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Abstract

In this paper, a new family of distributions, called the Kumaraswamy
odd log-logistic, is proposed and studied. Some mathematical proper-
ties are presented and special models are discussed. The asymptotes
and shapes are investigated. The family density function is given by
a linear combination of exponentiated densities following the same
baseline model. We derive a power series for the quantile function,
explicit expressions for the moments, quantile and generating functions
and order statistics. We provide a bivariate extension of the new
family. Its performance is illustrated by means of two real data sets.
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1. Introduction

Recently, some attempts have been made to define new families of distributions
that extend well-known distributions and at the same time provide great flexibility
in modelling data in practice. So, several classes by adding one or more parameters
to generate new distributions have been proposed in the statistical literature. Some
well-known generators are the Marshall-Olkin generated family (MO-G) by Mar-
shall and Olkin (1997), the beta-G by Eugene et al. (2002), the Kumaraswamy-G
(Kw-G for short) by Cordeiro and de Castro (2011), the McDonald-G (Mc-G) by
Alexander et al. (2012), the gamma-G by Zografos and Balakrishanan (2012), the
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transformer (T-X) by Alzaatreh et al. (2013), the Weibull-G by Bourguignon et
al. (2014) and the exponentiated half-logistic family by Cordeiro et al. (2014).

Let G(x; ξ) be a baseline cumulative distribution function (cdf) and ξ the p× 1
vector of associated parameters. Recently, da Cruz et al. (2014) introduced a class
of distributions named the odd log-logistic family with one extra shape parameter
α > 0 defined by the cdf

H(x) =
G(x; ξ)α

G(x; ξ)α + Ḡ(x; ξ)α
,(1.1)

where Ḡ(x; ξ) = 1−G(x; ξ).
Let r(t) be the probability density function (pdf) of a random variable T ∈ [a, b]

for −∞ ≤ a < b < ∞ and letW [G(x)] be a function of the cdf of a random variable
X such that W [G(x)] satisfies the following conditions:

(1.2)





(i) W [G(x)] ∈ [a, b],

(ii) W [G(x)] is differentiable and monotonically non-decreasing, and

(iii) W [G(x)] → a as x → −∞ andW [G(x)] → b as x → ∞.

Alzaatreh et al. (2013) defined the T-X family of distributions by

(1.3) F (x) =

∫ W [G(x)]

a

r(t) dt,

where W [G(x)] satisfies the conditions (1.2). The pdf corresponding to (1.3) is
given by

(1.4) f(x) =

{
d

dx
W [G(x)]

}
r {W [G(x)]} .

In this paper, we propose a new wider class of continuous distributions called
the Kumaraswamy odd log-logistic-G (“KwOLL-G” for short) family by taking

W [G(x)] = G(x;ξ)α

G(x;ξ)α+Ḡ(x;ξ)α
and r(t) = a b ta−1 (1 − ta)b−1, 0 < t < 1. Its cdf is

given by

F (x) =

∫ G(x;ξ)α

G(x;ξ)α+Ḡ(x;ξ)α

0

a b ta−1(1− ta)b−1dt

= 1−
{
1−

[
G(x, ξ)α

G(x, ξ)α + Ḡ(x, ξ)α

]a}b

,(1.5)

where α > 0, a > 0 and b > 0 are three extra shape parameters to the baseline
cdf G(x, ξ). The KwOLL-G family (1.5) includes the Kumaraswamy generalized
family (Cordeiro and de Castro, 2011), the proportional and reversed hazard rate
models, the odd log-logistic family (da Cruz et al., 2014), the exponentiated OLL-G
family (Cordeiro et al., 2014a), the odd Burr family (Alizadeh et al., 2014), among
others. Some special models of (1.5) are listed in Table 1.

The paper is organized as follows. In Section 2, we provide a physical interpre-
tation of the KwOLL-G family. Four special cases are described in Section 3 with
some details. In Section 4, the asymptotes and shapes of the density and hazard
rate functions are investigated analytically. Some useful expansions are obtained
in Section 5. In Section 6, we derive a power series for the quantile function (qf).
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Table 1. Some special models.

a b α Reduced distribution

- - 1 Kumaraswamy generalized family of distributions (Cordeiro and de Castro, 2011)

1 1 - Odd log-logistic family (da Cruz et al., 2014)

- 1 - exp OLL-G family of distributions (Cordeiro et al., 2014a)

1 - 0 Odd Burr family of distributions (Alizadeh et al., 2014)

1 - 1 Proportional hazard rate model (Gupta et al., 1998)

- 1 1 Proportional reversed hazard rate model (Gupta and Gupta, 2007)

1 1 1 G(x)

In Sections 7 and 8, we obtain the ordinary and incomplete moments and the
generating function, respectively. The order statistics are derived in Section 9.
In Section 10, we introduce a bivariate extension of the new family. The estima-
tion of the model parameters by maximum likelihood is performed in Section 11.
Two applications to real data illustrate the potentiality of the proposed family in
Section 12. Section 13 provides some conclusions.

2. The new family

The pdf corresponding to (1.5) is

f(x; a, b, α, ξ) =
abαg(x, ξ)G(x, ξ)αa−1Ḡ(x, ξ)α−1

[
G(x, ξ)α + Ḡ(x, ξ)α

]a+1

{
1−

[
G(x, ξ)α

G(x, ξ)α + Ḡ(x, ξ)α

]a}b−1

,(2.1)

where g(x; ξ) = dG(x; ξ)/dx. Hereafter, X ∼ KwOLL-G(a, b, α, ξ) denotes a
random variable having the density function (2.1). Further, we sometimes omit
the dependence on the vector ξ and write simply G(x) = G(x; ξ).

