A new family of maximum scattered linear sets in PG(1, $\left.q^{6}\right)^{*}$

Daniele Bartoli (0)
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Perugia, Italy
Corrado Zanella (ㅁ)
Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università degli Studi di Padova,Vicenza, Italy
Ferdinando Zullo ${ }^{\dagger}$ (ㄷ)
Dipartimento di Matematica e Fisica, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy

Received 5 October 2019, accepted 11 July 2020, published online 12 November 2020

Abstract

We generalize the example of linear set presented by the last two authors in "Vertex properties of maximum scattered linear sets of $\mathrm{PG}\left(1, q^{n}\right)$ " (2019) to a more general family, proving that such linear sets are maximum scattered when q is odd and, apart from a special case, they are new. This solves an open problem posed in "Vertex properties of maximum scattered linear sets of $\mathrm{PG}\left(1, q^{n}\right)$ " (2019). As a consequence of Sheekey's results in "A new family of linear maximum rank distance codes" (2016), this family yields to new MRD-codes with parameters $(6,6, q ; 5)$.

Keywords: Scattered linear set, MRD-code, linearized polynomial.
Math. Subj. Class. (2020): 51E20, 05B25, 51E22

[^0]
1 Introduction

Let $\Lambda=\operatorname{PG}\left(V, \mathbb{F}_{q^{n}}\right)=\operatorname{PG}\left(1, q^{n}\right)$, where V is a vector space of dimension 2 over $\mathbb{F}_{q^{n}}$. If U is a k-dimensional \mathbb{F}_{q}-subspace of V, then the \mathbb{F}_{q}-linear set L_{U} is defined as

$$
L_{U}=\left\{\langle\mathbf{u}\rangle_{\mathbb{F}_{q^{n}}}: \mathbf{u} \in U \backslash\{\mathbf{0}\}\right\}
$$

and we say that L_{U} has rank k. Two linear sets L_{U} and L_{W} of $\operatorname{PG}\left(1, q^{n}\right)$ are said to be $\mathrm{P} \Gamma \mathrm{L}$-equivalent if there is an element ϕ in $\operatorname{P\Gamma L}\left(2, q^{n}\right)$ such that $L_{U}^{\phi}=L_{W}$. It may happen that two \mathbb{F}_{q}-linear sets L_{U} and L_{W} of $\mathrm{PG}\left(1, q^{n}\right)$ are PГL-equivalent even if the \mathbb{F}_{q}-vector subspaces U and W are not in the same orbit of $\Gamma \mathrm{L}\left(2, q^{n}\right)$ (see $[5,12]$ for further details). In this paper we focus on maximum scattered \mathbb{F}_{q}-linear sets of $\mathrm{PG}\left(1, q^{n}\right)$, that is, \mathbb{F}_{q}-linear sets of rank n in $\operatorname{PG}\left(1, q^{n}\right)$ of size $\left(q^{n}-1\right) /(q-1)$.

If $\langle(0,1)\rangle_{\mathbb{F}_{q^{n}}}$ is not contained in the linear set L_{U} of rank n of $\mathrm{PG}\left(1, q^{n}\right)$ (which we can always assume after a suitable projectivity), then $U=U_{f}:=\left\{(x, f(x)): x \in \mathbb{F}_{q^{n}}\right\}$ for some linearized polynomial (or q-polynomial) $f(x)=\sum_{i=0}^{n-1} a_{i} x^{q^{i}} \in \mathbb{F}_{q^{n}}[x]$. In this case we will denote the associated linear set by L_{f}. If L_{f} is scattered, then $f(x)$ is called a scattered q-polynomial; see [24].

The first examples of scattered linear sets were found by Blokhuis and Lavrauw in [3] and by Lunardon and Polverino in [18] (recently generalized by Sheekey in [24]). Apart from these, very few examples are known, see Section 3.

In [24, Section 5], Sheekey established a connection between maximum scattered linear sets of $\operatorname{PG}\left(1, q^{n}\right)$ and MRD-codes, which are interesting because of their applications to random linear network coding and cryptography. We point out his construction in the last section. By the results of [1] and [2], it seems that examples of maximum scattered linear sets are rare.

In this paper we will prove that any

$$
\begin{equation*}
f_{h}(x)=h^{q-1} x^{q}-h^{q^{2}-1} x^{q^{2}}+x^{q^{4}}+x^{q^{5}}, \quad h \in \mathbb{F}_{q^{6}}, \quad h^{q^{3}+1}=-1, \quad q \text { odd } \tag{1.1}
\end{equation*}
$$

is a scattered q-polynomial. This will be done by considering two cases:
Case 1: $h \in \mathbb{F}_{q}$, that is, $f_{h}(x)=x^{q}-x^{q^{2}}+x^{q^{4}}+x^{q^{5}}$; the condition $h^{q^{3}+1}=-1$ implies $q \equiv 1(\bmod 4)$.
Case 2: $h \notin \mathbb{F}_{q}$. In this case $h \neq \pm \sqrt{-1}$, otherwise $h \in \mathbb{F}_{q^{2}}$ and then we have $h^{q+1}=1$, a contradiction to $h^{q^{3}+1}=-1$.

Note that in Case 1, this example coincides with the one introduced in [27], where it has been proved that f_{h} is scattered for $q \equiv 1(\bmod 4)$ and $q \leq 29$. In Corollary 3.11 we will prove that the linear set \mathcal{L}_{h} associated with $f_{h}(x)$ is new, apart from the case of q a power of 5 and $h \in \mathbb{F}_{q}$. This solves an open problem posed in [27].

Finally, in Section 4 we prove that the \mathbb{F}_{q}-linear MRD-codes with parameters $(6,6, q ; 5)$ arising from linear sets \mathcal{L}_{h} are not equivalent to any previously known MRD-code, apart from the case $h \in \mathbb{F}_{q}$ and q a power of 5 ; see Theorem 4.1.

$2 \mathcal{L}_{h}$ is scattered

A q-polynomial (or linearized polynomial) over $\mathbb{F}_{q^{n}}$ is a polynomial of the form

$$
f(x)=\sum_{i=0}^{t} a_{i} x^{q^{i}}
$$

where $a_{i} \in \mathbb{F}_{q^{n}}$ and t is a positive integer. We will work with linearized polynomials of degree less than or equal to q^{n-1}. For such a kind of polynomial, the Dickson matrix ${ }^{1}$ $M(f)$ is defined as

$$
M(f):=\left(\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n-1} \\
a_{n-1}^{q} & a_{0}^{q} & \cdots & a_{n-2}^{q} \\
\vdots & \vdots & \ddots & \vdots \\
q_{1}^{q^{n-1}} & a_{2}^{q^{n-1}} & \cdots & a_{0}^{q^{n-1}}
\end{array}\right) \in \mathbb{F}_{q^{n}}^{n \times n}
$$

where $a_{i}=0$ for $i>t$.
Recently, different results regarding the number of roots of linearized polynomials have been presented, see $[4,9,22,23,26]$. In order to prove that a certain polynomial is scattered, we make use of the following result; see [4, Corollary 3.5].

Theorem 2.1. Consider the q-polynomial $f(x)=\sum_{i=0}^{n-1} a_{i} x^{q^{i}}$ over $\mathbb{F}_{q^{n}}$ and, with m as a variable, consider the matrix

$$
M(m):=\left(\begin{array}{cccc}
m & a_{1} & \cdots & a_{n-1} \\
a_{n-1}^{q} & m^{q} & \cdots & a_{n-2}^{q} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1}^{q^{n-1}} & a_{2}^{q^{n-1}} & \cdots & m^{q^{n-1}}
\end{array}\right)
$$

The determinant of the $(n-i) \times(n-i)$ matrix obtained by $M(m)$ after removing the first i columns and the last i rows of $M(m)$ is a polynomial $M_{n-i}(m) \in \mathbb{F}_{q^{n}}[m]$. Then the polynomial $f(x)$ is scattered if and only if $M_{0}(m)$ and $M_{1}(m)$ have no common roots.

2.1 Case 1

Let

$$
f(x)=x^{q}-x^{q^{2}}+x^{q^{4}}+x^{q^{5}} \in \mathbb{F}_{q^{6}}[x]
$$

By Theorem 2.1, $f(x)$ is scattered if and only if for each $m \in \mathbb{F}_{q^{6}}$ the determinants of the following two matrices do not vanish at the same time

$$
\begin{aligned}
& M_{5}(m)=\left(\begin{array}{ccccc}
1 & -1 & 0 & 1 & 1 \\
m^{q} & 1 & -1 & 0 & 1 \\
1 & m^{q^{2}} & 1 & -1 & 0 \\
1 & 1 & m^{q^{3}} & 1 & -1 \\
0 & 1 & 1 & m^{q^{4}} & 1
\end{array}\right), \\
& M_{6}(m)=\left(\begin{array}{cccccc}
m & 1 & -1 & 0 & 1 & 1 \\
1 & m^{q} & 1 & -1 & 0 & 1 \\
1 & 1 & m^{q^{2}} & 1 & -1 & 0 \\
0 & 1 & 1 & m^{q^{3}} & 1 & -1 \\
-1 & 0 & 1 & 1 & m^{q^{4}} & 1 \\
1 & -1 & 0 & 1 & 1 & m^{q^{5}}
\end{array}\right) .
\end{aligned}
$$

