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A new family of generalized distributions
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Kumaraswamy [1] introduced a distribution for double bounded random processes with hy-
drological applications. For the first time, based on this distribution, we describe a new
family of generalized distributions (denoted with the prefix “Kw”) to extend the normal,
Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distri-
butions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull,
Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express
the ordinary moments of any Kw generalized distribution as linear functions of probability
weighted moments of the parent distribution. We also obtain the ordinary moments of order
statistics as functions of probability weighted moments of the baseline distribution. We use
the method of maximum likelihood to fit the distributions in the new class and illustrate the
potentiality of the new model with an application to real data.
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1. Introduction

Beta distributions are very versatile and a variety of uncertainties can be usefully
modeled by them. Many of the finite range distributions encountered in practice
can be easily transformed into the standard beta distribution. In econometrics,
many times the data are modeled by finite range distributions. Generalized beta
distributions have been widely studied in statistics and numerous authors have
developed various classes of these distributions. Eugene et al. [2] proposed a general
class of distributions for a random variable defined from the logit of the beta
random variable by employing two parameters whose role is to introduce skewness
and to vary tail weight. Following the work of Eugene et al. [2], who defined the
beta normal distribution, Nadarajah and Kotz [3] introduced the beta Gumbel
distribution, Nadarajah and Gupta [4] proposed the beta Fréchet distribution and
Nadarajah and Kotz [5] worked with the beta exponential distribution. However,
all these works lead to some mathematical difficulties because the beta distribution
is not fairly tractable and, in particular, its cumulative distribution function (cdf)
involves the incomplete beta function ratio.

The paper by Kumaraswamy [1] proposed a new probability distribution for dou-
ble bounded random processes with hydrological applications. The Kumaraswamy’s
distribution appears to have received considerable interest in hydrology and related
areas, see [6–9].
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In reliability and life testing experiments, many times the data are modeled by
finite range distributions. See, for example, [10]. We start with the Kumaraswamy’s
distribution (called from now on the Kw distribution) on the interval (0, 1), having
the probability density function (pdf) and the cdf with two shape parameters a > 0
and b > 0 defined by

f(x) = a b xa−1(1− xa)b−1 and F (x) = 1− (1− xa)b. (1)

The density function in (1) has many of the same properties as the beta distribution
but has some advantages in terms of tractability.

The Kw distribution does not seem to be very familiar to statisticians and has
not been investigated systematically in much detail before, nor has its relative in-
terchangeability with the beta distribution has been widely appreciated. However,
in a very recent paper, Jones [11] explored the background and genesis of the Kw
distribution and, more importantly, made clear some similarities and differences
between the beta and Kw distributions. For example, the Kw densities are also
unimodal, uniantimodal, increasing, decreasing or constant depending in the same
way as the beta distribution on the values of its parameters. He highlighted sev-
eral advantages of the Kw distribution over the beta distribution: the normalizing
constant is very simple; simple explicit formulae for the distribution and quantile
functions which do not involve any special functions; a simple formula for random
variate generation; explicit formulae for L-moments and simpler formulae for mo-
ments of order statistics. Further, according to Jones [11], the beta distribution has
the following advantages over the Kw distribution: simpler formulae for moments
and moment generating function; a one-parameter sub-family of symmetric distri-
butions; simpler moment estimation and more ways of generating the distribution
via physical processes.

Consider starting from a parent continuous distribution function G(x). A natural
way of generating families of distributions on some other support from a simple
starting parent distribution with pdf g(x) = dG(x)/dx is to apply the quantile
function to a family of distributions on the interval (0, 1). We now combine the
works of Eugene et al. [2] and Jones [11] (see also [12]) to construct a new class of
Kw generalized (Kw-G) distributions. From an arbitrary parent cdf G(x), the cdf
F (x) of the Kw-G distribution is defined by

F (x) = 1− {1−G(x)a}b, (2)

where a > 0 and b > 0 are two additional parameters whose role is to introduce
skewness and to vary tail weights. Because of its tractable distribution function (2),
the Kw-G distribution can be used quite effectively even if the data are censored.