A physical interpretation of the KwOLL-G cdf (for a and b positive integers)
is as follows. Equation (1.5) denotes the cdf of the lifetime of a series-parallel
system consisting of independent components with the common cdf H(x) given by
(1.1). Consider that a system is formed by b independent series subsystems and
that each of the subsystems is made up of a independent parallel components. Let
Xij ∼ H(x), for 1 ≤ i ≤ a and 1 ≤ j ≤ b, denote the lifetime of the ith component
in the jth subsystem and X denotes the lifetime of the entire system. We have

Pr(X ≤ x) = 1− {1− Pr(X11 ≤ x, · · · , X1a ≤ x)}b = 1− {1− Pra(X11 ≤ x)}b ,

and then X has pdf (2.1).
The hazard rate function (hrf) of X is given by

(2.2)

h(x; a, b, α, ξ) =
a bα g(x, ξ)G(x, ξ)αa−1Ḡ(x, ξ)α−1

[
G(x, ξ)α + Ḡ(x, ξ)α

] {[
G(x, ξ)α + Ḡ(x, ξ)α

]a −G(x, ξ)aα
} .
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The KwOLL-G family is simulated by inverting F (x) = u in (1.5) as follows: if
u has a uniform U(0, 1) distribution, the solution of the nonlinear equation

(2.3) xu = G−1




[
1− (1− u)

1
b

] 1
aα

[
1− (1− u)

1
b

] 1
aα

+

{
1−

[
1− (1− u)

1
b

] 1
a

} 1
α




has the pdf (2.1).

3. Four special cases of the KwOLL-G family

Equation (2.1) will be most tractable when G(x; ξ) and g(x; ξ) have closed-
forms. Now, we provide only four cases of so many distributions which can be
special models of the KwOLL-G family.

3.1. The Kumaraswamy odd log-logistic-normal (KwOLLN) distribu-
tion. By taking G(x; ξ) and g(x; ξ) in (2.1) to be the cdf and pdf of the normal
N(µ, σ2) distribution, where ξ = (µ, σ)T , the KwOLLN pdf follows as

f(x; a, b, α, µ, σ) =
a bαϕ(x−µ

σ )
[
Φ
(
x−µ
σ

)]αa−1 [
1− Φ

(
x−µ
σ

)]α−1

σ
{[

Φ
(
x−µ
σ

)]α
+
[
1− Φ

(
x−µ
σ

)]α}a+1

×
{
1−

[ [
Φ
(
x−µ
σ

)]α
[
Φ
(
x−µ
σ

)]α
+
[
1− Φ

(
x−µ
σ

)]α

]a}b−1

,(3.1)

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, and ϕ(·)
and Φ(·) are the pdf and cdf of the standard normal distribution, respectively. We
denote by X ∼ KwOLLN(a, b, α, µ, σ) a random variable with pdf (3.1). For µ = 0
and σ = 1, we obtain the standard KwOLLN distribution, and for a = b = α = 1,
it reduces to the normal distribution. For α = 1, we have the Kumaraswamy
normal (KwN) (Cordeiro and de Castro, 2011) distribution. Further, if α = 1 in
addition to b = 1, it gives the exponentiated-normal (EN) distribution. Plots of
the KwOLLN pdf for selected parameter values are displayed in Figure 1.

3.2. The Kumaraswamy odd log-logistic-Weibull (KwOLLW) distribu-

tion. By taking G(x; ξ) = 1 − e−(βx)λ to be the Weibull distribution with scale
parameter β > 0 and shape parameter λ > 0, where ξ = (λ, β)T , we obtain the
KwOLLW pdf (for x > 0) as

f(x) = f(x; a, b, α, λ, β) =
a bα λβλ xλ−1

{
1− exp

[
− (β x)

λ
]}αa−1 {

exp
[
− (β x)

λ
]}α

{[
1− exp

[
− (β x)

λ
]]α

+
[
exp

[
− (β x)

λ
]]α}a+1

×




1−




{
1− exp

[
− (β x)

λ
]}α

{
1− exp

[
− (β x)

λ
]}α

+
{
exp

[
− (β x)

λ
]}α



a




b−1

.(3.2)
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Figure 1. The KwOLLN pdf: (a) For b = 0.5, µ = 0 and σ = 3. (b)
For a = 1.5, µ = 0 and σ = 3. (c) For a = 1.5, b = 2.0, µ = 0 and
σ = 1.

The Weibull distribution (with parameters λ and β) is a basic exemplar for
a = b = α = 1. Other special models include the Kumaraswamy Weibull (KwW)
(Cordeiro et al., 2010) for α = 1 and the exponentiated Weibull (EW) (Mudholkar
et al., 1995; Mudholkar et al., 1996; Nassar and Eissa, 2003; Nadarajah et al., 2013)
and exponentiated exponential (EE) (Gupta and Kundu, 2001) distributions for
b = α = 1 and b = α = β = 1, respectively. Plots of the pdf and hrf of the
KwOLLW distribution for selected parameter values are displayed in Figures 2
and 3, respectively. Further, it allows for five major hazard shapes: constant,
increasing, decreasing, bathtub and unimodal hazard rates .

3.3. The Kumaraswamy odd log-logistic-Gumbel (KwOLLGu) distribu-
tion. Let G(x; ξ) for x ∈ R be the Gumbel distribution with parameters (µ, σ),
where µ ∈ R is the location parameter and σ > 0 is the scale parameter, and cdf



6 .

(a) (b)

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

f(
x
)

a = 1.5; λ= 1.0

a = 2.5; λ= 1.5

a = 3.5; λ= 2.0

a = 1.0; λ= 2.0

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.5

1
.0

1
.5

2
.0

x

f(
x
)

a = 1.5; b = 0.5; λ= 2.5

a = 1.0; b = 1.0; λ= 1.0

a = 0.5; b = 1.5; λ= 2.0

a = 4.0; b = 1.0; λ= 1.8

Figure 2. The KwOLLW pdf: (a) For b = 0.5, α = 0.5 and β = 1.
(b) For λ = 1.5 and β = 1.5.

given by

G(x; ξ) = exp

[
− exp

(
−x− µ

σ

)]
, x ∈ R.

Inserting these expressions in equation (2.1) yields the KwOLLGu pdf

f(x; a, b, α, µ, σ) =
abα exp{−x−µ

σ − exp(−x−µ
σ )}

(
exp

{
− exp

(
−x−µ

σ

)})αa−1

σ
{[

exp{− exp(−x−µ
σ )}

]α
+
[
1− exp{− exp(−x−µ

σ )}
]α}a+1

×
{
1−

[ [
exp

{
− exp

(
−x−µ

σ

)}]α
[
exp

{
− exp

(
−x−µ

σ

)}]α
+
[
1− exp

{
− exp

(
−x−µ

σ

)}]α

]a}b−1

×(1− exp{− exp(−x− µ

σ
)})α−1,(3.3)

where x ∈ R. The Kumaraswamy Gumbel (KwGu) (Cordeiro et al., 2010) model
corresponds to α = 1. The Lehmann type I Gumbel distribution refers to b = α =
1. This case is usually called the exponentiated Gumbel (EGu) model. Indeed,
the EGu cdf is defined by (for λ > 0)

F (x;λ, ξ) = 1− [1−G(x; ξ)]λ.

