β
) −

12k2

α − β

(

sc2(ξ)dn2(ξ) + cs2(ξ)nd2(ξ)
)

, (3.27)

where m = ±

√

c(8ck2
−

√

−192c2k4 + (c − 1)2)/4ck and c and k are arbitrary constants.

3.3. dn′ξ/dnξ Expansion

Now we consider the ansätz (2.4c). For (3.7), the ansätz (2.4c) becomes

u = a0 + a1

(

dn′(ξ)

dn(ξ)

)

+ a2

(

dn′(ξ)

dn(ξ)

)2

+ b1

(

dn′(ξ)

dn(ξ)

)

−1

+ b2

(

dn′(ξ)

dn(ξ)

)

−2

, (3.28)

where a0, a1, b1, a2, b2, k, l, and c are constants to be determined later. Following the same
steps in Section 3.1, we can obtain the following dn′ξ/dnξ expansion solutions.

Family 13.

u13 =

3

[

−1792c2k4
− (c − 1)2 − 64ck2

√

768c2k4 + (c − 1)2
]

4m4c2k2
(

α − β
) ds2(ξ)nc2(ξ)

+
c − 1 − 48ck2

− 2
√

768c2k4 + (c − 1)2

c
(

α − β
) ,

(3.29)

where m = ±

√

c(32ck2 +

√

768c2k4 + (c − 1)2)/2ck and c and k are arbitrary constants.
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Family 14.

u14 =

3

[

−1792c2k4
− (c − 1)2 + 64ck2

√

768c2k4 + (c − 1)2
]

4m4c2k2
(

α − β
) ds2(ξ)nc2(ξ)

+
c − 1 − 48ck2 + 2

√

768c2k4 + (c − 1)2

c
(

α − β
) ,

(3.30)

where m = ±

√

c(32ck2
−

√

768c2k4 + (c − 1)2)/2ck and c and k are arbitrary constants.

Family 15.

u15 =
c − 1 − 48ck2

− 2
√

768c2k4 + (c − 1)2

c
(

α − β
) −

12m4k2

α − β
sd2(ξ)cn2(ξ), (3.31)

where m = ±

√

c(32ck2 +

√

768c2k4 + (c − 1)2)/2ck and c and k are arbitrary constants.

Family 16.

u16 =
c − 1 − 48ck2 + 2

√

768c2k4 + (c − 1)2

c
(

α − β
) −

12m4k2

α − β
sd2(ξ)cn2(ξ), (3.32)

where m = ±

√

c(32ck2
−

√

768c2k4 + (c − 1)2)/2ck and c and k are arbitrary constants.

Family 17.

u17 =
2c − 2 + 24ck2

−

√

−192c2k4 + (c − 1)2

2c
(

α − β
) −

12m4k2

α − β
sd2(ξ)cn2(ξ)

+

3

[

−(c − 1)2 + 128c2k4
− 16ck2

√

−192c2k4 + (c − 1)2
]

64m4c2k2
(

α − β
) ds2(ξ)nc2(ξ),

(3.33)

where m = ±

√

c(8ck2 +

√

−192c2k4 + (c − 1)2)/4ck and c and k are arbitrary constants.
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Figure 4: The solution u1 of GSWW equation with k = 0.3, c = 2, α = 3, β = 1.

Family 18.

u18 =
2c − 2 + 24ck2 +

√

−192c2k4 + (c − 1)2

2c
(

α − β
) −

12m4k2

α − β
sd2(ξ)cn2(ξ)

+

3

[

−(c − 1)2 + 128c2k4 + 16ck2
√

−192c2k4 + (c − 1)2
]

64m4c2k2
(

α − β
) ds2(ξ)nc2(ξ),

(3.34)

where m = ±

√

c(8ck2
−

√

−192c2k4 + (c − 1)2)/4ck and c and k are arbitrary constants.

Remark 3.2. The solutions obtained here, to our knowledge, are all new families of periodic
solution of the GSWW equation.