Correspondingly, the density function of this family of distributions has a very
simple form

f(x) = a b g(x) G(x)a−1{1−G(x)a}b−1, (3)

whereas the density of the beta-G distribution is given by

f(x) =
1

B(a, b)
g(x)G(x)a−1 {1−G(x)}b−1 , (4)

where B(·, ·) denotes the beta function. The basic difference (except for a scale
multiplier) between (3) and (4) is the power of G(x) inside the braces. Clearly, for
b = 1 both densities are identical.



Journal of Statistical Computation & Simulation 3

The new density (3) has an advantage over the class of generalized beta distri-
butions due to Eugene et al. [2], since it does not involve any special function. For
each continuous name distribution (here name denotes the name of the parent dis-
tribution), we can associate the Kw-name distribution with two extra parameters
a and b from the cdf G(x) and pdf g(x) of the name distribution whose density
function is defined by formula (3).

Special Kw generalized distributions can be generated as follows: the Kw-normal
(KwN) distribution is obtained by taking G(x) in formula (3) to be the distribution
function of the normal distribution. Analogously, the Kw-Weibull (KwW ), Kw-
gamma (KwGa) and Kw-Gumbel (KwGu) distributions are obtained by taking
G(x) to be the cdf of the Weibull, gamma and Gumbel distributions, respectively,
among several others. Hence, each new Kw-G distribution can be obtained from a
specified G distribution. The Kw distribution is a special case of the Kw-G distri-
bution with G being the uniform distribution on [0, 1], whereas the G distribution
is the distribution corresponding to a = b = 1. With a = 1, the Kw-G distribu-
tion coincides with the beta-G distribution generated by the beta(1, b) distribution.
Furthermore, for b = 1 and a being an integer, the Kw-G is the distribution of
the maximum of a random sample of size a from G. One major benefit of the Kw
family of generalized distributions is its ability of fitting skewed data that can not
be properly fitted by existing distributions.

In this article we deal with formula (3) in some generality. The mathematical
properties of the Kw generalized family are usually much simpler to derive than
those of the class of generalized beta distributions proposed by Eugene et al. [2].
Even if g(x) is a symmetric function around 0, then f(x) will not be a symmetric
distribution even when a = b. From (1), if u is sampled from the uniform (0,1)
distribution, then G−1({1− (1− u)1/b}1/a) is drawn from the Kw-G distribution.

The paper is outlined as follows. Section 2 provides some special distributions
in the Kw generalized family. In Section 3, we derive general expansions for the
density of the Kw-G distribution as a function of the parent density g(x) multi-
plied by power series in G(x) depending if a is integer or real non-integer. We can
easily apply these expansions to several Kw-G distributions. Probability weighted
moments (PWMs) are expectations of certain functions of a random variable and
they can be defined for any random variable whose ordinary moments exist. In
Section 4, we derive two simple expansions for the moments of any Kw-G distri-
bution as linear functions of PWMs of the G distribution which are valid if a is
integer or real non-integer. We derive in Section 5 some expansions for the density
of order statistics of the class of Kw-G distributions. In Section 6, PWMs are ob-
tained for this class. Section 7 provides an alternative formula for moments of order
statistics of the Kw-G distribution. The L-moments are also given in this section.
Some inferential tools are discussed in Section 8. A real data set is analyzed by
some distributions in the Kw-G family in Section 9. Section 10 ends with some
conclusions.

2. Special Kw generalized distributions

The Kw-G family of densities (3) allows for greater flexibility of its tails and can be
widely applied in many areas of engineering and biology. We will study in Section 3
some mathematical properties of this new class of distributions because it extends
several widely-known distributions in the literature. The density (3) will be most
tractable when the cdf G(x) and the pdf g(x) have simple analytic expressions. We
now discuss some special Kw generalized distributions.
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2.1. Kw-normal

The KN density is obtained from (3) by taking G(·) and g(·) to be the cdf and
pdf of the normal N(µ, σ2) distribution, so that

f(x) =
ab

σ
φ

(
x− µ

σ

){
Φ

(
x− µ

σ

)}a−1 {
1− Φ

(
x− µ

σ

)a}b−1

,

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, a, b > 0 are
shape parameters, and φ(·) and Φ(·) are the pdf and cdf of the standard normal
distribution, respectively. A random variable with density f(x) above is denoted
by X ∼ KwN(a, b, µ, σ2). For µ = 0 and σ = 1 we obtain the standard KwN
distribution. Further, the KwN distribution with a = 2 and b = 1 coincides with
the skew normal distribution with shape parameter equal to one [13].