Plots of the KwOLLGu pdf for some parameter values are displayed in Figure 4.

4. Asymptotes and Shapes

4.1. Proposition. The asymptotics of equations (1.5), (2.1) and (2.2) as x → 0
are given by

F (x) ∼ bG(x)aα as G(x) → 0,

f(x) ∼ a bα g(x)G(x)aα−1 as G(x) → 0,

h(x) ∼ a bα g(x)G(x)aα−1 as G(x) → 0.
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Figure 3. The KwOLLW hrf: (a) Constant, increasing and decreasing
hrf. (b) Bathtub hrf. (c) Unimodal hrf.

4.2. Proposition. The asymptotics of equations (1.5), (2.1) and (2.2) as x → ∞
are given by

1− F (x) ∼
[
aα Ḡ(x)

]b
as x → ∞,

f(x) ∼ b (aα)b g(x) Ḡ(x)b−1 as x → ∞,

h(x) ∼ b g(x)

Ḡ(x)
as x → ∞.

The shapes of the density and hazard rate functions can be described analyti-
cally. The critical points of the KwOLL-G pdf are the roots of the equation:

g′(x)

g(x)
+ (aα− 1)

g(x)

G(x)
+ (1− α)

g(x)

Ḡ(x)
− α(a+ 1)g(x)

G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α

= a(b− 1)αg(x)
G(x)aα−1Ḡ(x)α−1

[
G(x)α + Ḡ(x)α

] {[
G(x)α + Ḡ(x)α

]a −G(x)aα
} .

(4.1)
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Figure 4. The KwOLLGu pdf: (a) For a = 1.5, µ = 0 and σ = 2.5;
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There may be more than one root to (4.1). Let λ(x) = d2 log[f(x)]
dx2 . Then,

λ(x) =
g′′(x)g(x)− g′(x)2

g(x)2
+ (aα− 1)

g′(x)G(x)− g(x)2

G(x)2
+ (1− α)

g′(x)Ḡ(x) + g(x)2

Ḡ(x)2

− α(a+ 1)g′(x)
G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α
− α(α− 1)(a+ 1)g(x)2

G(x)α−2 + Ḡ(x)α−2

G(x)α + Ḡ(x)α

+ (a+ 1)

{
αg(x)

G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α

}2

− a(b− 1)αg′(x)
G(x)aα−1Ḡ(x)α−1

[
G(x)α + Ḡ(x)α

] {[
G(x)α + Ḡ(x)α

]a −G(x)aα
}

− a(aα− 1)(b− 1)α
g(x)2G(x)aα−2Ḡ(x)α−1

[
G(x)α + Ḡ(x)α

] {[
G(x)α + Ḡ(x)α

]a −G(x)aα
}

+ a(b− 1)(α− 1)α
g(x)2G(x)aα−1Ḡ(x)α−2

[
G(x)α + Ḡ(x)α

] {[
G(x)α + Ḡ(x)α

]a −G(x)aα
}

+ aα2(b− 1)
g(x)2

[
G(x)α−1 − Ḡ(x)α−1

]
G(x)aα−1Ḡ(x)α−1

[
G(x)α + Ḡ(x)α

]2 {[
G(x)α + Ḡ(x)α

]a −G(x)aα
}

+
a2α2(b− 1) g(x)G(x)aα−1Ḡ(x)α−1

{[
G(x)α−1 − Ḡ(x)α−1

] [
G(x)α + Ḡ(x)α

]a−1
}

[
G(x)α + Ḡ(x)α

] {[
G(x)α + Ḡ(x)α

]a −G(x)aα
}2

− a2α2(b− 1) g(x)G(x)2aα−2Ḡ(x)α−1

[
G(x)α + Ḡ(x)α

] {[
G(x)α + Ḡ(x)α

]a −G(x)aα
}2 .

If x = x0 is a root of (4.1) then it corresponds to a local maximum (minimum) if
λ(x) > 0(< 0) for all x < x0 and λ(x) < 0(> 0) for all x > x0. It yields points of
inflexion if either λ(x) > 0 for all x ̸= x0 or λ(x) < 0 for all x ̸= x0.

The critical points of the hrf h(x) are obtained from the equation:
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g′(x)

g(x)
+ (aα− 1)

g(x)

G(x)
+ (1− α)

g(x)

Ḡ(x)
− αg(x)

[
G(x)α−1 − Ḡ(x)α−1

]

G(x)α + Ḡ(x)α

= aαg(x)

[
G(x)α−1 − Ḡ(x)α−1

] [
G(x)α + Ḡ(x)α

]a−1 −G(x)aα−1

[
G(x)α + Ḡ(x)α

]a −G(x)aα
.

(4.2)

There may be more than one root to (4.2). Let τ(x) = d2 log[h(x)]/dx2. We
have

τ(x) =
g′′(x)g(x)− g′(x)2

g(x)2
+ (aα− 1)

g′(x)G(x)− g(x)2

G(x)2
+ (1− α)

g′(x)Ḡ(x) + g(x)2

Ḡ(x)2

− αg′(x)
G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α
− α(α− 1)g(x)2

G(x)α−2 + Ḡ(x)α−2

G(x)α + Ḡ(x)α

+

{
αg(x)

G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α

}2

− aαg′(x)

[
G(x)α−1 − Ḡ(x)α−1

] [
G(x)α + Ḡ(x)α

]a−1 −G(x)aα−1

[
G(x)α + Ḡ(x)α

]a −G(x)aα

− aα(α− 1)g(x)2
[
G(x)α−2 + Ḡ(x)α−2

] [
G(x)α + Ḡ(x)α

]a−1

[
G(x)α + Ḡ(x)α

]a −G(x)aα

− aα2(a− 1)g(x)2
[
G(x)α−1 − Ḡ(x)α−1

]2 [
G(x)α + Ḡ(x)α

]a−2

[
G(x)α + Ḡ(x)α

]a −G(x)aα

+ aα(aα− 1)g(x)2
G(x)aα−2

[
G(x)α + Ḡ(x)α

]a −G(x)aα

+

{
aα g(x)

[
G(x)α−1 − Ḡ(x)α−1

] [
G(x)α + Ḡ(x)α

]a−1 −G(x)aα−1

[
G(x)α + Ḡ(x)α

]a −G(x)aα

}2

.

