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Abstract

In this paper, we consider a generalization of
the state-of-art discriminative method for op-
timizing the conditional likelihood in Hidden
Markov Models (HMMs), called the Extended
Baum-Welch (EBW) algorithm, that has had
significant impact on the speech recognition
community. We propose a generalized form of
EBW update rules that can be associated with
a weighted sum of updated and initial models,
and demonstrate that using novel update rules
can significantly speed up parameter estima-
tion for Gaussian mixtures.

1 Introduction

Efficient methods for learning HMMs are essential
for solving a wide range of natural language pro-
cessing tasks, such as part-of-speech tagging, word
segmentation, optical character recognition, as well
as acoustic modeling in speech recognition, just
to name a few applications. The EBW approach
(Woodland, 2002), (Povey, 2007), (Kanevsky, 2004)
is currently considered one of the most success-
ful discriminative training techniques for estimating
models parameters using HMM with Gaussian mix-
tures. EBW is an iterative algorithm for estimat-
ing HMM parameters that uses a specific set of up-
date rules performed at each iteration. These rules
involve special EBW parameters that control the
amount of change in an objective function (e.g. the
Maximum Mutual Information Estimation (MMIE)
objective) at each iteration of the algorithm. Signif-
icant efforts in speech community has been devoted
to learning what values of these control parameters

lead to better estimation of parameters of Gaussian
mixture in discriminative tasks. In this paper, we in-
troduce a generalization of EBW update rules that
leads to a novel family of EBW algorithms where
EBW is included as a particular case.

We find that proper choice of the control param-
eters allows for faster training relative to previous
methods. Recently EBW update rules have been
used to derive a gradient steepness measurement to
evaluate the quality of the model to match the dis-
tribution of the data (Sainath, 2007). In this paper
we also derive a gradient steepness measurement for
the family of EBW update rules that are applied to
functions of Gaussian mixtures and demonstrate the
growth property of these transformations. Namely,
we show that the value of the objective function is
non-decreasing under these updated rules.

The paper is structured as follows. In the next
section we introduce a generalized family of EBW
update rules. In Section 3, we reproduce explicit for-
mulas to measure the gradient steepness, and show
the relationship between our EBW family and a re-
cently proposed “constrained line search” method of
(Cong et al., 2007). Empirical results are presented
in Section 4. Section 5 concludes the paper and dis-
cusses future work.

2 A New Family of EBW Update Rules

In this section we introduce a novel family of
update rules for parameter estimation with diago-
nal Gaussian mixtures. Assume that data yi, i ∈
I = {1, ..., n} is drawn from a Gaussian mix-
ture with each component of the mixture described
by the parameters θj = (τ1j , τ2j), where τ1j is



the mean and τ2j is the variance. Thus the prob-
ability of yi given model θj is zij = zi(θj) =

1
(2π)1/2τ2j

e−(yi−τ1j)
2/2τ2j

2
. Let F (z) = F ({zij})

be some objective function over z = {zij}, and let
cij = zij

δ
δzij

F (z).
We will now define the following function that we

will call the function associated with F :

Q(θ′j , θj) =
∑

i

zi(θj)
δF ({zi(θj)})

δzi(θj)
log zi(θ′j),

Optimizing this function will lead to closed-form
update rules (that are generally not obtainable if
optimizing F directly)1. Let {τ̃rj} be solutions of
δQ(θ′j ,θj)

δτ ′rj
= 0.

The key contribution of this paper is introduction
of the following novel iterative rules for updating the
current model parameters τrj to their next values τ̄rj

(and a subsequent analysis of their properties):

τ̄rj(αrj) = αrj τ̃rj + (1− αrj)τrj + fr(αrj) (1)

Note that the above rules generalize the ones consid-
ered previously in (Cong et al., 2007) (see Section
3.1 for more details) via adding the term fr(αrj) =
o(αrj) (recall that o(ε) means that limε→0 o(ε)/ε →
0). It can be shown that our new update rules (1)
also include as a particular case the following EBW
rules (Woodland, 2002)

τ̂1j = τ1j(C) =
∑

i∈I cijyi + Cτ1j∑
i∈I cij + C

(2)

τ̂2
2j = τ2j(C)2 =

∑
i∈I cijy

2
i + C(τ2

1j + τ2j
2)∑

i∈I cij + C
− τ̂2

1j

(3)

Indeed, assuming
∑

i cij 6= 0 and αrj =
∑

i
cij

C we
have

τrj(C) = τ̄rj(αrj) (4)