2.2. Kw-Weibull

The cdf of the Weibull distribution with parameters β > 0 and c > 0 is
G(x) = 1−exp{−(βx)c} for x > 0. Correspondingly, the density of the Kw-Weibull
distribution, say KwW (a, b, c, β), reduces to

f(x) = a b c βcxc−1 exp{−(βx)c}[1− exp{−(βx)c}]a−1

× {1− [1− exp{−(βx)c}]a}b−1, x, a, b, c, β > 0.

If c = 1 we obtain the Kw-exponential distribution. The KwW (1, b, 1, β) distribu-
tion corresponds to the exponential distribution with parameter β? = bβ.

2.3. Kw-gamma

Let Y be a gamma random variable with cdf G(y) = Γβy(α)/Γ(α) for y, α, β > 0,
where Γ(·) is the gamma function and Γz(α) =

∫ z
0 tα−1e−tdt is the incomplete

gamma function. The density of a random variable X following a KwGa distribu-
tion, say X ∼ KwGa(a, b, β, α), can be expressed as

f(x) =
a b βαxα−1e−βx

Γ(α)ab
Γβx(α)a−1 {Γ(α)a − Γβx(α)a}b−1 , x, β, α, a, b > 0.

For α = 1, we obtain the Kw-exponential distribution. Note that KwGa(1, b, β, 1)
means the exponential distribution with parameter β? = bβ.

2.4. Kw-Gumbel

The density and distribution functions of the Gumbel distribution with location
parameter µ > 0 and scale parameter σ > 0 are given by

g(x) =
1
σ

exp
{

x− µ

σ
− exp

(
x− µ

σ

)}
, x > 0,

and

G(x) = 1− exp
{
− exp

(
−x− µ

σ

)}
.
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The mean and variance are equal to µ − γσ and π2σ2/6, respectively, where γ is
the Euler’s constant (γ ≈ 0.57722). Inserting these expressions into (3) yields the
KwGu distribution, say KwGu(a, b, µ, σ).

2.5. Kw-inverse Gaussian

Adopting the parametrization in Stasinopoulos and Rigby [14], the pdf and cdf of
the inverse Gaussian distribution are

g(x) =
1√

2πσ2x3
exp

{
− 1

2µ2σ2x
(x− µ)2

}
, x, µ, σ > 0

and

G(x) = Φ
(

1√
σ2x

(
x

µ
− 1

))
+ exp

(
2

µσ2

)
Φ

(
− 1√

σ2x

(
x

µ
+ 1

))
.

The expectation and variance are equal to µ and σ2µ3, respectively. Replacing
these expressions into (3) leads to the Kw-inverse Gaussian distribution, say
KwIG(a, b, µ, σ2).

Fig. 1 illustrates some of the possible shapes of the density functions for some
Kw-G distributions. Fig. 2 does the same for the hazard functions defined by
h(x) = f(x)/{1 − F (x)}. These plots illustrate the great flexibility achieved with
the Kw-G distributions.

3. A general expansion for the density function

For b > 0 real non-integer, we use the series representation

{1−G(x)a}b−1 =
∞∑

i=0

(−1)i

(
b− 1

i

)
G(x)a i,

where the binomial coefficient is defined for any real. From the above expansion
and formula (3), we can write the Kw-G density as

f(x) = g(x)
∞∑

i=0

wiG(x)a(i+1)−1, (5)

where the coefficients are

wi = wi(a, b) = (−1)ia b

(
b− 1

i

)

and
∑∞

i=0 wi = 1.
If b is an integer, the index i in the previous sum stops at b − 1. If a is an

integer, formula (5) shows that the density of the Kw-G distribution is just equal
to the density of the G distribution multiplied by an infinite weighted power series
of cdfs of the G distribution. Otherwise, if a is real non-integer, we can expand
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Figure 1. (a) Kw-normal(a, b, 0, 1), (b) Kw-gamma(a, b, 1, α), (c) Kw-Gumbel(a, b, 0, 1) and (d) Kw-
inverse Gaussian(a, b, µ, σ2) density functions (the dashed lines represent the parent distributions).