If x = x0 is a root of (4.2) then it refers to a local maximum (minimum) if
τ(x) > 0(< 0) for all x < x0 and τ(x) < 0(< 0) for all x > x0. It gives an inflexion
point if either τ(x) > 0 for all x ̸= x0 or τ(x) < 0 for all x ̸= x0.

5. Some useful expansions

The cdf (1.5) of X admits the expansion

F (x) = 1−
∞∑

m=0

(−1)m
(
b

m

)
G(x)aαm[

G(x)α + Ḡ(x)α
]am

= 1−
∞∑

m=0

(−1)m
(
b

m

) ∑∞
k=0 δ

(m)
1,k G(x)k

∑∞
k=0 δ

(m)
2,k G(x)k

= 1−
∞∑

m=0

(−1)m
(
b

m

) ∞∑

k=0

β
(m)
k G(x)k,
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where (for k ≥ 0)

β
(m)
k =

1

δ
(m)
2,0

(
δ
(m)
1,k − 1

δ
(m)
2,0

k∑

r=1

δ
(m)
2,k β

(m)
k−r

)
, δ

(m)
1,k =

∞∑

i=k

(−1)i+k

(
aαm

i

)(
i

k

)

and δ
(m)
2,k = hk(α, am) is defined in the Appendix. Then, we can write

F (x) =

∞∑

k=0

bk G(x)k,(5.1)

where

b0 = 1−
∞∑

m=0

(−1)m
(
b

m

)
β
(m)
0 , and for k ≥ 1, bk =

∞∑

m=0

(−1)m+1

(
b

m

)
β
(m)
k .

So, the pdf of X can be expressed as an infinite mixture of exponentiated-G
(“exp-G”) densities

(5.2) f(x) = f(x; a, b, α, ξ) =
∞∑

k=0

bk+1 hk+1(x),

where hk+1(x) = (k + 1)G(x)k g(x) denotes the exp-G pdf with power parameter
k+1. Structural properties of some exp-G distributions were studied by Mudholkar
et al. (1996), Gupta and Kundu (2001), Nadarajah and Kotz (2006), Nadarajah
and Gupta (2007) and Nadarajah et al. (2013), among others. So, some mathe-
matical quantities of X can be derived from (5.2) and those exp-G properties. For
example, the ordinary and incomplete moments and moment generating function
(mgf) of X can be easily obtained from those of the exp-G quantities.

The formulae derived in the next sections can be easily handled in most symbolic
computation software platforms such as MAPLE, MATHEMATICA and MAT-
LAB. These platforms have currently the ability to deal with complex expressions.
Established closed-form statistical measures can be more efficient than calculating
them by numerical integration. The infinity limit in these sums can be substituted
by a large positive integer such as twenty or thirty for most applications.

6. Quantile power series

Here, we derive a power series for the qf x = Q(u) = F−1(u) of X by expanding
(2.3). First, if QG(u) (the baseline qf) does not have an explicit expression, it can
usually be expressed as a power series given by

QG(u) =

∞∑

i=0

ai u
i,(6.1)

where the coefficients ai’s are suitably chosen real numbers which depend on the
parameters of the G distribution. For several important distributions, such as the
normal, Student t, gamma and beta distributions, QG(u) does not have explicit
expressions but it can be expanded as in equation (6.1).
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Here and from now on, we use a result by Gradshteyn and Ryzhik (2007, Section
0.314) for a power series raised to a positive integer n (for n ≥ 1)

QG(u)
n =

(
∞∑

i=0

ai u
i

)n

=
∞∑

i=0

cn,i u
i,(6.2)

where the coefficients cn,i (for i = 1, 2, . . .) can be obtained from the recurrence
equation

(6.3) cn,i = (i a0)
−1

i∑

m=1

[m(n+ 1)− i] am cn,i−m,

and cn,0 = an0 . Clearly, the quantity cn,i can be determined numerically in any
algebraic or numerical software from the quantities a0, . . . , ai.

Second, we derive an expansion for the argument A of QG(·) in equation (2.3)

A =

[
1− (1− u)

1
b

] 1
aα

[
1− (1− u)

1
b

] 1
aα

+

{
1−

[
1− (1− u)

1
b

] 1
a

} 1
α

=

∑∞
k=0 a

∗
k u

k

∑∞
k=0 b∗k u

k
,

where a∗k =
∑∞

i=0(−1)i+k

( 1
αa

i

)( i
b

k

)
and b∗k = a∗k+

∑∞
i,j=0(−1)i+j+k

( 1
α

i

)( i
a

j

)( j
b

k

)
.

The quotient of the two power series is given by

A =
∞∑

k=0

c∗k u
k,(6.4)

where the coefficients c∗k’s ( k ≥ 0) are determined from the recurrence equation

c∗k =
1

b∗0

(
a∗k − 1

b∗0

k∑

r=1

b∗r c
∗
k−r

)
.

Then, the qf of the KwOLL-G family can be reduced to

(6.5) Q(u) = QG

(
∞∑

k=0

c∗k u
k

)
.

By combining (6.1) and (6.5) gives

Q(u) =
∞∑

i=0

ai

(
∞∑

k=0

c∗k u
k

)i

,

and then using (6.2) and (6.3), we have

(6.6) Q(u) =
∞∑

k=0

ek u
k,

where ek =
∑∞

i=0 ai di,k, di,0 = c∗i0 and (for k > 1)

di,k = (k c∗0)
−1

k∑

m=1

[m(i+ 1)− k] c∗m di,k−m.
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Hence, equation (6.6) reveals that the qf of the KwOLL-G family can be ex-
pressed as a power series. So, several mathematical quantities of X can be reduced
to integrals over (0, 1) based on this power series. For the great majority of these
quantities, we can adopt twenty terms in this power series.

Let W (·) be any integrable function in the real line. We can write

(6.7)

∫ ∞

−∞

W (x) f(x)dx =

∫ 1

0

W

(
∞∑

k=0

ek u
k

)
du.

Equations (6.6) and (6.7) are the main results of this section since we can obtain
from them various KwOLL-G mathematical properties. In fact, they can follow
by using the integral on the hight-hand side for special W (·) functions, which are
usually more simple than if they are based on the left-hand integral. For example,
a formula for the nth moment of X follows from (6.7) combined with (6.2) and
(6.3) as

µ′
n =

∫ 1

0

(
∞∑

k=0

ek u
k

)n

du =
∞∑

k=0

fn,k
(k + 1)

,

where (for n ≥ 0) fn,0 = en0 and, for k ≥ 1, fn,k = (k e0)
−1
∑k

r=1 [r (n + 1) −
k] er fn,k−r.