[^1]Theorem 2.2. The polynomial $f(x)$ is scattered if and only if $q \equiv 1(\bmod 4)$.
Proof. If q is even, then for $m=0$ the matrix $M_{6}(0)$ has rank two and $f(x)$ is not scattered.
Suppose now $q \equiv 3(\bmod 4)$. Then let $\bar{m} \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ such that $\bar{m}^{2}=-4$. So $\bar{m}=\bar{m}^{q^{2}}=\bar{m}^{q^{4}}=-\bar{m}^{q}=-\bar{m}^{q^{3}}=-\bar{m}^{q^{5}}$ and, by direct checking,

$$
\operatorname{det}\left(M_{5}(\bar{m})\right)=\left(\bar{m}^{2}+4\right)^{2}=0, \quad \operatorname{det}\left(M_{6}(\bar{m})\right)=-\left(\bar{m}^{2}+4\right)^{3}=0
$$

and $f(x)$ is not scattered.
Assume $q \equiv 1(\bmod 4)$ and suppose that $f(x)$ is not scattered. Then there exists $m_{0} \in \mathbb{F}_{q^{6}}$ such that

$$
\begin{equation*}
\left(\operatorname{det}\left(M_{5}\left(m_{0}\right)\right)\right)^{q^{s}}=0, \quad\left(\operatorname{det}\left(M_{6}\left(m_{0}\right)\right)\right)^{q^{t}}=0, \quad s, t=0,1,2,3,4,5 \tag{2.1}
\end{equation*}
$$

Consider

$$
P_{1}=\operatorname{det}\left(\begin{array}{ccccc}
1 & -1 & 0 & 1 & 1 \tag{2.2}\\
Y & 1 & -1 & 0 & 1 \\
1 & Z & 1 & -1 & 0 \\
1 & 1 & U & 1 & -1 \\
0 & 1 & 1 & V & 1
\end{array}\right), \quad P_{2}=\operatorname{det}\left(\begin{array}{cccccc}
X & 1 & -1 & 0 & 1 & 1 \\
1 & Y & 1 & -1 & 0 & 1 \\
1 & 1 & Z & 1 & -1 & 0 \\
0 & 1 & 1 & U & 1 & -1 \\
-1 & 0 & 1 & 1 & V & 1 \\
1 & -1 & 0 & 1 & 1 & W
\end{array}\right)
$$

Therefore,

$$
\begin{equation*}
X=m_{0}, Y=m_{0}^{q}, \ldots, W=m_{0}^{q^{5}} \tag{2.3}
\end{equation*}
$$

is a root of $P_{1}=: P_{1}^{(0)}, P_{2}=: P_{2}^{(0)}$ and of the polynomials inductively defined by

$$
P_{i}^{(j)}(X, Y, Z, U, V, W)=P_{i}^{(j-1)}(Y, Z, U, V, W, X), \quad j=1,2,3,4,5, \quad i=1,2
$$

which arise from Equation 2.1. These polynomials satisfy

$$
\left(P_{i}^{(j-1)}\left(m_{0}, m_{0}^{q}, m_{0}^{q^{2}}, m_{0}^{q^{3}}, m_{0}^{q^{4}}, m^{q^{5}}\right)\right)^{q}=P_{i}^{(j)}\left(m_{0}, m_{0}^{q}, m_{0}^{q^{2}}, m_{0}^{q^{3}}, m_{0}^{q^{4}}, m^{q^{5}}\right)
$$

One obtains a set S of twelve equations in X, Y, Z, U, V, W having a nonempty zero set. The following arguments are based on the fact that taking the resultant R of two polynomials in S with respect to any variable, the equations $S \cup\{R\}$ admit the same solutions.

We have

$$
\begin{equation*}
P_{1}=Y Z U V-Y Z U-2 Y Z+2 Y U+4 Y-Z U V+2 Z V-2 U V+4 V+16=0 \tag{2.4}
\end{equation*}
$$

Consider the following resultants:

$$
\begin{aligned}
Q_{1}:= & \operatorname{Res}_{V}\left(P_{1}^{(3)}, P_{1}\right)=2\left(X Y^{2} Z U-X Y^{2} Z W+X Y^{2} U W+2 X Y^{2} W\right. \\
& -2 X Y Z U+2 X Y Z W-2 X Y U W+8 X Y W+8 X Y-8 X W+16 X \\
& -Y^{2} Z U W-2 Y^{2} Z U+2 Y Z U W-8 Y Z U-8 Y Z+8 Y U-8 Y W \\
& +8 Z U-16 Z+16 U-16 W), \\
Q_{2}:= & \operatorname{Res}_{V}\left(P_{1}^{(4)}, P_{1}\right)=X Y Z W-X Y Z-X Y W+2 X Z \\
& -2 X W-2 Y Z+2 Y W+4 Z+4 W+16, \\
Q_{3}:= & \operatorname{Res}_{V}\left(P_{1}^{(5)}, P_{1}\right)=X Y Z U-X Y Z-2 X Y+2 X Z \\
& +4 X-Y Z U+2 Y U-2 Z U+4 U+16 .
\end{aligned}
$$

They all must be zero, as well as

$$
\begin{equation*}
\operatorname{Res}_{W}\left(\operatorname{Res}_{U}\left(Q_{1}, Q_{3}\right), Q_{2}\right)=8(Y Z-4)\left(Y^{2}+4\right)(X-Z)(X Z+4)(X Y-4) . \tag{2.5}
\end{equation*}
$$

We distinguish a number of cases.

1. Suppose that $Y^{2}=-4$. Since $q \equiv 1(\bmod 4), X=Y=Z=U=V=W$. So

$$
P_{1}=X^{4}-2 X^{3}+8 X+16
$$

and the resultant between $X^{2}+4$ and P_{1} with respect to X is $2^{27} \neq 0$ and then (2.3) is not a root of P_{1}, a contradiction.
2. Condition $Y Z=4$ is clearly equivalent to $X Y=4$. This means that $Y=U=$ $W=4 / X, Z=V=X$. Therefore, by (2.4) we get $X^{2}+4=0$ and we proceed as above.
3. Case $X Z=-4$. In this case $Z=-4 / X, U=-4 / Y, V=-4 / Z=X, W=Y$, $X=Z$ and therefore $X^{2}=-4$ and we can proceed as above.
4. Condition $X=Z$ implies $X \in \mathbb{F}_{q^{2}}$ and so $X=Z=V$ and $Y=U=W$. By substituting in P_{1} and P_{2},

$$
\begin{array}{r}
X^{3} Y^{3}+3 X^{3} Y-6 X^{2} Y^{2}-12 X^{2}+3 X Y^{3}+24 X Y-12 Y^{2}-64=0 \\
X^{2} Y^{2}-X^{2} Y+2 X^{2}-X Y^{2}-4 X Y+4 X+2 Y^{2}+4 Y+16=0
\end{array}
$$

Eliminating Y from these two equations one gets

$$
8\left(X^{2}+4\right)^{6}=0
$$

and so $X^{2}+4=0$. We proceed as in the previous cases.
This proves that such $m_{0} \in \mathbb{F}_{q^{6}}$ does not exist and the assertion follows.

2.2 Case 2

We apply the same methods as in Section 2.1. In the following preparatory lemmas (and in the rest of the paper) q is a power of an arbitrary prime p.

Lemma 2.3. Let $h \in \mathbb{F}_{q^{6}}$ be such that $h^{q^{3}+1}=-1, h^{4} \neq 1$. Then

1. $h^{q} \neq-h$;
2. $h^{q^{2}+1} \neq 1$;
3. $h^{q^{2}+1} \neq \pm h^{q}$, if q is odd;
4. $h^{4 q^{2}+4}+14 h^{2 q^{2}+2 q+2}+h^{4 q}=0$ implies $p=2$ and $h^{q^{2}-q+1}=1$ or $q=3^{2 s}$, $s \in \mathbb{N}^{*}, h^{q^{2}-q+1}= \pm \sqrt{-1}$.

Proof. The first three are easy computations. Consider now

$$
h^{4 q^{2}+4}+14 h^{2 q^{2}+2 q+2}+h^{4 q}=0
$$

For $p=2$ the equation above implies $h^{q^{2}-q+1}=1$.

Assume now $p \neq 2$. Since $h \neq 0$, it is equivalent to

$$
\left(h^{q^{2}-q+1}\right)^{4}+14\left(h^{q^{2}-q+1}\right)^{2}+1=0
$$

that is $\left(h^{q^{2}-q+1}\right)^{2}=-7 \pm 4 \sqrt{3}=(\sqrt{-3} \pm 2 \sqrt{-1})^{2}$. Let $z=-7 \pm 4 \sqrt{3}$. Note that $h^{q^{2}-q+1}= \pm \sqrt{z}$ belongs to $\mathbb{F}_{q^{2}}$. We distinguish two cases.

- $\sqrt{z} \in \mathbb{F}_{q}$. Then

$$
-1=h^{q^{3}+1}=\left(h^{q^{2}-q+1}\right)^{q+1}=(\pm \sqrt{z})^{q+1}=z=-7 \pm 4 \sqrt{3},
$$

a contradiction if $p \neq 3$. Also, $z=-1, q$ is an even power of 3 , and $h^{q^{2}-q+1}=$ $\pm \sqrt{-1}$.

- $\sqrt{z} \notin \mathbb{F}_{q}$. Then

$$
-1=h^{q^{3}+1}=\left(h^{q^{2}-q+1}\right)^{q+1}=(\pm \sqrt{z})^{q+1}=-z=7 \mp 4 \sqrt{3},
$$

a contradiction if $p \neq 2$.
Lemma 2.4. Let $h \in \mathbb{F}_{q^{6}}$ be such that $h^{q^{3}+1}=-1, h^{4} \neq 1$. If a root σ of the polynomial

$$
\begin{aligned}
h^{q+1} T^{q+1}+\left(h^{q^{2}+q+2}+h^{2 q^{2}+2}\right) & T^{q} \\
& +\left(h^{2 q^{2}+2}-h^{q^{2}+1}\right) T \\
& +h^{q^{2}+2 q+1}+h^{2 q^{2}+q+1}-h^{2 q}-h^{q^{2}+q} \in \mathbb{F}_{q^{6}}[T]
\end{aligned}
$$

belongs to $\mathbb{F}_{q^{6}}$, then one of the following cases occurs:

- $p=2, h^{q^{2}-q+1}=1$; or
- $q=3^{2 s}, s>0, h^{q^{2}-q+1}= \pm \sqrt{-1}$; or
- $\sigma= \pm\left(h^{q^{2}}+h^{q}\right)$; or
- $h \in \mathbb{F}_{q}$.