G(x)a(i+1)−1 as follows

G(x)a(i+1)−1 = [1− {1−G(x)}]a(i+1)−1 =
∞∑

j=0

(−1)j

(
a(i + 1)− 1

j

)
{1−G(x)}j

and then

G(x)a(i+1)−1 =
∞∑

j=0

j∑

r=0

(−1)j+r

(
a(i + 1)− 1

j

)(
j

r

)
G(x)r.
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Figure 2. (a) Kw-normal(a, b, 0, 1), (b) Kw-gamma(a, b, 1, α), (c) Kw-Gumbel(a, b, 0, 1) and (d) Kw-
inverse Gaussian(a, b, µ, σ2) hazard functions (the dashed lines represent the parent distributions).

Further, the density f(x) in (3) can be rearranged in the form

f(x) = g(x)
∞∑

i,j=0

j∑

r=0

wi,j,rG(x)r, (6)

where the coefficients

wi,j,r = wi,j,r(a, b) = (−1)i+j+r a b

(
a(i + 1)− 1

j

)(
b− 1

i

)(
j

r

)
(7)
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are constants satisfying
∑∞

i,j=0

∑j
r=0 wi,j,r = 1.

Expansion (6), which holds for any real non-integer a, gives the pdf of the Kw-G
distribution as an infinite weighted power series of cdfs of the G distribution. If b
is an integer, the index i in equation (6) stops at b− 1. Hence, for any a real non-
integer, the pdf of the Kw-G distribution is given by three (two infinite and one
finite) weighted power series sums of the baseline cdf G(x). The constants wi,j,r in
formula (7) are readily computed numerically using existing software. Recall that,
if a is an integer, the density of the Kw-G distribution in (5) is given by only one
infinite weighted power series sum of the baseline distribution function G(x).

For a real non-integer, we can derive an alternative expansion for double checking,
although more expensive computationally, with three infinite sums instead of two
infinite sums and one finite sum as in formula (6). First of all, we calculate a power
series expansion for G(x)q which holds for any q > 0 real non-integer. We have

G(x)q = [1− {1−G(x)}]q =
∞∑

j=0

(
q

j

)
(−1)j{1−G(x)}j

and then

G(x)q =
∞∑

j=0

j∑

r=0

(−1)j+r

(
q

j

)(
j

r

)
G(x)r.

Replacing
∑∞

j=0

∑j
r=0 by

∑∞
r=0

∑∞
j=r we obtain

G(x)q =
∞∑

r=0

∞∑

j=r

(−1)j+r

(
q

j

)(
j

r

)
G(x)r

and

G(x)q =
∞∑

r=0

sr(q)G(x)r, (8)

where the coefficients are

sr(q) =
∞∑

j=r

(−1)r+j

(
q

j

)(
j

r

)
, (9)

for r = 0, 1, . . . From the density (3) by expanding G(x)a(j+1) as in formula (8), we
immediately have the Kw-G density to be

f(x) = g(x)
∞∑

j,r=0

tj(a, b)G(x)r, (10)

where the coefficients tj(a, b) are defined by

tj(a, b) = (−1)j a b

(
b− 1

j

)
sr(a(j + 1)− 1). (11)
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Hence, for a real non-integer, the pdf of the Kw-G distribution is now given by
three infinite weighted power series sums of the baseline distribution function G(x),
i.e., two sums in equation (10) and one sum for the coefficients tj(a, b) defined in
(11) which come from equation (9). The coefficients tj(a, b) are readily computed
numerically using standard statistical software. Equations (5), (6) and (10) are
the main results of this section and play an important role in the paper. In the
numerical calculations using these equations, infinity should be substituted by a
large integer number.

We conclude this section with an additional result involving the beta-G density
function. For a integer, the expansion of density function in (4) is

f(x) = g(x)
∞∑

i=0

wiG(x)a+i−1, (12)

where wi = wi(a, b) = (−1)i
(
b−1

i

)
/B(a, b). We note that the main difference bet-

ween the mixture forms in (5) and (12) is basically the power of the cdf g(x). For
the Kw-G distribution the power is a(i+1)−1, whereas for the beta-G distribution
is a + i− 1. The weights of both representations are also different. For a real non-
integer, the main difference of the density expansions is given by the weights.