7. Moments

Let Yk+1(k ≥ 0) be a random variable having the pdf hk+1(x). A first formula
for the nth moment of X is obtained from (5.2) as

E(Xn) =

∞∑

k=0

bk+1 E(Y n
k+1).(7.1)

Moments of some exp-G distributions are given by Nadarajah and Kotz (2006),
which can be used to obtain E(Xn).

A second formula for E(Xn) can be expressed from (7.1) as

E(Xn) =

∞∑

k=0

(k + 1) bk+1 τ(n, k),(7.2)

where τ(n, k) =
∫ 1

0
QG(u)

n ukdu.
The nth incomplete moment of X is determined from (5.2) as

mn(y) =

∫ y

0

xn f(x)dx =
∞∑

k=0

(k + 1) bk+1

∫ G(y)

0

QG(u)
n ukdu.

Using (6.2), we obtain

mn(y) =
∞∑

i,k=0

(k + 1) bk+1 cn,i
(k + i+ 1)

G(y)k+i+1(7.3)

Equations (7.1)-(7.3) are the main results of this section.
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8. Generating function

Here, we provide two formulae for the mgf M(t) = E(et X) of X. Clearly, the
first one simply comes from (5.2) as

M(t) =
∞∑

k=0

bk+1 Mk+1(t),(8.1)

where Mk+1(t) is the mgf of Yk+1. Hence, M(t) can be determined from the exp-G
generating function. A second formula for M(t) can be derived from (5.2) as

M(t) =
∞∑

i=0

(k + 1) bk+1 ρ(t, k),(8.2)

where ρ(t, k) =
∫ 1

0
exp[tQG(u)]u

kdu can be computed numerically for most G
distributions.

So, we can obtain the mgfs of several generated distributions from (3.2) directly
from equations (8.1) and (8.2).

9. Order statistics

Order statistics make their appearance in many areas of statistical theory and
practice. Suppose that X1, . . . , Xn is a random sample from X and let Xi:n denote
the ith order statistic. From equations (5.1) and (5.2), the pdf of Xi:n becomes

fi:n(x) = C
n−i∑

j=0

(−1)j
(
n− i

j

) ( ∞∑

r=0

(r + 1) br+1 G(x)r g(x)

) (
∞∑

k=0

bk G(x)k

)j+i−1

,

where C = n!/[(i− 1)! (n− i)!]. Using (6.2) and (6.3), we can write

(
∞∑

k=0

bk G(x)k

)j+i−1

=
∞∑

k=0

ej+i−1,k G(x)k,

where ej+i−1,0 = bj+i−1
0 and

ej+i−1,k = (k b0)
−1

k∑

m=1

[m(j + i)− k] bm ej+i−1,k−m.

Hence,

fi:n(x) =
∞∑

k=0

dk hk+1(x),(9.1)

where dk = C
∑n−i

j=0

∑k
m=0 bm+1 ej+i−1,k−m.

Equation (9.1) gives the pdf of the KwOLL-G order statistics as a linear com-
bination of exp-G densities.
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10. A bivariate extension

Here, we construct a bivariate version of the proposed model. The joint cdf of
(X1, X2) is given by

FX1,X2(x1, x2; a, b, α, ξ) =

∫ G(x1,x2;ξ)α

G(x1,x2;ξ)α+[1−G(x1,x2;ξ)]α

0

a b ta−1(1− ta)b−1dt

= 1−
{
1−

[
G(x1, x2, ξ)

α

G(x1, x2, ξ)α + [1−G(x1, x2, ξ)]
α

]a}b

,

whereG(x1, x2; ξ) is a bivariate continuous distribution with marginal cdfsG1(x1; ξ) and G2(x2; ξ).
This distribution is called the bivariate Kumaraswamy odd log-logistic (BKwOLL)
family of distributions. The marginal cdfs are given by

FXi
(xi; a, b, α, ξ) = 1−

{
1−

[
Gi(xi, ξ)

α

Gi(xi, ξ)α + Ḡi(xi, ξ)α

]a}b

, i = 1, 2.

The joint pdf of (X1, X2) can be expressed as fX1,X2(x1, x2) =
∂2FX1,X2(x1, x2)

∂x1∂x2
and then

fX1,X2(x1, x2; a, b, α, ξ) =
abαA(x1, x2; a, b, α, ξ)G(x1, x2, ξ)

αa−1 [1−G(x1, x2, ξ)]
α−1

{G(x1, x2, ξ)α + [1−G(x1, x2, ξ)]
α}a+1

×
{
1−

[
G(x1, x2, ξ)

α

G(x, y, ξ)α + [1−G(x1, x2, ξ)]
α

]a}b−1

,

where

A(x1, x2; a, b, α, ξ) = g(x1, x2; ξ)

+
∂G(x1, x2, ξ)

∂x1

∂G(x1, x2, ξ)

∂x2

[
aα− 1

G(x1, x2, ξ)
+

1− α

1−G(x1, x2, ξ)

]

− (a+ 1)α
∂G(x1, x2, ξ)

∂x1

∂G(x1, x2, ξ)

∂x2

G(x1, x2, ξ)
α−1 − [1−G(x1, x2, ξ)]

α−1

G(x1, x2, ξ)α + [1−G(x1, x2, ξ)]
α

+
aα(1− b)G(x1, x2, ξ)

aα−1 [1−G(x1, x2, ξ)]
α−1

{G(x1, x2, ξ)α + [1−G(x1, x2, ξ)]
α}

×
∂G(x1,x2,ξ)

∂x1

∂G(x1,x2,ξ)
∂x2{

{G(x1, x2, ξ)α + [1−G(x1, x2, ξ)]
α}a −G(x1, x2, ξ)aα

} .

The marginal pdfs are given by

fXi
(xi) =

abαgi(xi, ξ)Gi(xi, ξ)
αa−1Ḡi(xi, ξ)

α−1

[
Gi(xi, ξ)α + Ḡi(xi, ξ)α

]a+1

{
1−

[
Gi(xi, ξ)

α

Gi(xi, ξ)α + Ḡi(xi, ξ)α

]a}b−1

, i = 1, 2.