Here |fr(αrj)| < d/C2 for sufficiently large C
and for some constant d. To show this inequal-

ity one needs to observe that τ̃1j =
∑

i
cijyi∑
i
cij

and

τ̂1j = τ1j(0)α̃1j + τ1j(1 − α̃1j) where α̃1j =

α̃1j(C) =
∑

i
cij∑

i
cij+C

and τ1j(0) is defined as in (2)

1Note that when the objective F is the log-likelihood func-
tion (e.g., standard MLE estimation in HMM, i.e. the Baum-
Welch method), then Q coincides with the auxiliary function.

for C = 0. This implies statement (4) for r = 1
(i.e. for the mean parameter). Statement (4) for
r = 2 (i.e., for the variance) follows from the fact

that τ̃2
2j =

∑
i
cij(yi−µj)

2∑
i
cij

and from the linearized

equations for variances in (18) in (Kanevsky, 2004).

3 Gradient Steepness Measurements

Using the linearization technique (Kanevsky, 2004)
it was proved that transformations (2, 3) are growth
transformations (i.e., cannot decrease the objective
function) for large C if the function F obeys certain
smoothness constraints. In what follows, we formu-
late a somewhat more general result.
Proposition 1 Let F ({zij}), i = 1...m, be differ-
entiable at τ1j , τ2j and δF ({zij})

δzij
exist at zij . Let

ẑij = 1
(2π)1/2τ2j(Dj)

e−(yi−τ1j(Cj))
2/2τ2j(Dj)

2
. Let

τ̂rj 6= τrj for some r ∈ {1, 2}. Then for sufficiently
large Cj and Dj we get F ({ẑij}) − F ({zij}) =∑

j(αjT1j + βjT2j) +
∑

j(o(αj) + o(βj)) where
αj = 1/Cj , βj = 1/Dj and where

T1j =
[
∑

i cij(yi − τ1j)]2

τ2
2j

> 0 (5)

T2j =
{∑i cij [(yi − τ1j)2 − τ2

2j ]}2

2τ4
2j

> 0 (6)

In other words, F ({ẑij}) grows proportionally to∑
j αjT1j +

∑
j βjT2j for sufficiently small αj , βj >

0.
The proof is similar to Theorem 1 (Kanevsky, 2004),
which assumed C = D. A similar gradient steep-
ness result was proved for multidimensional multi-
variate Gaussian mixtures in (Kanevsky, 2005). Gra-
dient steepness measurements T1j , T2j are always
non-negative (sums of squares). This guarantees the
growth property, i.e. that F ({ẑij}) ≥ F ({zij}) for
sufficiently large C and D.

3.1 Relationship to “constrained line search”

(Cong et al., 2007) provides an optimization method
known as the ”Constrained Line Search” (CLS)
. In what follows we will show that CLS could
be considered as a member of a family of EBW
transformations (1). In order to demonstrate this
we represent the EBW family updates of model



parameters (1) in the following three steps.

1. Gradient for Model Changes: From (1) one can
see that a direction along which models are updated
is the following: limαrj→0

τ̄rj(αrj)−τrj

αrj
= τ̃rj − τrj

This coincides with the direction of the line search
that is defined in (Cong et al., 2007).

2. Finding a step along the search curve: If∑
j cij 6= 0 then one can represent (5, 6) as

T ′1j =
(τ̄1j − τ1j)2

τ2
2j

, T ′2j =
(τ̄2

2j − τ2
2j)

2

2σ4
j

and F ({ẑij}) − F ({zij}) =
∑

j α′jT
′
1j +∑

j β′jT
′
2j +

∑
j(o(α

′
j) + o(β′j)) where α′j =

(
∑

i cij)2/Cj , β
′
j = (

∑
i cij)2/Dj . One can show

(Cong et al., 2007) that the above equations ap-
proximate mean and variance ”components” of the
KL-divergence between two Gaussians (for updated
and initial models). Therefore the gradient steep-
ness measure can be used to evaluate the closeness
of updated models to initial models. These met-
rics were used in (Sainath, 2007) for various speech
tasks. They also can be used to avoid overfitting in
EBW training if one chooses Cj inversely propor-
tionally to gradient steepness metrics.

3. Finding a step direction on the search curve:
Let us connect models {τ1j , τ

2
2j} and {τ̃1j , τ̃

2
2j} with

a curve segment (which generalizes the straight line
segment used by (Cong et al., 2007)). Then the
following cases for location of an updated model
(at which F increases its value) can be consid-
ered: 1) If

∑
i cij > 0 then a step αj > 0 and

{τ̄1j(αj), τ̄2
2j(αj)} lies on a segment that connects

{τ1j , τ
2
2j} and {τ̃1j , τ̃

2
2j}. 2) If

∑
i cij < 0 then a

step αj < 0 and {τ̄1j(αj), τ̄2
2j(αj)} lies outside of

the segment that connects {τ1j , τ
2
2j} and {τ̃1j , τ̃

2
2j}.