Proof. First, note that $\sigma=0$ would imply $h^{q}\left(h^{q}+h\right)^{q}\left(h^{q^{2}+1}-1\right)=0$ which is impossible by Lemma 2.3. Therefore $\sigma \neq 0$ and $\sigma^{q^{i}}=\frac{\ell_{i}(X)}{m_{i}(X)}$, where

$$
\begin{aligned}
\ell_{1}(X)= & -\left(h^{q^{2}+1}-1\right)\left(h^{q^{2}+1} X+h^{2 q}+h^{q^{2}+q}\right) \\
m_{1}(X)= & h\left(h^{q} X+h^{q^{2}+q+1}+h^{2 q^{2}+1}\right) \\
\ell_{2}(X)= & -\left(h^{q}+h\right)\left(2 h^{q^{2}+q+1} X+h^{2 q^{2}+q+2}+h^{3 q^{2}+2}+h^{3 q}+h^{q^{2}+2 q}\right) \\
m_{2}(X)= & h^{q+1}\left(h^{2 q^{2}+2} X+h^{2 q} X+2 h^{q^{2}+2 q+1}+2 h^{2 q^{2}+q+1}\right) \\
\ell_{3}(X)= & \left(h^{q}+h\right)^{q}\left(3 h^{2 q^{2}+q+2} X+h^{3 q} X+h^{3 q^{2}+q+3}+h^{4 q^{2}+3}+3 h^{q^{2}+3 q+1}\right. \\
& \left.\quad+3 h^{2 q^{2}+2 q+1}\right) \\
m_{3}(X)= & h^{q^{2}+q}\left(h^{3 q^{2}+3} X+3 h^{q^{2}+2 q+1} X+3 h^{2 q^{2}+2 q+2}+3 h^{3 q^{2}+q+2}+h^{4 q}+h^{q^{2}+3 q}\right)
\end{aligned}
$$

$$
\begin{aligned}
\ell_{4}(X)=(& \left.h^{q^{2}+1}-1\right)\left(h^{4 q^{2}+4} X+6 h^{2 q^{2}+2 q+2} X+h^{4 q} X+4 h^{3 q^{2}+2 q+3}+4 h^{4 q^{2}+q+3}\right. \\
& \left.+4 h^{q^{2}+4 q+1}+4 h^{2 q^{2}+3 q+1}\right) \\
m_{4}(X)= & h^{q^{2}}\left(4 h^{3 q^{2}+q+3} X+4 h^{q^{2}+3 q+1} X+h^{4 q^{2}+q+4}+h^{5 q^{2}+4}+6 h^{2 q^{2}+3 q+2}\right. \\
& \left.+6 h^{3 q^{2}+2 q+2}+h^{5 q}+h^{q^{2}+4 q}\right) \\
\ell_{5}(X)=- & \left(h^{q}+h\right)\left(h^{5 q^{2}+5} X+10 h^{3 q^{2}+2 q+3} X+5 h^{q^{2}+4 q+1} X+5 h^{4 q^{2}+2 q+4}\right. \\
& \left.+5 h^{5 q^{2}+q+4}+10 h^{2 q^{2}+4 q+2}+10 h^{3 q^{2}+3 q+2}+h^{6 q}+h^{q^{2}+5 q}\right) \\
m_{5}(X)=5 & h^{4 q^{2}+q+4} X+10 h^{2 q^{2}+3 q+2} X+h^{5 q} X+h^{5 q^{2}+q+5}+h^{6 q^{2}+5} \\
& +10 h^{3 q^{2}+3 q+3}+10 h^{4 q^{2}+2 q+3}+5 h^{q^{2}+5 q+1}+5 h^{2 q^{2}+4 q+1} \\
\ell_{6}(X)=(& \left.h^{q}+h\right)^{q}\left(6 h^{5 q^{2}+q+5} X+20 h^{q^{3}+3 q+3} X+6 X h^{q^{2}+5 q+1}+h^{6 q^{2}+q+6}\right. \\
& +h^{7 q^{2}+6}+15 h^{4 q^{2}+3 q+4}+15 h^{5 q^{2}+2 q+4}+15 h^{2 q^{2}+5 q+2} \\
& \left.+15 h^{3 q^{2}+4 q+2}+h^{7 q}+h^{q^{2}+6 q}\right) \\
m_{6}(X)= & h^{6 q^{2}+6} X+15 h^{4 q^{2}+2 q+4} X+15 h^{2 q^{2}+4 q+2} X+h^{q^{6}} X+6 h^{5 q^{2}+2 q+5} \\
& +6 h^{6 q^{2}+q+5}+20 h^{3 q^{2}+4 q+3}+20 h^{4 q^{2}+3 q+3}+6 h^{q^{2}+6 q+1}+6 h^{2 q^{2}+5 q+1} .
\end{aligned}
$$

Since $\sigma^{q^{6}}=\sigma$, in particular
$\left(h^{2 q^{2}+2}+h^{2 q}\right)\left(h^{4 q^{2}+4}+14 h^{2 q^{2}+2 q+2}+h^{4 q}\right)\left(h^{q^{2}}-h^{q}\right)\left(\sigma+h^{q}+h^{q^{2}}\right)\left(\sigma-h^{q}-h^{q^{2}}\right)=0$.
The claim follows from Lemma 2.3.
Lemma 2.5. Let $h \in \mathbb{F}_{q^{6}}$ be such that $h^{q^{3}+1}=-1, h^{4}=1$. If a root σ of the polynomial

$$
h^{q+1} T^{q^{2}+1}+\left(h^{q}+h\right)^{q+1} \in \mathbb{F}_{q^{6}}[T]
$$

belongs to $\mathbb{F}_{q^{6}}$, then

$$
\sigma= \pm\left(h^{q^{2}}+h^{q}\right)
$$

Proof. If $\sigma=0$, then $h^{q}+h=0$, a contradiction to Lemma 2.3. So we can suppose $\sigma \neq 0$. Then

$$
\begin{aligned}
\sigma^{q^{2}} & =-\frac{\left(h^{q-1}+1\right)^{q+1}}{\sigma} \\
\sigma^{q^{4}} & =\left(h^{q-1}+1\right)^{q^{3}+q^{2}-q-1} \sigma \\
\sigma^{q^{6}} & =-\frac{\left(h^{q-1}+1\right)^{q^{5}+q^{4}-q^{3}-q^{2}+q+1}}{\sigma}=\frac{\left(h^{q}+h\right)^{2 q}}{\sigma} .
\end{aligned}
$$

So, $\sigma= \pm\left(h^{q^{2}}+h^{q}\right)$.
Let $h \in \mathbb{F}_{q^{6}}$ be such that $h^{q^{3}+1}=-1, h^{4} \neq 1$. By Theorem 2.1 the polynomial

$$
f_{h}(x)=h^{q-1} x^{q}-\left(h^{q^{2}-1}\right) x^{q^{2}}+x^{q^{4}}+x^{q^{5}}
$$

is scattered if and only if for each $m \in \mathbb{F}_{q^{6}}$ the determinant of the following two matrices do not vanish at the same time

$$
\begin{align*}
& M_{6}(m)=\left(\begin{array}{cccccc}
m & h^{q-1} & -h^{q^{2}-1} & 0 & 1 & 1 \\
1 & m^{q} & h^{q^{2}-q} & h^{-q-1} & 0 & 1 \\
1 & 1 & m^{q^{2}} & -h^{-q^{2}-1} & h^{-q^{2}-q} & 0 \\
0 & 1 & 1 & m^{q^{3}} & h^{1-q} & -h^{1-q^{2}} \\
h^{q+1} & 0 & 1 & 1 & m^{q^{4}} & h^{q-q^{2}} \\
-h^{q^{2}+1} & h^{q^{2}+q} & 0 & 1 & 1 & m^{q^{5}}
\end{array}\right), \tag{2.6}\\
& M_{5}(m)=\left(\begin{array}{ccccc}
h^{q-1} & -h^{q^{2}-1} & 0 & 1 & 1 \\
m^{q} & h^{q^{2}-q} & h^{-q-1} & 0 & 1 \\
1 & m^{q^{2}} & -h^{-q^{2}-1} & h^{-q^{2}-q} & 0 \\
1 & 1 & m^{q^{3}} & h^{1-q} & -h^{1-q^{2}} \\
0 & 1 & 1 & m^{q^{4}} & h^{q-q^{2}}
\end{array}\right) . \tag{2.7}
\end{align*}
$$

Theorem 2.6. Let $h \in \mathbb{F}_{q^{6}}, q=2^{s}$, be such that $h^{q^{3}+1}=1$. Then the polynomial $f_{h}(x)=h^{q-1} x^{q}-\left(h^{q^{2}-1}\right) x^{q^{2}}+x^{q^{4}}+x^{q^{5}}$ is not scattered.

Proof. Consider $\bar{m}=h^{q^{2}}+h^{q}$. So,

$$
\begin{aligned}
& \bar{m}^{q}=\frac{1}{h}+h^{q^{2}}, \quad \bar{m}^{q^{2}}=\frac{1}{h^{q}}+\frac{1}{h}, \quad \bar{m}^{q^{3}}=\frac{1}{h^{q^{2}}}+\frac{1}{h^{q}}, \\
& \bar{m}^{q^{4}}=h+\frac{1}{h^{q^{2}}}, \quad \bar{m}^{q^{5}}=h^{q}+h .
\end{aligned}
$$

By direct checking, in this case, both $\operatorname{det}\left(M_{6}(\bar{m})\right)=\operatorname{det}\left(M_{5}(\bar{m})\right)=0$ and therefore $f_{h}(x)$ is not scattered.

Theorem 2.7. Let $h \in \mathbb{F}_{q^{6}}, q=p^{s}, p>2$, be such that $h^{q^{3}+1}=-1$ and $h \notin \mathbb{F}_{q}$. Then the polynomial $f_{h}(x)=h^{q-1} x^{q}-\left(h^{q^{2}-1}\right) x^{q^{2}}+x^{q^{4}}+x^{q^{5}}$ is scattered.