4. General formulae for the moments

The s-th moment of the Kw-G distribution can be expressed as an infinite weighted
sum of PWMs of order (s, r) of the parent distribution G from equation (5) for a
integer and from (6) (or (10)) for a real non-integer. We assume Y and X following
the baseline G and Kw-G distribution, respectively. The s-th moment of X, say
µ′s, can be expressed in terms of the (s, r)-th PWMs τs,r = E{Y sG(Y )r} of Y for
r = 0, 1, . . ., as defined by Greenwood et al. [15]. For a integer, we obtain

µ′s =
∞∑

r=0

wrτs, a(r+1)−1, (13)

whereas for a real non-integer we write from formula (6)

µ′s =
∞∑

i,j=0

j∑

r=0

wi,j,rτs,r. (14)

Formulae (13) and (14) are of very simple forms and constitute the main results
of this section. We can calculate the moments of the Kw-G distribution in terms
of infinite weighted sums of PWMs of the G distribution. Established power series
expansions to calculate the moments of any Kw-G distribution can be more efficient
than computing these moments directly by numerical integration of the expression

µ′s = ab

∫
xsg(x)G(x)a−1{1−G(x)a}b−1dx,

which can be prone to rounding off errors among others.



10 G. M. Cordeiro and M. de Castro

5. Order statistics

Order statistics make their appearance in many areas of statistical theory and
practice. The density fi:n(x) of the i-th order statistic, for i = 1, . . . , n, from i.i.d.
random variables X1, . . . , Xn following any Kw-G distribution, is simply given by

fi:n(x) =
f(x)

B(i, n− i + 1)
F (x)i−1{1− F (x)}n−i

=
ab

B(i, n− i + 1)
g(x)G(x)i−1[1− {1−G(x)a}b]{1−G(x)a}b(n−i+1)−1,

where B(·, ·) denotes the beta function, and then

fi:n(x) =
f(x)

B(i, n− i + 1)

n−i∑

j=0

(−1)j

(
n− i

j

)
F (x)i+j−1. (15)

We now present an expression for the density of order statistics of the Kw-G
distribution as a function of the baseline density multiplied by infinite weighted
sums of powers of G(x). This result enables us to derive the ordinary moments of
order statistics of the Kw-G distribution as infinite weighted sums of PWMs of the
G distribution. In Section 7 we offer a simple alternative formula for the moments
of order statistics of the Kw-G distribution.

From equation (2), we obtain an expansion for F (x)i+j−1

F (x)i+j−1 =
i+j−1∑

k=0

(
i + j − 1

k

)
(−1)k{1−G(x)a}kb.

Using the series expansion for {1−G(x)a}kb

{1−G(x)a}kb =
∞∑

m=0

(−1)m

(
kb

m

)
G(x)ma

and then from (8), we obtain

F (x)i+j−1 =
i+j−1∑

k=0

(
i + j − 1

k

)
(−1)k

∞∑

r=0

vr(a, b, k)G(x)r, (16)

where the coefficients vr(a, b, k) are defined by

vr(a, b, k) =
∞∑

m=0

(−1)m

(
kb

m

)
sr(ma)

and the quantities sr(ma) come easily from (9). Interchanging the sums in formula
(16), we have

F (x)i+j−1 =
∞∑

r=0

pr,i+j−1(a, b)G(x)r,
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where the coefficients pr,u(a, b) can be calculated as

pr,u(a, b) =
u∑

k=0

(
u

k

)
(−1)k

∞∑

m=0

∞∑

l=r

(−1)mr+l

(
kb

m

)(
ma

l

)(
l

r

)
(17)

for r, u = 0, 1, . . ..
If a is real non-integer, inserting (6) and (16) into (15) and changing indices, we

can rewrite the density fi:n(x) in the form

fi:n(x) =
g(x)

B(i, n− i + 1)

n−i∑

j=0

(−1)j

(
n− i

j

) ∞∑

r,u,v=0

v∑

t=0

wu,v,t pr,i+j−1(a, b) G(x)r+t.

(18)
If a is integer, we can obtain from formulae (5), (15) and (16)

fi:n(x) =
g(x)

B(i, n− i + 1)

n−i∑

j=0

(−1)j

(
n− i

j

) ∞∑

r,u=0

wu pr,i+j−1(a, b) G(x)a(u+1)+r−1.