The conditional cdfs are given by

FXi|Xj
(xi|xj) =

1−
{
1−

[
G(x1,x2,ξ)

α

G(x1,x2,ξ)α+[1−G(x1,x2,ξ)]
α

]a}b

1−
{
1−

[
Gj(xj ,ξ)α

Gj(xj ,ξ)α+Ḡj(xj ,ξ)α

]a}b
for i, j = 1, 2 and i ̸= j.
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The conditional pdfs are given by

fXi|Xj
(xi|xj) =

A(x1, x2; a, b, α, ξ)G(x1, x2, ξ)
αa−1 [1−G(x1, x2, ξ)]

α−1

{G(x1, x2, ξ)α + [1−G(x1, x2, ξ)]
α}a+1

×
{
1−

[
G(x1, x2, ξ)

α

G(x, y, ξ)α + [1−G(x1, x2, ξ)]
α

]a}b−1

×
{
gj(xj , ξ)Gj(xj , ξ)

αa−1Ḡj(xj , ξ)
α−1

[
Gj(xj , ξ)α + Ḡj(xj , ξ)α

]a+1

{
1−

[
Gj(xj , ξ)

α

Gj(xi, ξ)α + Ḡj(xj , ξ)α

]a}b−1
}−1

for i, j = 1, 2 and i ̸= j.

11. Estimation

We determine the maximum likelihood estimates (MLEs) of the parameters
of the new family from complete samples only. Let x1, . . . , xn be the observed
values from the KwOLL-G distribution with parameters a, b, α and ξ. Let θ =
(a, b, α, ξ)⊤ be the r× 1 parameter vector. Then, the total log-likelihood function
for θ is given by

ℓn(θ) = n log[abα] +

n∑

i=1

log [g(xi; ξ)] + (aα− 1)

n∑

i=1

log [G(xi; ξ)]

+(α− 1)

n∑

i=1

log
[
Ḡ(xi; ξ)

]
− (a+ 1)

n∑

i=1

log
{
G(xi; ξ)

α + Ḡ(xi; ξ)
α
}

+(b− 1)
n∑

i=1

log

{
1−

[
G(xi, ξ)

α

G(xi, ξ)α + Ḡ(xi, ξ)α

]a}
.(11.1)

The components of the score function are given by

Ua(θ) =
n

a
+

n∑

i=1

log

[
G(xi, ξ)

α

G(xi, ξ)α + Ḡ(xi, ξ)α

]

+ (1− b)
n∑

i=1

[
G(xi,ξ)

α

G(xi,ξ)α+Ḡ(xi,ξ)α

]a
log
[

G(xi,ξ)
α

G(xi,ξ)α+Ḡ(xi,ξ)α

]

1−
[

G(xi,ξ)α

G(xi,ξ)α+Ḡ(xi,ξ)α

]a ,

Ub(θ) =
n

b
+

n∑

i=1

log

{
1−

[
G(xi, ξ)

α

G(xi, ξ)α + Ḡ(xi, ξ)α

]a}
,

Uα(θ) =
n

α
+ a

n∑

i=1

log [G(xi; ξ)] +
n∑

i=1

log
[
Ḡ(xi; ξ)

]

−(a+ 1)
n∑

i=1

G(xi, ξ)
α log [G(xi, ξ)] + Ḡ(xi, ξ)

α log
[
Ḡ(xi, ξ)

]

G(xi, ξ)α + Ḡ(xi, ξ)α

−a(b− 1)

n∑

i=1

G(xi, ξ)
aαḠ(xi, ξ)

α log
[
G(xi,ξ)
Ḡ(xi,ξ)

]

{[
G(xi, ξ)α + Ḡ(xi, ξ)α

]a −G(xi, ξ)aα
}
[G(xi, ξ)α + Ḡ(xi, ξ)α]
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and

Uξ(θ) =

n∑

i=1

g(ξ)(xi, ξ)

g(xi, ξ)
+ (aα− 1)

n∑

i=1

G(ξ)(xi, ξ)

G(xi, ξ)
+ (1− α)

n∑

i=1

G(ξ)(xi, ξ)

Ḡ(xi, ξ)

−α(a+ 1)

n∑

i=1

G(ξ)(xi, ξ)
G(xi, ξ)

α−1 − Ḡ(xi, ξ)
α−1

G(xi, ξ)α + Ḡ(xi, ξ)α

−aα(b− 1)
n∑

i=1

G(ξ)(xi, ξ)G(xi, ξ)
aα−1Ḡ(xi, ξ)

α−1

{[
G(xi, ξ)α + Ḡ(xi, ξ)α

]a −G(xi, ξ)aα
}
[G(xi, ξ)α + Ḡ(xi, ξ)α]

.

Numerical maximization of (11.1) is performed by using the RS method (Rigby
and Stasinopoulos, 2005) which is available in the gamlss package (R Develop-
ment Core Team, 2013), SAS (Proc NLMixed) or the Ox program (sub-routine
MaxBFGS) (see, Doornik, 2007) or by solving the nonlinear likelihood equa-
tions obtained by differentiating (11.1). Setting these equations to zero, Ua(θ) =

Ub(θ) = Uα(θ) = Uξ(θ) = 0, and solving them simultaneously yields the MLE θ̂

of θ.
For interval estimation and hypothesis tests on the parameters in θ, we require

the (p + 3) × (p + 3) total observed information matrix J(θ) = −{Urs}, where
the elements Urs for r, s = a, b, α, ξ are calculated numerically. The estimated

multivariate normal Np+3(θ,J(θ̂)
−1) distribution can be used to construct ap-

proximate confidence regions for the parameters in θ̂. An asymptotic confidence
interval (ACI) with significance level γ for each parameter θr is given by

ACI(θr, 100(1− γ)%) = (θ̂r − zγ/2
√
κ̂θr,θr , θ̂r + zγ/2

√
κ̂θr,θr ),

where κ̂θr,θr is the rth diagonal element of J(θ)−1 estimated at θ̂ and zγ/2 is the
quantile 1− γ/2 of the standard normal distribution.