Proof. First we note that $h^{4} \neq 1$ since q is odd, $h \notin \mathbb{F}_{q}$, and $h^{q^{3}+1}=-1$. Suppose that $f(x)$ is not scattered. Then $\operatorname{det}\left(M_{6}\left(m_{0}\right)\right)=\operatorname{det}\left(M_{5}\left(m_{0}\right)\right)=0$ for some $m_{0} \in \mathbb{F}_{q^{6}}$. Consider

$$
X=m_{0}, \quad Y=m_{0}^{q}, \quad Z=m_{0}^{q^{2}}, \quad U=m_{0}^{q^{3}}, \quad V=m_{0}^{q^{4}}, \quad W=m_{0}^{q^{5}}
$$

With a procedure similar to the one in the proof of Theorem 2.2, we will compute resultants starting from the polynomials associated with $\operatorname{det}\left(M_{6}\left(m_{0}\right)\right)$, $\operatorname{det}\left(M_{5}\left(m_{0}\right)\right)^{q^{3}}$, and $\operatorname{det}\left(M_{5}\left(m_{0}\right)\right)^{q^{5}}$.

Eliminating W using $\operatorname{det}\left(M_{5}\left(m_{0}\right)\right)^{q^{3}}=0$ and U using $\operatorname{det}\left(M_{5}\left(m_{0}\right)\right)^{q^{5}}=0$, one gets from $\operatorname{det}\left(M_{6}\left(m_{0}\right)\right)=0$

$$
h^{q^{2}+2 q+1} \varphi_{1}(X, Y) \varphi_{2}(X, Y, Z, V) \varphi_{3}(X, Y, Z, V)=0
$$

where

$$
\begin{aligned}
& \varphi_{1}(X, Y)= h^{q+1} X Y+h^{2 q^{2}+2} X-h^{q^{2}+1} X+h^{q^{2}+q+2} Y+h^{2 q^{2}+2} Y \\
&+h^{q^{2}+2 q+1}+h^{2 q^{2}+q+1}-h^{2 q}-h^{q^{2}+q} ; \\
& \varphi_{2}(X, Y, Z, V)=h^{q^{2}+q+2} X Y Z V-h^{q^{2}+q+2} X Y Z-h^{2} X Y-h^{q+1} X Y \\
&-h^{2 q^{2}+q+1} X Z V-h^{2 q^{2}+2} X V-h^{2 q^{2}+q+1} X V-h^{q^{2}+2 q+3} Y Z \\
&-h^{2 q^{2}+q+3} Y Z-h^{q^{2}+q+2} Y-h^{2 q^{2}+2} Y-h^{q^{2}+2 q+1} Y \\
&-h^{2 q^{2}+q+1} Y-h^{q^{2}+2 q+1} Z V-h^{2 q^{2}+q+1} Z V-h^{2 q^{2}+q+1} V \\
&-h^{3 q^{2}+1} V-h^{2 q^{2}+2 q} V-h^{3 q^{2}+q} V+h^{2 q^{2}+q+3}+h^{3 q^{2}+3} \\
&+h^{2 q^{2}+2 q+2}+h^{3 q^{2}+q+2}-2 h^{q^{2}+q+2}-2 h^{2 q^{2}+2}-2 h^{q^{2}+2 q+1} \\
&-2 h^{2 q^{2}+q+1}+h^{q+1}+h^{q^{2}+1}+h^{2 q}+h^{q^{2}+q} ; \\
& \varphi_{3}(X, Y, Z, V)=h^{q^{2}+q+2} X Y Z V+h^{q^{2}+q+2} X Y Z-h^{2} X Y-h^{q+1} X Y \\
&+h^{2 q^{2}+q+1} X Z V-h^{2 q^{2}+2} X V-h^{2 q^{2}+q+1} X V-h^{q^{2}+2 q+3} Y Z \\
&-h^{2 q^{2}+q+3} Y Z+h^{q^{2}+q+2} Y+h^{2 q^{2}+2} Y+h^{q^{2}+2 q+1} Y \\
&+h^{2 q^{2}+q+1} Y-h^{q^{2}+2 q+1} Z V-h^{2 q^{2}+q+1} Z V+h^{2 q^{2}+q+1} V \\
&+h^{3 q^{2}+1} V+h^{2 q^{2}+2 q} V+h^{3 q^{2}+q} V+h^{2 q^{2}+q+3}+h^{3 q^{2}+3} \\
&+h^{2 q^{2}+2 q+2}+h^{3 q^{2}+q+2}-2 h^{q^{2}+q+2}-2 h^{2 q^{2}+2}-2 h^{q^{2}+2 q+1} \\
&-2 h^{2 q^{2}+q+1}+h^{q+1}+h^{q^{2}+1}+h^{2 q}+h^{q^{2}+q} .
\end{aligned}
$$

- If $\varphi_{1}(X, Y)=0$, then by Lemma 2.4 either $q=3^{2 s}$ and $h^{q^{2}-q+1}= \pm \sqrt{-1}$, or $X= \pm\left(h^{q^{2}}+h^{q}\right)$.
In this last case,

$$
\begin{align*}
Y & = \pm\left(-h^{-1}+h^{q^{2}}\right), & Z & = \pm\left(-h^{-q}-h^{-1}\right), \quad U= \pm\left(-h^{-q^{2}}-h^{-q}\right) \tag{2.8}\\
V & = \pm\left(h-h^{-q^{2}}\right), & W & = \pm\left(h^{q}+h\right)
\end{align*}
$$

By substituting in $\operatorname{det}\left(M_{5}\left(m_{0}\right)\right)$ one obtains

$$
4\left(h+h^{q}\right)^{q+1}\left(h^{q^{2}+1}-1\right)\left(h^{q^{2}+1}-h^{q}\right)=0
$$

and

$$
4\left(h+h^{q}\right)^{q+1}\left(h^{q^{2}+1}-1\right)\left(h^{q^{2}+1}+h^{q}\right)=0
$$

respectively. Both are not possible due to Lemma 2.3.
Consider now the case $q=3^{2 s}, h^{q^{2}-q+1}= \pm \sqrt{-1}$ and $X \neq \pm\left(h^{q^{2}}+h^{q}\right)$. So, using $\varphi_{1}(X, Y)=0$ and $h^{q^{2}-q+1}= \pm \sqrt{-1}$,

$$
\left.\begin{array}{rl}
\operatorname{det}(& \left.M_{5}\left(m_{0}\right)\right)
\end{array}\right)=0 \Longrightarrow \quad \begin{aligned}
& h^{q^{2}+2 q+1}\left(h^{q^{2}}+h^{q}\right)\left(h^{q}+h\right)\left(h^{q^{2}+1}-1\right)\left(h^{q^{2}+q}+h^{q}\right)^{3}\left(h^{q^{2}+q}-h^{q}\right)^{3} \\
& \cdot\left(h^{2 q^{2}+2}-h^{q^{2}+1}+h^{2 q}\right)\left(X+h^{q}+h^{q^{2}}\right)^{2}\left(X-h^{q}-h^{q^{2}}\right)^{2}=0
\end{aligned}
$$

By Lemma 2.3 we get

$$
h^{2 q^{2}+2}-h^{q^{2}+1}+h^{2 q}=0,
$$

which yields to a contradiction.

- If $\varphi_{2}(X, Y, Z, V)=0$ and $\varphi_{1}(X, Y) \neq 0$, eliminating V in $\operatorname{det}\left(M_{5}\left(m_{0}\right)\right)=0$ one gets

$$
\begin{aligned}
& 2 h^{3 q^{2}+2 q+1}\left(h^{q+2} Y Z-h^{q^{2}+2}-h^{q^{2}+q+1}+h^{q}+h\right) \cdot \\
& \cdot\left(h X Y+h^{q^{2}+q+1}+h^{2 q^{2}+1}-h^{q^{2}}-h^{q}\right) \cdot \\
& \cdot\left(h^{q+1} X Z+h^{q+1}+h^{q^{2}+1}+h^{2 q}+h^{q^{2}+q}\right) \cdot \\
& \cdot\left(h^{q+2} Y Z+h Y+h^{q} Y-h^{q^{2}+q+1} Z+h^{q} Z-h^{q^{2}+2}-h^{q^{2}+q+1}+h^{q}+h\right)=0 .
\end{aligned}
$$

- If $h^{q+2} Y Z-h^{q^{2}+2}-h^{q^{2}+q+1}+h^{q}+h=0$ then, from

$$
Z=\frac{h^{q^{2}+2}+h^{q^{2}+q+1}-h^{q}-h}{h^{q+2} Y}
$$

$\operatorname{det}\left(M_{5}\right)=0$ gives

$$
\left(h^{q}+h\right)^{q+1}\left(h Y-h^{q^{2}+1}+1\right)\left(h Y+h^{q^{2}+1}-1\right)=0
$$

So, (2.8) holds and as in the case $\varphi_{1}(X, Y)=0$ a contradiction arises.

- If $h X Y+h^{q^{2}+q+1}+h^{2 q^{2}+1}-h^{q^{2}}-h^{q}=0$ then, from

$$
Y=\frac{-h^{q^{2}+q+1}-h^{2 q^{2}+1}+h^{q^{2}}+h^{q}}{h X}
$$

the equation $\operatorname{det}\left(M_{5}\left(m_{0}\right)\right)=0$ yields

$$
\left(h^{q}+h\right)\left(h^{q^{2}+1}-1\right)\left(X-h^{q^{2}}-h^{q}\right)\left(X+h^{q^{2}}+h^{q}\right)=0 .
$$

So, (2.8) holds and as in the case $\varphi_{1}(X, Y)=0$, a contradiction.