(19)
Formulae (18) and (19) immediately yield the density of order statistics of the

Kw-G distribution as a function of the density of the baseline distribution multi-
plied by infinite weighted sums of powers of G(x). Hence, the ordinary moments of
order statistics of the Kw-G distribution can be written as infinite weighted sums
of PWMs of the G distribution. These generalized moments for some baseline dis-
tributions can be accurate computationally by numerical integration as mentioned
before.

6. Probability weighted moments

A general theory for PWMs covers the summarization and description of theoreti-
cal probability distributions, the summarization and description of observed data
samples, nonparametric estimation of the underlying distribution of an observed
sample, estimation of parameters and quantiles of probability distributions and
hypothesis testing for probability distributions. The PWM method can generally
be used for estimating parameters of a distribution whose inverse form cannot be
expressed explicitly.

The (s, r)-th PWM of X following the Kw-G distribution, say τKw
s,r , is formally

defined by

τKw
s,r = E{XsF (X)r} =

∫ ∞

−∞
xsF (x)rf(x)dx.

From equations (6) and (16) we can write

τKw
s,r =

∞∑

m,u,v=0

v∑

l=0

pr,m(a, b)wu,v,lτs,m+l, (20)

where τs,m+l =
∫∞
−∞ xs G(x)m+l g(x)dx is the (s,m + l)-th PWM of the G distri-

bution and the coefficients pr,m(a, b) are just defined in equation (17).
Formula (20) shows that any PWM of the Kw-G distribution can be calcu-

lated from an infinite weighted linear combination of PWMs of the G distribution.
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Clearly, the generalized moments τKw
s,r can be obtained numerically in many ex-

isting software by taking a large number to substitute infinity in equation (20).
PWMs of the baseline distributions can be evaluated by numerical integration as
discussed before.

In estimation problems we use frequently the moments of order (1, r). For exam-
ple, for the Gumbel and Weibull distributions [15], we have

τ1,r =
µ + σ{log(1 + r) + ε}

1 + r
and τ1,r =

r∑

k=0

(
r

k

)
(−1)k Γ(1 + 1/c)

β(1 + k)1+1/c
,

respectively. Thus, the quantities τKw
1,r for the KwGu and KwW distributions are

easily computed from (20).

7. Alternative formula for moments of order statistics

We now offer an alternative formula for the moments of order statistics of the Kw-
G distribution based on PWMs of the G distribution. We use the formula for the
s-th moment due to Barakat and Abdelkader [16] applied to the independent and
identically distributed case, subject to existence,

E(Xs
i:n) = s

n∑

j=n−i+1

(−1)j−n+i−1

(
j − 1
n− i

)(
n

j

)
Ij(s), (21)

where Ij(s) denotes the integral

Ij(s) =
∫ ∞

−∞
xs−1{1− F (x)}jdx.

Using the binomial expansion and interchanging terms, the last integral becomes

Ij(s) =
j∑

m=0

(−1)m

(
j

m

)
τKw
s−1,m,

where τKw
s−1,m =

∫∞
−∞ xs−1F (x)mdx.

Inserting the expression for Ij(s) in formula (21) yields

E(Xs
i:n) = s

n∑

j=n−i+1

j∑

m=0

(−1)j−n+i+m−1

(
j − 1
n− i

)(
n

j

)(
j

m

)
τKw
s−1,m, (22)

where the PWMs τKw
s−1,m of the Kw-G distribution are immediately obtained from

equation (20) as linear functions of PWMs of the G distribution. Thus, we show that
the moments of order statistics of the Kw-G distribution can be expressed explicitly
in terms of infinite weighted sums of PWMs of the G distribution. Formula (22) is
the main result of this section.