Remark 3.3. In order to understand the significance of these solutions in Families 1 and 18,
here we take the solutions (3.15), (3.17), (3.19), (3.22), (3.24), (3.26), (3.29), (3.31), and (3.33)
as samples to further analyze their properties by some figures (see Figures 4, 5, 6, 7,8, 9, 10,
11, and 12).

4. Conclusion and More General Form

In short, we have presented the new extended Jacobi elliptic function expansion method. The
GSWW equation is chosen to illustrate the method such that many families of new Jacobi
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Figure 5: The solution u3 of GSWW equation with k = 0.3, c = 2, α = 3, β = 1.
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Figure 6: The solution u5 of GSWW equation with k = 0.1, c = 2, α = 3, β = 1.

elliptic function solutions are obtained. When the modulus m → 1 or 0, some of these
obtained solutions degenerate as solitary solutions or trigonometric function solutions. The
algorithm can be applied to many nonlinear differential equations in mathematical physics.
Other types of solutions of (2.1) need to be studied further.

It is easy to see that above-mentioned method is only applied to these nonlinear ODEs
with constant coefficients or nonlinear partial differential equations, which can be reduced to
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Figure 7: The solution u7 of GSWW equation with k = 0.3, c = 2, α = 3, β = 1.
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Figure 8: The solution u9 of GSWW equation with k = 0.3, c = 2, α = 3, β = 1.

the corresponding nonlinear ODEs with constant coefficients by using some transformations;
otherwise, the method will not work. In order to overcome the disadvantage of the method,
we change the method into a general form as follows.

If we do not reduce (2.1) to a nonlinear ODE (2.3) with constant coefficients, then we
directly assume that (2.1) has the following solutions:
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Figure 9: The solution u11 of GSWW equation with k = 0.1, c = 2, α = 3, β = 1.
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Figure 10: The solution u13 of GSWW equation with k = 0.3, c = 2, α = 3, β = 1.

(1) sn′(ξ)/sn(ξ) expansion:

u(x, t) = a0(x, t) +
n
∑

i=1

[

ai(x, t)

(

sn′(ϕ(x, t))

sn(ϕ(x, t))

)i

+ bi(x, t)

(

sn′(ϕ(x, t))

sn(ϕ(x, t))

)−i
]

, (4.1a)
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Figure 11: The solution u15 of GSWW equation with k = 0.3, c = 2, α = 3, β = 1.
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Figure 12: The solution u17 of GSWW equation with k = 0.1, c = 2, α = 3, β = 1.

(2) cn′(ξ)/cn(ξ) expansion:

u(x, t) = a0(x, t) +
n
∑

i=1

[

ai(x, t)

(

cn′(ϕ(x, t))

cn(ϕ(x, t))

)i

+ bi(x, t)

(

cn′(ϕ(x, t))

cn(ϕ(x, t))

)−i
]

, (4.1b)
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(3) dn′ξ/dnξ expansion:

u(x, t) = a0(x, t) +
n
∑

i=1

⎡

⎣ai(x, t)

(

dn′(ϕ(x, t))

dn(ϕ(x, t))

)i

+ bi(x, t)

(

dn′(ϕ(x, t))

dn(ϕ(x, t))

)

−i
⎤

⎦, (4.1c)

where a0(x, t), ai(x, t), bi(x, t) (i = 1, 2, . . . , n), and ϕ(x, t) are functions to be determined
later. Substituting (4.1a), (4.1b), and (4.1c) with (2.5) and (2.6) into (2.1) yields a set of
nonlinear partial differential equations with respect to these unknown functions a0(x, t),
ai(x, t), bi(x, t) (i = 1, 2, . . . , n), and ϕ(x, t), respectively. If we can solve these functions
from the obtained set of nonlinear partial differential equations, then we may obtain more
types of doubly periodic solutions of (2.1). The more general form is better applied to
nonlinear differential equations with variable coefficients. Particularly, if we only deduce the
conclusions that all these function a0(x, t), ai(x, t), bi(x, t) (i = 1, 2, . . .) are all constants and
ϕ(x, t) is of the form k(x − ct) (k, c constants), then the obtained results are the same as the
ones found by using the method presented in Section 2. About the applications of the more
general form, we will give some examples in future.
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