- If $h^{q+1} X Z+h^{q+1}+h^{q^{2}+1}+h^{2 q}+h^{q^{2}+q}=0$ then by Lemma 2.5

$$
\left(X-h^{q^{2}}-h^{q}\right)\left(X+h^{q^{2}}+h^{q}\right)=0
$$

again a contradiction as before.

- If $h^{q+2} Y Z+h Y+h^{q} Y-h^{q^{2}+q+1} Z+h^{q} Z-h^{q^{2}+2}-h^{q^{2}+q+1}+h^{q}+h=0$ then

$$
Z=-\frac{\left(h^{q}+h\right) Y-h^{q^{2}+2}-h^{q^{2}+q+1}+h^{q}+h}{h^{q+2} Y-h^{q^{2}+q+1}+h^{q}}
$$

So, substituting $U=Z^{q}, V=Z^{q^{2}}, W=Z^{q^{3}}, X=Z^{q^{4}}$ in $\operatorname{det}\left(M_{5}\left(m_{0}\right)\right)=0$ we get

$$
\begin{aligned}
& (h-1)^{q+1}(h+1)^{q+1}\left(h^{q}+h\right)^{q+1}\left(h^{q^{2}+1}-1\right) \\
& \quad \cdot\left(h Y-h^{q^{2}+1}+1\right)^{2}\left(h Y+h^{q^{2}+1}-1\right)^{2}=0
\end{aligned}
$$

By Lemma 2.3, $\left(h Y-h^{q^{2}+1}+1\right)\left(h Y+h^{q^{2}+1}-1\right)=0$. Since $Y= \pm\left(h^{q^{2}}-\right.$ $1 / h)$ then (2.8) holds and a contradiction arises as in the case $\varphi_{1}(X, Y)=0$.

- If $\varphi_{3}(X, Y, Z, V)=0$ and $\varphi_{1}(X, Y) \neq 0$, eliminating U from $\operatorname{det}\left(M_{5}\left(m_{0}\right)\right)=0=$ $\operatorname{det}\left(M_{5}\left(m_{0}\right)\right)^{q^{5}}$ and then eliminating V using $\varphi_{3}(X, Y, Z, V)=0$ one gets

$$
\begin{aligned}
& 2 h^{3 q^{2}+q+1}\left(h^{q}+h\right)^{q}\left(h^{q+2} Y Z-h^{q^{2}+2}-h^{q^{2}+q+1}+h^{q}+h\right)^{2} . \\
& \cdot\left(h X Y+h^{q^{2}+q+1}+h^{2 q^{2}+1}-h^{q^{2}}-h^{q}\right) . \\
& \cdot\left(h^{q+1} X Z+h^{q+1}+h^{q^{2}+1}+h^{2 q}+h^{q^{2}+q}\right)=0 .
\end{aligned}
$$

A contradiction follows as in the case $\varphi_{2}(X, Y, Z, V)=0$ and $\varphi_{1}(X, Y) \neq 0$.

3 The equivalence issue

We will deal with the linear sets $\mathcal{L}_{h}=L_{f_{h}}$ associated with the polynomials defined in (1.1). Note that when $h \in \mathbb{F}_{q}$, such a linear set coincide with the one introduced in [27, Section 5].

3.1 Preliminary results

We start by listing the non-equivalent (under the action of $\Gamma \mathrm{L}\left(2, q^{6}\right)$) maximum scattered subspaces of $\mathbb{F}_{q^{6}}^{2}$, i.e. subspaces defining maximum scattered linear sets.

Example 3.1.

1. $U^{1}:=\left\{\left(x, x^{q}\right): x \in \mathbb{F}_{q^{6}}\right\}$, defining the linear set of pseudoregulus type, see [3, 11];
2. $U_{\delta}^{2}:=\left\{\left(x, \delta x^{q}+x^{q^{5}}\right): x \in \mathbb{F}_{q^{6}}\right\}, \mathrm{N}_{q^{6} / q}(\delta) \notin\{0,1\}$, defining the linear set of LP-type, see [16, 18, 20, 24];
3. $U_{\delta}^{3}:=\left\{\left(x, x^{q}+\delta x^{q^{4}}\right): x \in \mathbb{F}_{q^{6}}\right\}, \mathrm{N}_{q^{6} / q^{3}}(\delta) \notin\{0,1\}$, satisfying further conditions on δ and q, see [6, Theorems 7.1 and 7.2] and [23] ${ }^{2}$;
4. $U_{\delta}^{4}:=\left\{\left(x, x^{q}+x^{q^{3}}+\delta x^{q^{5}}\right): x \in \mathbb{F}_{q^{6}}\right\}, q$ odd and $\delta^{2}+\delta=1$, see $[10,21]$.

In order to simplify the notation, we will denote by L^{1} and L_{δ}^{i} the \mathbb{F}_{q}-linear set defined by U^{1} and U_{δ}^{i}, respectively. We will also use the following notation:

$$
\mathcal{U}_{h}:=U_{h^{q-1} x^{q}-h^{q^{2}-1} x^{q^{2}}+x^{q^{4}}+x^{q^{5}}} .
$$

Remark 3.2. Consider the non-degenerate symmetric bilinear form of $\mathbb{F}_{q^{6}}$ over \mathbb{F}_{q} defined by

$$
\langle x, y\rangle=\operatorname{Tr}_{q^{6} / q}(x y),
$$

for each $x, y \in \mathbb{F}_{q^{6}}$. Then the adjoint \hat{f} of the linearized polynomial $f(x)=\sum_{i=0}^{5} a_{i} x^{q^{i}} \in$ $\tilde{\mathcal{L}}_{6, q}$ with respect to the bilinear form \langle,$\rangle is$

$$
\hat{f}(x)=\sum_{i=0}^{5} a_{i}^{q^{6-i}} x^{q^{6-i}},
$$

i.e.

$$
\operatorname{Tr}_{q^{6} / q}(x f(y))=\operatorname{Tr}_{q^{6} / q}(y \hat{f}(x))
$$

for any $x, y \in \mathbb{F}_{q^{6}}$.

[^2]In [10, Propositions 3.1, 4.1 and 5.5] the following result has been proved.
Lemma 3.3. Let L_{f} be one of the maximum scattered of $\mathrm{PG}\left(1, q^{6}\right)$ listed before. Then a linear set L_{U} of $\mathrm{PG}\left(1, q^{6}\right)$ is $\mathrm{P} \Gamma \mathrm{L}$-equivalent to L_{f} if and only if U is $\Gamma \mathrm{L}$-equivalent either to U_{f} or to $U_{\hat{f}}$ Furthermore, L_{U} is PГL-equivalent to L_{δ}^{3} if and only if U is Γ L-equivalent to U_{δ}^{3}.

We will work in the following framework. Let x_{0}, \ldots, x_{5} be the homogeneous coordinates of $\operatorname{PG}\left(5, q^{6}\right)$ and let

$$
\Sigma=\left\{\left\langle\left(x, x^{q}, \ldots, x^{q^{5}}\right)\right\rangle_{\mathbb{F}_{q^{6}}}: x \in \mathbb{F}_{q^{6}}\right\}
$$

be a fixed canonical subgeometry of $\operatorname{PG}\left(5, q^{6}\right)$. The collineation $\hat{\sigma}$ of $\operatorname{PG}\left(5, q^{6}\right)$ defined by $\left\langle\left(x_{0}, \ldots, x_{5}\right)\right\rangle_{\mathbb{F}_{q^{6}}}^{\hat{2}}=\left\langle\left(x_{5}^{q}, x_{0}^{q}, \ldots, x_{4}^{q}\right)\right\rangle_{\mathbb{F}_{q^{6}}}$ fixes precisely the points of Σ. Note that if σ is a collineation of $\operatorname{PG}\left(5, q^{6}\right)$ such that $\operatorname{Fix}(\sigma)=\Sigma$, then $\sigma=\hat{\sigma}^{s}$, with $s \in\{1,5\}$.

Let Γ be a subspace of $\operatorname{PG}\left(5, q^{6}\right)$ of dimension $k \geq 0$ such that $\Gamma \cap \Sigma=\emptyset$, and $\operatorname{dim}\left(\Gamma \cap \Gamma^{\sigma}\right) \geq k-2$. Let r be the least positive integer satisfying the condition

$$
\begin{equation*}
\operatorname{dim}\left(\Gamma \cap \Gamma^{\sigma} \cap \Gamma^{\sigma^{2}} \cap \cdots \cap \Gamma^{\sigma^{r}}\right)>k-2 r \tag{3.1}
\end{equation*}
$$

Then we will call the integer r the intersection number of Γ w.r.t. σ and we will denote it by $\operatorname{intn}_{\sigma}(\Gamma)$; see [27].

Note that if $\hat{\sigma}$ is as above, then $\operatorname{int}_{\hat{\sigma}}(\Gamma)=\operatorname{intn}_{\hat{\sigma}^{5}}(\Gamma)$ for any Γ.
As a consequence of the results of $[11,27]$ we have the following result.
Result 3.4. Let L be a scattered linear set of $\Lambda=P G\left(1, q^{6}\right)$ which can be realized in $\mathrm{PG}\left(5, q^{6}\right)$ as the projection of $\Sigma=\operatorname{Fix}(\sigma)$ from $\Gamma \simeq \mathrm{PG}\left(3, q^{6}\right)$ over Λ. If $\operatorname{intn}_{\sigma}(\Gamma) \neq$ 1,2 , then L is not equivalent to any linear set neither of pseudoregulus type nor of LP-type.