The L-moments are analogous to the ordinary moments but can be estimated
by linear combinations of order statistics. The L-moments have several theoretical
advantages over the ordinary moments. They exist whenever the mean of the dis-
tribution exists, even though some higher moments may not exist. They are able
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to characterize a wider range of distributions and, when estimated from a sam-
ple, are more robust to the effects of outliers in the data. Unlike usual moment
estimates, the parameter estimates obtained from L-moments are sometimes more
accurate in small samples than even the maximum likelihood estimates (MLEs).
The L-moments are linear functions of expected order statistics defined as

λr+1 = (r + 1)−1
r∑

k=0

(−1)k

(
r

k

)
E(Xr+1−k:r+1), r = 0, 1, . . . ,

see [17]. The first four L-moments are λ1 = E(X1:1), λ2 = 1
2E(X2:2 −X1:2), λ3 =

1
3E(X3:3 − 2X2:3 + X1:3) and λ4 = 1

4E(X4:4 − 3X3:4 + 3X2:4 −X1:4).
From equation (22) applied to the means (s = 1) of order statistics, we can easily

obtain expansions for the L-moments of the Kw-G distribution. The L-moments
can also be calculated in terms of PWMs given in (20) as

λr+1 =
r∑

k=0

(−1)r−k

(
r

k

)(
r + k

k

)
τKw
1,k , r = 0, 1, . . .

In particular, λ1 = τKw
1,0 , λ2 = 2τKw

1,1 − τKw
1,0 , λ3 = 6τKw

1,2 − 6τKw
1,1 + τKw

1,0 and
λ4 = 20τKw

1,3 − 30τKw
1,2 + 12τKw

1,1 − τKw
1,0 .

8. Inference

Henceforth, let γ be the p-dimensional parameter vector of the baseline distribution
in equations (2) and (3). We consider independent random variables X1, . . . , Xn,
each Xi following a Kw-G distribution with parameter vector θ = (a, b, γ). The
log-likelihood function ` = `(θ) for the model parameters obtained from (3) is

`(θ) = n{log(a) + log(b)}+
n∑

i=1

log{g(xi; γ)}+ (a− 1)
n∑

i=1

log{G(xi; γ)}

+ (b− 1)
n∑

i=1

log{1−G(xi; γ)a}.

The elements of the score vector are given by

∂`(θ)
∂a

=
n

a
+

n∑

i=1

log{G(xi; γ)}
{

1− (b− 1)G(xi; γ)a

1−G(xi; γ)a

}
,

∂`(θ)
∂b

=
n

b
+

n∑

i=1

log{1−G(xi; γ)a}

and

∂`(θ)
∂γj

=
n∑

i=1

[
1

g(xi; γ)
∂g(xi; γ)

∂γj
+

1
G(xi; γ)

∂G(xi; γ)
∂γj

{
1− a(b− 1)

G(xi; γ)−a − 1

}]
,
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Table 1. AIC in increasing order, parameter estimates and standard errors for

the adjusted distributions.

Parameter estimate
(Standard error)

Distribution AIC a b

Beta normal 7176.9 18.20 0.25 µ = 12.69 σ = 42.76
(12.7) (0.0749) (23.4) (8.89)

Kw-normal 7177.4 14.86 0.27 µ = 25.52 σ = 42.24
(1.74) (0.0531) (0.592) (3.86)

Kw-exponential 7180.3 15.54 1.34 β = 46.22
(3.61) (0.325) (6.98)

Kw-gamma 7180.9 1.85 0.67 α = 7.37 β = 14.21
(1.36) (0.476) (6.31) (11.7)

Gamma 7183.9 α = 8.99 β = 15.56
(0.474) (0.843)

for j = 1, . . . , p. These partial derivatives depend on the specified baseline distribu-
tion. Numerical maximization of the log-likelihood above is accomplished by using
the RS method [18] available in the gamlss package [14] in R [19]. Since numerically
the maximum likelihood estimation of the parameters of the Kw-G distributions
is much simpler than the estimation of the parameters of the generalized beta dis-
tributions, we recommend to use Kw-G distributions in place of the second family
of distributions. Under suitable regularity conditions, the asymptotic distribution
of the maximum likelihood estimator θ̂ is multivariate normal with mean vector θ
and covariance matrix that can be estimated by