We can compute the maximum values of the unrestricted and restricted log-
likelihoods to construct likelihood ratio (LR) statistics for testing some sub-models
of the KwOLL-G distribution. For example, we may use LR statistics to check
if the fit using the KwOLLW distribution is statistically “superior” to the fits
using the KwW, EW, EE and Weibull distributions for a given data set. In any
case, considering the partition θ = (θT

1 ,θ
T
2 )

T , tests of hypotheses of the type

H0 : θ1 = θ
(0)
1 versus HA : θ1 ̸= θ

(0)
1 can be performed using the LR statistic

w = 2{ℓ(θ̂) − ℓ(θ̃)}, where θ̂ and θ̃ are the estimates of θ under HA and H0,

respectively. Under the null hypothesis H0, w
d→ χ2

q, where q is the dimension of
the vector θ1 of interest. The LR test rejects H0 if w > ξγ , where ξγ denotes the
upper 100γ% point of the χ2

q distribution.

12. Applications

We illustrate the importance of the proposed family in two applications to real
data. In the last few years, several extensions of the normal and Weibull distri-
butions have been introduced in the literature. For example, Silva et al. (2010)
studied the beta modified Weibull (BMW) distribution, Cordeiro et al. (2012b)
proposed the McDonald normal (McN) distribution, Cordeiro et al. (2014b) de-
fined the Libby-Novick beta Weibull (LNBW) distribution, Cordeiro et al. (2014c)
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studied the McDonald Weibull (McW) distribution and Cordeiro et al. (2014d)
introduced the Kummaraswamy modified Weibull (KwMW) distribution.

We compare the fits of the KwOLLN and KwOLLW distributions with those
of other known models, namely the McN, beta normal (BN), Kumaraswamy nor-
mal (KwN), McW, BMW, KwMW, LNBW, beta Weibull (BW), Kumaraswamy
Weibull (KwW) and their baseline distributions themselves, see Alexander et al.
(2012) and Cordeiro et al. (2010) for more details.

12.1. Aarset data. We consider the lifetimes of 50 industrial devices put on
life test at time zero presented by Aarset (1987). These data also reported in
Mudholkar and Srivastava (1993), Mudholkar et al. (1996) and Silva et al. (2010)
exhibit a bathtub-shaped failure rate property. These authors consider that the
data are generated by a Weibull distribution. So, we adopt this distribution as
the baseline model for our family.

Table 2 lists the MLEs and their standard errors (in parentheses) of the para-
meters from the fitted KwOLLW, McW, KwMW, BMW, LNBW, BW, KwW, EW
and Weibull models and the values of the statistics: Akaike Information Criterion
(AIC), Consistent Akaike Information Criterion (CAIC) and Bayesian Information
Criterion (BIC). The computations are performed using the statistical software R.
The results indicate that the KwOLLW model has the smallest values of these
statistics among the fitted models, and therefore it could be chosen as the best
model.

A comparison of the KwOLLW distribution with some of its sub-models using
LR statistics is given in Table 3. Clearly, we reject the null hypotheses for the
three LR tests in favor of the KwOLLW distribution. In order to assess if the new
model is appropriate, Figures 5a and 5b display the histogram of the data and the
fitted KwOLLW density function and the densities of some of its sub-models and
non-nested models, respectively. Further, Figures 5c and 5d display plots of the
empirical and estimated survival functions of the KwOLLW distribution and of
some sub-models and non-nested models, respectively. We can conclude that the
KwOLLW distribution is a very suitable model to fit to the current data.

We shall apply formal goodness-of-fit tests in order to verify which distribution
fits the data better. We consider the Cramér-Von Mises (W ∗) and Anderson-
Darling (A∗) statistics defined by Chen and Balakrishnan (1995).

The values of these statistics for the fitted models are listed in Table 4. Over-
all, by comparing the measures of these formal goodness-of-fit tests in Table 4, we
conclude that the KwOLLW distribution yields a better fit than the Weibull, EW,
KwW, BW and McW distributions and therefore it can be an interesting alterna-
tive to these distributions for modeling lifetime data. These results illustrate the
importance of the additional shape parameters of the new distribution to analyze
real data.

12.2. Respiratory data. Now, we use a real data set to compare the fits of the
KwOLLN distribution with those of the McN, BN, KwN and normal distributions.
The McN pdf (Cordeiro et al., 2012b) is given by

f(x;µ, σ, a, b, c) =
c

B(a, b)σ
ϕ
(
σ−1(x− µ)

) {
Φ
(
σ−1(x− µ)

)}ac−1
{
1− Φ

(
σ−1(x− µ)

)c}b−1

,
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Table 2. MLEs and information criteria.

Aarset λ β a b α AIC CAIC BIC

KwOLLW 5.4771 0.0203 3.0532 4.9020 0.0514 441.0 442.3 450.5
(0.0100) (0.0010) (1.2819) (4.5062) (0.0188)

KwW 5.5025 0.0165 0.0602 0.2510 1 449.5 450.4 457.2
(0.0043) (0.0013) (0.0205) (0.0796) (-)

EW 4.6978 0.0108 0.1381 1 1 464.3 464.8 470.0
(0.00002) (0.0008) (0.0206) (-) (-)

Weibull 0.9488 0.0222 1 1 1 486.0 486.2 489.8
(0.1195) (0.0034) (-) (-) (-)

λ β a b c

McW 5.4712 0.0202 0.0880 0.0876 0.8457 447.5 448.8 457.0
(0.0086) (0.0028) (0.0195) (0.0640) (0.6682)

BW 5.3386 0.0212 0.0864 0.0731 1 445.7 446.5 453.3
(0.0146) (0.0019) (0.0181) (0.0306) (-)

λ β a1 b1 c1

LNBW 5.4514 0.0217 0.0838 0.0620 2.1512 447.3 448.7 456.9
(0.0109) (0.0041) (0.0187) (0.0618) (14.3571)

α2 λ2 γ2 a2 b2

BMW 0.0028 0.0403 1.1337 0.2455 0.1400 453.9 455.2 463.4
(0.0009) (0.0125) (0.2873) (0.0623) (0.0671)

α3 λ3 γ3 a3 b3

KwMW 0.0038 0.03724 0.9403 0.2654 0.3195 457.7 459.0 467.2
(0.0020) (0.0106) (0.2650) (0.1058) (0.1649)

Table 3. LR tests.

Aarset Hypotheses Statistic w p-value
KwOLLW vs KwW H0 : α = 1 vs H1 : H0 is false 10.55 0.0011
KwOLLW vs EW H0 : b = α = 1 vs H1 : H0 is false 27.33 <0.0001

KwOLLW vs Weibull H0 : a = b = α = 1 vs H1 : H0 is false 51.00 <0.0001

where x ∈ R, µ ∈ R is the location parameter, σ > 0 is the scale parameter and
a, b and c are positive shape parameters.