$3.2 \mathcal{L}_{h}$ is new in most of the cases

The linear set \mathcal{L}_{h} can be obtained by projecting the canonical subgeometry

$$
\Sigma=\left\{\left\langle\left(x, x^{q}, x^{q^{2}}, x^{q^{3}}, x^{q^{4}}, x^{q^{5}}\right)\right\rangle_{\mathbb{F}_{q^{6}}}: x \in \mathbb{F}_{q^{6}}^{*}\right\}
$$

from

$$
\Gamma:\left\{\begin{array}{l}
x_{0}=0 \\
h^{q-1} x_{1}-h^{q^{2}-1} x_{2}+x_{4}+x_{5}=0
\end{array}\right.
$$

to

$$
\Lambda:\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{3}=0 \\
x_{4}=0
\end{array}\right.
$$

Then

$$
\Gamma^{\hat{\sigma}}:\left\{\begin{array}{l}
x_{1}=0 \\
h^{q^{2}-q} x_{2}+h^{-q-1} x_{3}+x_{5}+x_{0}=0
\end{array}\right.
$$

and

$$
\Gamma^{\hat{\sigma}^{2}}:\left\{\begin{array}{l}
x_{2}=0 \\
-h^{-1-q^{2}} x_{3}+h^{-q^{2}-q} x_{4}+x_{0}+x_{1}=0
\end{array}\right.
$$

Therefore,

$$
\Gamma \cap \Gamma^{\hat{\sigma}}:\left\{\begin{array}{l}
x_{0}=0 \\
x_{1}=0 \\
-h^{q^{2}-1} x_{2}+x_{4}+x_{5}=0 \\
h^{q^{2}-q} x_{2}+h^{-q-1} x_{3}+x_{5}=0
\end{array}\right.
$$

and

$$
\Gamma \cap \Gamma^{\hat{\sigma}} \cap \Gamma^{\hat{\sigma}^{2}}:\left\{\begin{array}{l}
x_{0}=0 \\
x_{1}=0 \\
x_{2}=0 \\
x_{4}+x_{5}=0 \\
h^{-q-1} x_{3}+x_{5}=0 \\
-h^{-q^{2}-1} x_{3}+h^{-q^{2}-q} x_{4}=0
\end{array}\right.
$$

Hence, $\operatorname{dim}_{\mathbb{F}_{q^{6}}}\left(\Gamma \cap \Gamma^{\hat{\sigma}}\right)=1$ and $\operatorname{dim}_{\mathbb{F}_{q^{6}}}\left(\Gamma \cap \Gamma^{\hat{\sigma}} \cap \Gamma^{\hat{\sigma}^{2}}\right)=-1$, since q is odd and $h^{q^{3}+1} \neq 1$. So, $\operatorname{intn}_{\sigma}(\Gamma)=3$ and hence, by Result 3.4 it follows that \mathcal{L}_{h} is not equivalent neither to L^{1} nor to L_{δ}^{2}.

Generalizing [27, Propositions 5.4 and 5.5] we have the following two propositions.
Proposition 3.5. The linear set \mathcal{L}_{h} is not PГL-equivalent to L_{δ}^{3}.
Proof. By Lemma 3.3, we have to check whether \mathcal{U}_{h} and U_{δ}^{3} are Γ L-equivalent, with $\mathrm{N}_{q^{6} / q^{3}}(\delta) \notin\{0,1\}$. Suppose that there exist $\rho \in \operatorname{Aut}\left(\mathbb{F}_{q^{6}}\right)$ and an invertible matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that for each $x \in \mathbb{F}_{q^{6}}$ there exists $z \in \mathbb{F}_{q^{6}}$ satisfying

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x^{\rho}}{h^{\rho(q-1)} x^{\rho q}-h^{\rho\left(q^{2}-1\right)} x^{\rho q^{2}}+x^{\rho q^{4}}+x^{\rho q^{5}}}=\binom{z}{z^{q}+\delta z^{q^{4}}} .
$$

Equivalently, for each $x \in \mathbb{F}_{q^{6}}$ we have ${ }^{3}$

$$
\begin{aligned}
& c x^{\rho}+d\left(h^{q-1} x^{\rho q}-h^{q^{2}-1} x^{\rho q^{2}}+x^{\rho q^{4}}+x^{\rho q^{5}}\right)= \\
& \quad a^{q} x^{\rho q}+b^{q}\left(h^{q^{2}-q} x^{\rho q^{2}}+h^{-q-1} x^{\rho q^{3}}+x^{\rho q^{5}}+x^{\rho}\right) \\
& \quad+\delta\left[a^{q^{4}} x^{\rho q^{4}}+b^{q^{4}}\left(h^{-q^{2}+q} x^{\rho q^{5}}-h^{q+1} x^{\rho}+x^{\rho q^{2}}+x^{\rho q^{3}}\right)\right]
\end{aligned}
$$

This is a polynomial identity in x^{ρ} and hence we have the following relations:

$$
\left\{\begin{array}{l}
c=b^{q}+\delta h^{q+1} b^{q^{4}} \tag{3.2}\\
d h^{q-1}=a^{q} \\
-d h^{q^{2}-1}=h^{q^{2}-q} b^{q}+\delta b^{q^{4}} \\
0=h^{-1-q} b^{q}+\delta b^{q^{4}} \\
d=\delta a^{q^{4}} \\
d=b^{q}+\delta h^{q-q^{2}} b^{q^{4}}
\end{array}\right.
$$

[^3]From the second and the fifth equations, if $a \neq 0$ then $\delta h^{q-1}=a^{q-q^{4}}$ and $\mathrm{N}_{q^{6} / q^{3}}(\delta)=$ 1 , which is not possible and so $a=d=0$ and $b, c \neq 0$. By the last equation, we would get $\mathrm{N}_{q^{6} / q^{3}}(\delta)=1$, a contradiction.
Proposition 3.6. The linear set \mathcal{L}_{h} is PГL-equivalent to L_{δ}^{4} (with $\delta^{2}+\delta=1$) if and only if there exist $a, b, c, d \in \mathbb{F}_{q^{6}}$ and $\rho \in \operatorname{Aut}\left(\mathbb{F}_{q^{6}}\right)$ such that $a d-b c \neq 0$ and either

$$
\left\{\begin{array}{l}
c=b^{q}-\delta k^{q^{2}+1} b^{q^{5}} \tag{3.3}\\
a=-k^{q+1} b^{q^{4}}-\delta^{q} b^{q^{2}} \\
d=k^{-q+1} b^{q^{3}}+\delta b^{q^{5}} \\
b^{q^{3}}+\left(k^{q-1}+\delta k^{q+q^{2}}\right) b^{q^{5}}=0 \\
k^{q^{2}-q} b^{q}+\left(1+k^{q^{2}-q}\right) b^{q^{3}}+\delta k^{q^{2}-1} b^{q^{5}}=0 \\
-\delta b^{q}+\left(k^{-q+1}+\delta^{2} k^{1-q^{2}}\right) b^{q^{3}}+\delta b^{q^{5}}=0
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
c=\delta b^{q}-k^{q^{2}+1} b^{q^{5}} \tag{3.4}\\
a=-\delta^{q} k^{q+1} b^{q^{4}}-b^{q^{2}} \\
d=k^{-q+1} b^{q^{3}}+b^{q^{5}} \\
\delta b^{q^{3}}+\left(k^{q-1}-\delta k^{q^{2}+q}\right) b^{q^{5}}=0 \\
\delta k^{q^{2}-q} b^{q}+\left(k^{q^{2}-q}+1\right) b^{q^{3}}+k^{q^{2}-1} b^{q^{5}}=0 \\
\delta^{2} b^{q}+\left(k^{-q+1}+\delta^{2} k^{-q^{2}+1}\right) b^{q^{3}}+b^{q^{5}}=0
\end{array}\right.
$$

where $k=h^{\rho}$.
Proof. By Lemma 3.3 we have to check whether \mathcal{U}_{h} is equivalent either to U_{δ}^{4} or to $\left(U_{\delta}^{4}\right)^{\perp}$. Suppose that there exist $\rho \in \operatorname{Aut}\left(\mathbb{F}_{q^{6}}\right)$ and an invertible matrix $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ such that for each $x \in \mathbb{F}_{q^{6}}$ there exists $z \in \mathbb{F}_{q^{6}}$ satisfying

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x^{\rho}}{h^{\rho(q-1)} x^{\rho q}-h^{\rho\left(q^{2}-1\right)} x^{\rho q^{2}}+x^{\rho q^{4}}+x^{\rho q^{5}}}=\binom{z}{z^{q}+z^{q^{3}}+\delta z^{q^{5}}} .
$$

Equivalently, for each $x \in \mathbb{F}_{q^{6}}$ we have

$$
\begin{aligned}
& c x^{\rho}+d\left(k^{q-1} x^{\rho q}-k^{q^{2}-1} x^{\rho q^{2}}+x^{\rho q^{4}}+x^{\rho q^{5}}\right)= \\
& \quad a^{q} x^{\rho q}+b^{q}\left(k^{q^{2}-q} x^{\rho q^{2}}+k^{-1-q} x^{\rho q^{3}}+x^{\rho q^{5}}+x^{\rho}\right) \\
& \quad+a^{q^{3}} x^{\rho q^{3}}+b^{q^{3}}\left(k^{-q+1} x^{\rho q^{4}}-k^{-q^{2}+1} x^{\rho q^{5}}+x^{\rho q}+x^{\rho q^{2}}\right) \\
& \quad+\delta\left[a^{q^{5}} x^{\rho q^{5}}+b^{q^{5}}\left(-k^{1+q^{2}} x^{\rho}+k^{q^{2}+q} x^{\rho q}+x^{\rho q^{3}}+x^{\rho q^{4}}\right)\right] .
\end{aligned}
$$

This is a polynomial identity in x^{ρ} which yields to the following equations

$$
\left\{\begin{array}{l}
c=b^{q}-\delta k^{q^{2}+1} b^{q^{5}} \\
d k^{q-1}=a^{q}+b^{q^{3}}+\delta k^{q+q^{2}} b^{q^{5}} \\
-d k^{q^{2}-1}=k^{q^{2}-q} b^{q}+b^{q^{3}} \\
0=k^{-q-1} b^{q}+a^{q^{3}}+\delta b^{q^{5}} \\
d=k^{-q+1} b^{q^{3}}+\delta b^{q^{5}} \\
d=b^{q}-k^{-q^{2}+1} b^{q^{3}}+\delta a^{q^{5}}
\end{array}\right.
$$

which can be written as (3.3).
Now, suppose that there exist $\rho \in \operatorname{Aut}\left(\mathbb{F}_{q^{6}}\right)$ and an invertible matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that for each $x \in \mathbb{F}_{q^{6}}$ there exists $z \in \mathbb{F}_{q^{6}}$ satisfying