{−∂2`(θ)/∂θ∂θ>
}−1 evaluated at

θ = θ̂. The required second derivatives are computed numerically.
Consider two nested Kw-G distributions: a Kw-GA distribution with correspond-

ing parameters θ1, . . . , θr and maximized log-likelihood −2`(θ̂A), and a Kw-GB

distribution containing the same parameters θ1, . . . , θr plus additional parameters
θr+1, . . . , θp and maximized log-likelihood −2`(θ̂B), the models otherwise being
identical. For testing the Kw-GA distribution against the Kw-GB distribution, the
likelihood ratio statistic (LR) is simply equal to the difference −2{`(θ̂A)− `(θ̂B)}
and has an asymptotic χ2

p−r distribution.
We can compare non-nested Kw-G distributions by penalizing over-fitting us-

ing the Akaike information criterion given by AIC = −2`(θ̂) + 2p?, where p? is
the number of model parameters. The distribution with the smallest value of AIC
(among all distributions considered) is usually taken as the best model for describ-
ing the given data set. This comparison is based on the consideration of a model
that shows a lack of fit with one that does not.

9. Application

In this section we present an example with data from adult numbers of T. con-
fusum cultured at 29°C presented by Eugene et al. [2]. Table 1 gives AIC values
in increasing order for some fitted distributions and the MLEs of the parameters
together with its standard errors. According to AIC, the beta normal and Kw-
normal distributions yield slightly different fittings, outperforming the remaining
selected distributions. Notice that for the beta normal distribution the variability
in the estimates of a, µ and σ is appreciably greater.

The fitted distributions superimposed to the histogram of the data in Figure 3
reinforce the result in Table 1 for the gamma distribution. The beta normal and
the Kw-normal distributions are almost indistinguishable. This claim is further
strengthened by the comparison between observed and expected frequencies in
Table 2. The mean absolute deviation between expected and observed frequencies
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Figure 3. Histogram of adult number and fitted probability density functions.

Table 2. Observed and expected frequencies of adult numbers for T. confusum cultured

at 29°C and mean absolute deviation (MAD) between the frequencies.

Adult Expected
number Observed Gamma Kw-exponential Kw-normal Beta normal

30 1 0.75 0.19 0.21 0.22
50 1 9.85 6.32 5.77 5.67
70 40 39.72 37.82 37.43 37.39
90 96 83.59 90.75 91.85 93.70
110 122 117.15 127.14 125.53 127.54
130 140 124.56 127.81 123.95 123.73
150 92 108.51 104.22 102.41 100.77
170 70 81.35 74.35 75.95 74.30
190 44 54.24 48.68 52.00 50.97
210 38 32.93 30.16 33.18 32.80
230 25 18.51 18.03 19.80 19.86
250 13 9.76 10.53 11.06 11.32
270 4 4.87 6.06 5.79 6.08
290 1 2.32 3.46 2.84 3.08
310 1 1.06 1.96 1.31 1.47
330 2 0.47 1.10 0.56 0.66
Total 690 689.7 688.6 689.6 689.5
MAD 6.17 4.74 4.60 4.39

reaches the minimum value for the Kw-normal distribution.
Based on the values of the LR statistic (Section 8), the Kw-gamma and the

Kw-exponential distributions are not significantly different yielding LR = 1.542 (1
d.f., p-value = 0.214). Comparing the Kw-gamma and the gamma distributions,
we find a significant difference (LR = 6.681, 2 d.f., p-value = 0.035).
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10. Conclusions

Following the idea of the class of beta generalized distributions [2] and the distri-
bution by Kumaraswamy [1], we define a new family of Kw generalized (Kw-G)
distributions to extend several widely-known distributions such as the normal,
Weibull, gamma and Gumbel distributions. For each distribution G, we can define
the corresponding Kw-G distribution using simple formulae.

We show how some mathematical properties of the Kw-G distributions are read-
ily obtained from those of the parent distributions. The moments of the Kw-G
distribution can be expressed explicitly in terms of infinite weighted sums of prob-
ability weighted moments (PWMs) of the G distribution. The same happens for
the moments of order statistics and PWMs of the Kw-G distributions.

We discuss maximum likelihood estimation and inference on the parameters. The
maximum likelihood estimation in Kw-G distributions is much simpler than the
estimation in beta generalized distributions. Further, we can easily compute the
maximum values of the unrestricted and restricted log-likelihoods to construct like-
lihood ratio statistics for testing nested models in the new family of distributions.
An application of the new family to real data is given to show the feasibility of our
proposal. We hope this generalization may attract wider applications in statistics.
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