These cases correspond to cases in (Cong et al.,
2007) where a sign of a step along a gradient was
chosen depending on whether F has the minimum
or the maximum at {τ̃1j , τ̃

2
2j} . The above process is

illustrated in Fig. 1.

4 Experiments

In this section we report results on a speaker in-
dependent English broadcast news system. The
discriminative baseline for training is done as in
(Woodland, 2002). The acoustic model is trained on
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Figure 1: Illustration of the new update rules.

450 hours of speech comprising the 1996 and 1997
English Broadcast News Speech collections and
the English broadcast audio from TDT-4. Lightly-
supervised training was performed on the TDT-4
audio because only closed captions were available.
The model has 6000 quinphone context dependent
states and 250K Gaussians. We test on the rt04 test
set as defined for the English portion of the EARS
program. More details are given in (Povey, 2008)
which uses the same testing setup.

We performed experiments testing various mem-
bers in an EBW family for transformations where
we varied fr and ratio of α1j/α2j in (1). Specifi-
cally, we investigated the following conditions.

1. Linearized update of means:

τ̂1j = τ1j(Cj) = τ1j +
∑

i∈I cij(yi − τ1j)
Cj

τ̂2
2j = τ2j(Dj)

2 =
∑

i∈I cijy
2
i + Dj(τ2

1j + τ2j
2)∑

i∈I cij + Dj

−τ1j(D)2 (7)

2. Ratio of control parameters: Dj/Cj = 1.5

3. Low value of control parameters: Cj for each
Gaussian prototype is chosen to keep variance
positive, e.g. starting from low Cj = 1 and
multiplying Cj by 1.1 until variance (7) be-
comes positive.

It was observed that any one of above conditions
alone do not provide improvement in a decoding
accuracy when decoding was done on a PBS sub-
set in the rt04 test set using Boosted MMIE setting
as described in (Povey, 2008); Table 1 shows WER



1st cond No Yes
XXXXXXXXXXX3rd cond

2nd cond
No Yes No Yes

No 15.3 15.3 15.4 15.4
Yes 16.4 16.2 14.8 14.6

Table 1: Combinations of three conditions: word error
rate (WER) on PBS subset in rt04, 1st iteration of update.

Iteration Test set
Training method

rt04 rt04 rt04 rt04
bas.I comb.I bas.II comb.II

0 20.5% 20.5%
1 19.9% 18.9% 18.7% 17.8%
2 19.5% 18.7% 17.8% 17.3%
3 19.1% 17.4%
4 18.8% 17.3%

Table 2: Word error rate on the test set rt04 (4:00 hours).

with all combinations of the above conditions. The
best result occurs when all three conditions are com-
bined.

Table 2 describes experiments on test sets in
which columns that are labeled as test rt04/bas.x
contain results for baseline MMI training for 4 it-
erations (starting from a ML baseline). Columns la-
beled as test rt04/xxx.I represent setting for the base-
line MMI (for backoff) as described in (Woodland,
2002) and columns labeled as test rt04/xxx.II rep-
resent the setting with boosted MMI that was in-
troduced recently (Povey, 2008). Columns labeled
as rt04/comb.I and rt04/comb.II represent two sub-
sequent iterations with modified EBW (combined 3
conditions shown in table 1) on standard and boosted
MMI. These results show that the modified EBW
in 2 iterations allows to achieve the same decod-
ing result as 4 iterations with the baseline methods
and therefore is significantly faster. We reproduced
only two subsequent iterations of modified EBW
here since application of a third iteration of modi-
fied EBW leads to degradation of the accuracy. This
is because using low C and D in (7) leads to over-
fitting. In order to avoid overfitting in a consequent
iteration, one needs to increase C,D at each itera-
tion. The preliminary experiments provide evidence

that one can control the size of C and D at each iter-
ation by measuring gradient steepness (see Section
3) or relative changes in likelihood.

5 Conclusion and future work

In the paper we considered a family of transforma-
tions that can be associated with weighted sums of
updated and initial models. We showed that this
family of transformations has the same gradients
as EBW transformations and therefore provide esti-
mates that converges to local maximum. We demon-
strated that considering different members in this
EBW family allows leads to faster discriminative
training. We also demonstrated that CLS updates
of model parameters in diagonal Gaussian mixtures
(Cong et al., 2007) can be considered as members of
an EBW family of transformations. We plan to con-
tinue to study EBW based training in which EBW
control parameters are correlated to gradient steep-
ness along ”mean and variance directions.” We also
plan to extend results of this paper for multivariate
multidimensional Gaussian mixture densities.
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