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x^{\rho}}{h^{\rho(q-1)} x^{\rho q}-h^{\rho\left(q^{2}-1\right)} x^{\rho q^{2}}+x^{\rho q^{4}}+x^{\rho q^{5}}}=\binom{z}{\delta z^{q}+z^{q^{3}}+z^{q^{5}}} .
$$

Equivalently, for each $x \in \mathbb{F}_{q^{6}}$ we have

$$
\begin{aligned}
& c x^{\rho}+d\left(k^{q-1} x^{\rho q}-k^{q^{2}-1} x^{\rho q^{2}}+x^{\rho q^{4}}+x^{\rho q^{5}}\right)= \\
& \quad \delta\left[a^{q} x^{\rho q}+b^{q}\left(k^{q^{2}-q} x^{\rho q^{2}}+k^{-1-q} x^{\rho q^{3}}+x^{\rho q^{5}}+x^{\rho}\right)\right] \\
& \quad+a^{q^{3}} x^{\rho q^{3}}+b^{q^{3}}\left(k^{-q+1} x^{\rho q^{4}}-k^{-q^{2}+1} x^{\rho q^{5}}+x^{\rho q}+x^{\rho q^{2}}\right) \\
& \quad+a^{q^{5}} x^{\rho q^{5}}+b^{q^{5}}\left(-k^{1+q^{2}} x^{\rho}+k^{q^{2}+q} x^{\rho q}+x^{\rho q^{3}}+x^{\rho q^{4}}\right) .
\end{aligned}
$$

This is a polynomial identity in x^{ρ} which yields to the following equations

$$
\left\{\begin{array}{l}
c=\delta b^{q}-k^{q^{2}+1} b^{q^{5}} \\
d k^{q-1}=\delta a^{q}+b^{q^{3}}+k^{q+q^{2}} b^{q^{5}} \\
-d k^{q^{2}-1}=\delta k^{q^{2}-q} b^{q}+b^{q^{3}} \\
0=\delta k^{-q-1} b^{q}+a^{q^{3}}+b^{q^{5}} \\
d=k^{-q+1} b^{q^{3}}+b^{q^{5}} \\
d=\delta b^{q}-k^{-q^{2}+1} b^{q^{3}}+a^{q^{5}}
\end{array}\right.
$$

which can be written as (3.4).
We are now ready to prove that when $h \notin \mathbb{F}_{q^{2}}, \mathcal{L}_{h}$ is new.
Proposition 3.7. If $h \notin \mathbb{F}_{q^{2}}$, then \mathcal{L}_{h} is not $\mathrm{P} \Gamma$ L-equivalent to L_{δ}^{4} (with $\delta^{2}+\delta=1$).
Proof. By Proposition 3.6 we have to show that there are no a, b, c and d in $\mathbb{F}_{q^{6}}$ such that $a d-b c \neq 0$ and (3.3) or (3.4) are satisfied. Note that $b=0$ in (3.3) and (3.4) yields $a=c=d=0$, a contradiction. So, suppose $b \neq 0$. Since $h \notin \mathbb{F}_{q^{2}}$ then $k \notin \mathbb{F}_{q^{2}}$. We start by proving that the last three equations of (3.3), i.e.

$$
\left\{\begin{array}{l}
\mathrm{Eq}_{1}: b^{q^{3}}+\left(k^{q-1}+\delta k^{q+q^{2}}\right) b^{q^{5}}=0 \\
\mathrm{Eq}_{2}: k^{q^{2}-q} b^{q}+\left(1+k^{q^{2}-q}\right) b^{q^{3}}+\delta k^{q^{2}-1} b^{q^{5}}=0 \\
\mathrm{Eq}_{3}:-\delta b^{q}+\left(k^{-q+1}+\delta^{2} k^{1-q^{2}}\right) b^{q^{3}}+\delta b^{q^{5}}=0
\end{array}\right.
$$

yield a contradiction. As in the above section, we will consider the q-th powers of Eq_{1}, Eq_{2} and Eq_{3} replacing $b^{q^{i}}, k^{q^{j}}$, and $\delta^{q^{\ell}}$ (respectively) by X_{i}, Y_{j}, and Z_{ℓ} with $i, j \in$ $\{0,1,2,3,4,5\}$ and $\ell \in\{0,1\}$. Consider the set S of polynomials in the variables X_{i}, Y_{j}, and Z_{ℓ}

$$
S:=\left\{\mathrm{Eq}_{1}^{q^{\alpha}}, \mathrm{Eq}_{2}^{q^{\beta}}, \mathrm{Eq}_{3}^{q^{\gamma}}: \alpha, \beta, \gamma \in\{0,1,2,3,4,5\}\right\} .
$$

By eliminating from S the variables X_{5}, X_{4}, X_{3}, and X_{2} using $\mathrm{Eq}_{1}, \mathrm{Eq}_{1}^{q}, \mathrm{Eq}_{1}^{q^{4}}$, and $\mathrm{Eq}_{1}^{q^{3}}$ respectively we obtain

$$
X_{0} Y_{1}\left(Z_{1} Y_{0}^{2} Y_{2}-Z_{1} Y_{0} Y_{2}^{2}-Z_{1} Y_{0}+Z_{1} Y_{2}-Z_{0}^{2} Z_{2}-Z_{2}\right)=0
$$

By the conditions on b and $k, X_{0} Y_{1} \neq 0$ and therefore

$$
P:=Z_{1} Y_{0}^{2} Y_{2}-Z_{1} Y_{0} Y_{2}^{2}-Z_{1} Y_{0}+Z_{1} Y_{2}-Z_{0}^{2} Z_{2}-Z_{2}=0
$$

We eliminate Z_{1} in S using P, obtaining, w.r.t. b, k, and δ,

$$
b k^{q^{2}+1}\left(k-k^{q}\right)\left(k+k^{q}\right)\left(k^{q^{2}+1}-1\right)\left(k^{q^{2}+1}+1\right)=0
$$

a contradiction to $k \notin \mathbb{F}_{q^{2}}$.
Consider now the last three equations of (3.4), i.e.

$$
\left\{\begin{array}{l}
\mathrm{Eq}_{1}: \delta b^{q^{3}}+\left(k^{q-1}-\delta k^{q^{2}+q}\right) b^{q^{5}}=0 \\
\mathrm{Eq}_{2}: \delta k^{q^{2}-q} b^{q}+\left(k^{q^{2}-q}+1\right) b^{q^{3}}+k^{q^{2}-1} b^{q^{5}}=0 \\
\mathrm{Eq}_{3}: \delta^{2} b^{q}+\left(k^{-q+1}+\delta^{2} k^{-q^{2}+1}\right) b^{q^{3}}+b^{q^{5}}=0
\end{array}\right.
$$

As before, we will consider the q-th powers of $\mathrm{Eq}_{1}, \mathrm{Eq}_{2}$, and Eq_{3} replacing $b^{q^{i}}$, $k^{q^{j}}$, and $\delta^{q^{\ell}}$ (respectively) by X_{i}, Y_{j}, and Z_{ℓ} with $i, j \in\{0,1,2,3,4,5\}$ and $\ell \in\{0,1\}$. Consider the set S of polynomials in the variables X_{i}, Y_{j} and Z_{ℓ}

$$
S:=\left\{\mathrm{Eq}_{1}^{q^{\alpha}}, \mathrm{Eq}_{2}^{q^{\beta}}, \mathrm{Eq}_{3}^{q^{\gamma}}: \alpha, \beta, \gamma \in\{0,1,2,3,4,5\}\right\}
$$

We eliminate in S the variables X_{5}, X_{4}, X_{3}, and X_{2} using $\mathrm{Eq}_{1}, \mathrm{Eq}_{1}^{q}, \mathrm{Eq}_{1}^{q^{4}}$, and $\mathrm{Eq}_{1}^{q^{3}}$ respectively, and we get
$Y_{0} X_{0}\left(Z_{1} Y_{0}^{2} Y_{2}^{2}+2 Z_{1} Y_{0} Y_{1}^{2} Y_{2}+2 Z_{1} Y_{0} Y_{2}+Z_{1} Y_{1}^{2}-Y_{0}^{2} Y_{2}^{2}-Y_{0} Y_{1}^{2} Y_{2}-Y_{0} Y_{2}-Y_{1}^{2}\right)=0$.
Since $b \neq 0$ and $k \notin \mathbb{F}_{q^{2}}, X_{0} Y_{0} \neq 0$ and therefore
$P:=Z_{1} Y_{0}^{2} Y_{2}^{2}+2 Z_{1} Y_{0} Y_{1}^{2} Y_{2}+2 Z_{1} Y_{0} Y_{2}+Z_{1} Y_{1}^{2}-Y_{0}^{2} Y_{2}^{2}-Y_{0} Y_{1}^{2} Y_{2}-Y_{0} Y_{2}-Y_{1}^{2}=0$.
Once again we consider the resultants of the polynomials in S and P w.r.t. Z_{1} and we obtain

$$
b k^{q^{2}+2 q}\left(k-k^{q}\right)\left(k+k^{q}\right)\left(k^{q^{2}+1}-1\right)\left(k^{q^{2}+1}+1\right)=0
$$

a contradiction to $k \notin \mathbb{F}_{q^{2}}$.
As a consequence of the above considerations and Propositions 3.5 and 3.7, we have the following.

Corollary 3.8. If $h \notin \mathbb{F}_{q^{2}}$, then \mathcal{L}_{h} is not $\mathrm{P} \Gamma \mathrm{L}$-equivalent to any known scattered linear set in $\operatorname{PG}\left(1, q^{6}\right)$.