We consider 630 observations on respiratory rate (Alexander et al., 2012) and a
parent normal distribution. These data were taken from a study by the University
of São Paulo, ESALQ (Laboratory of Physiology and Post-Harvest Biochemistry),
which evaluate the effects of mechanical damage on banana fruits (genus Musa
spp.); see Saavedra del Aguila et al. (2010) for more details. The major problem
affecting bananas during and after harvest is the susceptibility of the mature fruit
to physical damage caused during transport and marketing. The extent of the
damage is measured by the respiratory rate.
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Figure 5. (a) Estimated densities of the KwOLLW, BW, KwW, EW
and Weibull models. (b) Estimated densities of the KwOLLW, McW,
KwMW, BMW and LNBW models. (c) Empirical and estimated sur-
vival functions of the KwOLLWBW, KwW, EW and Weibull. (d)
Empirical and estimated survival functions of the KwOLLW, McW,
KwMW, BMW and LNBW models.

Initial values for a, b, µ and σ are taken from the fitted KwN model with α = 1;
see, for example, Cordeiro et al. (2012b). The computations are performed using
the subroutine NLMIXED in SAS. Table 5 lists the MLEs and their standard
errors (in parentheses) of the parameters of the fitted models and the AIC, CAIC
and BIC values. The computations are performed using the subroutine NLMixed
in SAS. These results indicate that the KwOLLN model has the lowest AIC, CAIC
and BIC values among those values of the fitted models, and therefore it could be
chosen as the best model.

More information is provided by a visual comparison of the histogram of the
data with the fitted densities. In Figure 6, we plot the histogram of the respira-
tory data and the fitted KwOLLN, McN, BN, KwN and normal densities. The
KwOLLN and McN distributions provide reasonable fits, but it is clear that the
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Table 4. Formal goodness-of-fit tests for Aarset data.

Model Statistic
W ∗ A∗

KwOLLW 0.0833 0.7477
KwW 0.1454 1.1324
EW 0.2740 1.8111

Weibull 0.4963 3.0079
BW 0.1041 0.9043
McW 0.1047 0.9056
LNBW 0.1028 0.8972
BMW 0.1677 1.2697
KwMW 0.1912 1.3995

Table 5. MLEs and information criteria.

Respiratory µ σ a b α AIC CAIC BIC

KwOLLN 6.5396 113.18 2.2642 0.2778 11.2953 5547.0 5547.1 5569.3
(2.7772) (14.6040) (0.3356) (0.0147) (2.3128)

KwN -32.7704 29.4031 13.4721 0.4520 1 5775.1 5775.2 5792.9
(2.5507) (0.8140) (1.4283) (0.0329) (-)

Normal 34.3166 27.7500 1 1 1 5979.3 5979.4 5988.2
(1.1056) (0.7818) (-) (-) (-)

a b c µ σ AIC CAIC BIC

McN 10021.0 0.4681 4.6369 -186.04 47.9945 5638.3 5638.4 5660.5
(8.8561) (0.0305) (0.6311) (7.9203) (1.7718)

BN 50.9335 0.4135 1 -56.1790 32.2426 5709.9 5710.0 5727.7
(2.5794) (0.0296) - (2.1684) (0.9699)

KwOLLN model provides a more adequate fit to the histogram and better captures
its extreme bathtub shape.

13. Conclusions

We introduce and study a new class of distributions called the Kumaraswamy
odd log-logistic-G (KwOLL-G) family, which includes as special cases some classi-
cal generators of distributions such as the Kumaraswamy-generalized, exp odd-log
logistic, odd-Burr and exponentiated families. For each baseline G distribution,
we define the corresponding KwOLL-G distribution with three additional shape
parameters using simple formulas to extend widely-known models such as the nor-
mal, Weibull and Gumbel distributions in order to provide more flexibility. Some
characteristics of the new family, such as the ordinary moments, generating func-
tion and mean deviations, have tractable mathematical properties. The role of the
generator parameters is related to the skewness and kurtosis of the new family. We
estimate the parameters using maximum likelihood and determine the observed
information matrix. Inference on the model parameters is conducted based on
likelihood ratio statistics for testing nested models and other formal statistics for
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Figure 6. Fitted densities of the KwOLLN, McN and BW models for
the respiratory data. (b) Fitted densities of the KwOLLN, KwN and
normal models for the respiratory data.

non-nested models. Two applications to real data demonstrate the importance of
the new family.
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Appendix A

We present four power series expansions required for the proof of the general
result in Section 4. First, for b > 0 real non-integer and 0 < u < 1, we have the
binomial expansion

(13.1) (1− u)a =
∞∑

j=0

(−1)j
(
a

j

)
uj ,

where the binomial coefficient is defined for any real.
Second, the following expansion holds for any α > 0 real non-integer

(13.2) G(x)α =

∞∑

r=0

sr(α)G(x)r,

where sr(α) =
∑∞

j=r(−1)r+j
(
α
j

) (
j
r

)
.

Third, by expanding zλ in Taylor series, we obtain

(13.3) zλ =

∞∑

k=0

(λ)k (z − 1)k/k! =

∞∑

i=0

fi z
i,

where

fi = fi(λ) =

∞∑

k=i

(−1)k−i (λ)k
k!

(
k

i

)
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and (λ)k = λ(λ− 1) . . . (λ− k + 1) is the descending factorial.
Fourth, we consider equations (6.2) and (6.3) to obtain an expansion for [G(x)a+

Ḡ(x)a]c. We can write from equations (13.1) and (13.2)

[G(x)a + Ḡ(x)a] =

∞∑

j=0

tj G(x)j ,

where tj = tj(a) = sj(a) + (−1)j
(
a
j

)
. Then, using (13.3), we can write

[G(x)a + Ḡ(x)a]c =
∞∑

i=0

fi




∞∑

j=0

tj G(x)j




i

,

where fi = fi(c). Finally, based on equations (6.2) and (6.3), we have

[G(x)a + Ḡ(x)a]c =

∞∑

j=0

hj G(x)j ,(13.4)

where hj = hj(a, c) =
∑∞

i=0 fi mi,j andmi,j = (j t0)
−1
∑j

m=1[m(j+1)−j] tm mi,j−m

(for j ≥ 1) and mi,0 = ti0.
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