$3.3 \mathcal{L}_{h}$ may be defined by a trinomial

Suppose that $h \in \mathbb{F}_{q^{2}}$, then the condition on h becomes $h^{q+1}=-1$. For such h we can prove that the linear set \mathcal{L}_{h} can be defined by the q-polynomial $\left(h^{-1}-1\right) x^{q}+x^{q^{3}}+$ $(h-1) x^{q^{5}}$.
Proposition 3.9. If $h \in \mathbb{F}_{q^{2}}$, then the linear set \mathcal{L}_{h} is $\mathrm{P} \Gamma \mathrm{L}$-equivalent to

$$
L_{\mathrm{tri}}:=\left\{\left\langle\left(x,\left(h^{-1}-1\right) x^{q}+x^{q^{3}}+(h-1) x^{q^{5}}\right)\right\rangle_{\mathbb{F}_{q^{6}}}: x \in \mathbb{F}_{q^{6}}^{*}\right\}
$$

Proof. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{GL}\left(2, q^{6}\right)$ with $a=-h+h^{-1}, b=1, c=h^{-1}-1-$ $h^{3}+h^{2}$ and $d=h-h^{2}-1$. Straightforward computations show that the subspaces \mathcal{U}_{h} and $U_{\left(h^{-1}-1\right) x^{q}+x^{q^{3}}+(h-1) x^{q^{5}}}$ are $\Gamma \mathrm{L}\left(2, q^{6}\right)$-equivalent under the action of the matrix A. Hence, the linear sets \mathcal{L}_{h} and $L_{\text {tri }}$ are PГL-equivalent.

The fact that \mathcal{L}_{h} can also be defined by a trinomial will help us to completely close the equivalence issue for \mathcal{L}_{h} when $h \in \mathbb{F}_{q^{2}}$. Indeed, we can prove the following:
Proposition 3.10. If $h \in \mathbb{F}_{q^{2}}$, then the linear set \mathcal{L}_{h} is $\mathrm{P} \Gamma \mathrm{L}$-equivalent to some $L_{\delta}^{4}\left(\delta^{2}+\right.$ $\delta=1$) if and only if $h \in \mathbb{F}_{q}$ and q is a power of 5 .
Proof. Recall that by [27, Proposition 5.5] if $h \in \mathbb{F}_{q}$ and q is a power of 5 , then \mathcal{L}_{h} is PГLequivalent to some L_{δ}^{4}. As in the proof of Proposition 3.6, by Lemma 3.3 we have to check whether $U_{\left(h^{-1}-1\right) x^{q}+x^{q^{3}}+(h-1) x^{q^{5}}}$ is Γ L-equivalent either to U_{δ}^{4} or to $\left(U_{\delta}^{4}\right)^{\perp}$. Suppose that there exist $\rho \in \operatorname{Aut}\left(\mathbb{F}_{q^{6}}\right)$ and an invertible matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that for each $x \in \mathbb{F}_{q^{6}}$ there exists $z \in \mathbb{F}_{q^{6}}$ satisfying

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x^{\rho}}{\left(h^{-\rho}-1\right) x^{\rho q}+x^{\rho q^{3}}+\left(h^{\rho}-1\right) x^{\rho q^{5}}}=\binom{z}{z^{q}+z^{q^{3}}+\delta z^{q^{5}}} .
$$

Let $k=h^{\rho}$, for which $k^{q+1}=-1$. As in Proposition 3.5, we obtain a polynomial identity, whence

$$
\left\{\begin{array}{l}
c=b^{q}\left(k^{q}-1\right)+b^{q^{3}}+\delta b^{q^{5}}\left(k^{-q}-1\right) \tag{3.5}\\
d\left(k^{-1}-1\right)=a^{q} \\
0=b^{q}\left(k^{-q}-1\right)+b^{q^{3}}\left(k^{q}-1\right)+b^{q^{5}} \delta \\
d=a^{q^{3}} \\
0=b^{q}+b^{q^{3}}\left(k^{-q}-1\right)+b^{q^{5}}\left(k^{q}-1\right) \delta \\
d(k-1)=\delta a^{q^{5}}
\end{array}\right.
$$

By subtracting the fifth equation from the third equation raised to q^{2}, we get

$$
b^{q}=b^{q^{5}}\left(k^{q}-1\right)
$$

i.e. either $b=0$ or $k^{q}-1=\left(b^{q}\right)^{q^{4}-1}$, whence we get either $b=0$ or $\mathrm{N}_{q^{6} / q^{2}}\left(k^{q}-1\right)=1$.

If $b \neq 0$, since $k-1 \in \mathbb{F}_{q^{2}}$ and $\mathrm{N}_{q^{6} / q^{2}}(k-1)=(k-1)^{3}=1$, then

$$
k^{3}-3 k^{2}+3 k-2=0
$$

and, since $\mathrm{N}_{q^{6} / q^{2}}\left(k^{q}-1\right)=1$ and $k^{q}=-1 / k$,

$$
2 k^{3}+3 k^{2}+3 k+1=0,
$$

from which we get

$$
\begin{equation*}
9 k^{2}-3 k+5=0 \tag{3.6}
\end{equation*}
$$

- If $k \notin \mathbb{F}_{q}$ then k and k^{q} are the solutions of (3.6) and

$$
-1=k^{q+1}=\frac{5}{9}
$$

which holds if and only if q is a power of 7 . By (3.6) it follows that $k \in \mathbb{F}_{q}$, a contradiction.

- If $k \in \mathbb{F}_{q}$, then $k^{2}=-1$ and by (3.6) we have $k=-4 / 3$, which is possible if and only if q is a power of 5 .

Hence, if either $k \notin \mathbb{F}_{q}$ or $k \in \mathbb{F}_{q}$ with q not a power of 5 , we have that $b=0$ and hence $c=0, a \neq 0$ and $d \neq 0$.

By combining the second and the fourth equation of (3.5), we get $\mathrm{N}_{q^{6} / q^{2}}\left(k^{-1}-1\right)=1$ and, since $k^{q}=-1 / k, \mathrm{~N}_{q^{6} / q^{2}}\left(k^{q}+1\right)=-1$. Arguing as above, we get a contradiction whenever $k \notin \mathbb{F}_{q}$ or $k \in \mathbb{F}_{q}$ with q not a power of 5 .

Now, suppose that there exist $\rho \in \operatorname{Aut}\left(\mathbb{F}_{q^{6}}\right)$ and an invertible matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that for each $x \in \mathbb{F}_{q^{6}}$ there exists $z \in \mathbb{F}_{q^{6}}$ satisfying

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x^{\rho}}{\left(h^{-\rho}-1\right) x^{\rho q}+x^{\rho q^{3}}+\left(h^{\rho}-1\right) x^{\rho q^{5}}}=\binom{z}{\delta z^{q}+z^{q^{3}}+z^{q^{5}}} .
$$

Let $k=h^{\rho}$. As before, we get the following equations

$$
\left\{\begin{array}{l}
c=\delta b^{q}\left(k^{q}-1\right)+b^{q^{3}}+b^{q^{5}}\left(k^{-q}-1\right) \tag{3.7}\\
d\left(k^{-1}-1\right)=\delta a^{q} \\
0=\delta b^{q}\left(k^{-q}-1\right)+b^{q^{3}}\left(k^{q}-1\right)+b^{q^{5}} \\
d=a^{q^{3}} \\
0=\delta b^{q}+b^{q^{3}}\left(k^{-q}-1\right)+b^{q^{5}}\left(k^{q}-1\right) \\
d(k-1)=a^{q^{5}}
\end{array}\right.
$$

By subtracting the fifth equation from the third raised to q^{2} of the above system we get

$$
b^{q}=b^{q^{3}}\left(k^{-q}-1\right) .
$$

If $b \neq 0$, then $\mathrm{N}_{q^{6} / q^{2}}\left(k^{-q}-1\right)=1$. Hence, arguing as above, we get that $b=0$ and hence $c=0, a, d \neq 0$. By combining the fourth equation with the second and the fifth equation of (3.7) we get $\mathrm{N}_{q^{6} / q^{2}}(k-1)=1$, which yields again to a contradiction when $k \notin \mathbb{F}_{q}$ or $k \in \mathbb{F}_{q}$ with q not a power of 5 .

So, as a consequence of Corollary 3.8 and of the above proposition, we have the following result.
Corollary 3.11. Apart from the case $h \in \mathbb{F}_{q}$ and q a power of 5 , the linear set \mathcal{L}_{h} is not PГL-equivalent to any known scattered linear set in $\mathrm{PG}\left(1, q^{6}\right)$.

By Proposition 3.9, when $h \in \mathbb{F}_{q^{2}}, \mathcal{L}_{h}$ is a linear set of the family presented in [23, Section 7]. Also, we get an extension of [21, Table 1], where it is shown examples of scattered linear sets which could generalize the family presented in [10]. We do not know whether the linear set \mathcal{L}_{h}, for each $h \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q^{2}}$ with $h^{q^{3}+1}=-1$, may be defined by a trinomial or not.

4 New MRD-codes

Delsarte in [13] (see also [14]) introduced in 1978 rank metric codes as follows. A rank metric code (or $R M$-code for short) \mathcal{C} is a subset of the set of $m \times n$ matrices $\mathbb{F}_{q}^{m \times n}$ over \mathbb{F}_{q} equipped with the distance function

$$
d(A, B)=\operatorname{rk}(A-B)
$$

for $A, B \in \mathbb{F}_{q}^{m \times n}$. The minimum distance of \mathcal{C} is

$$
d=\min \{d(A, B): A, B \in \mathcal{C}, A \neq B\}
$$

We will say that a rank metric code of $\mathbb{F}_{q}^{m \times n}$ with minimum distance d has parameters $(m, n, q ; d)$. When \mathcal{C} is an \mathbb{F}_{q}-subspace of $\mathbb{F}_{q}^{m \times n}$, we say that \mathcal{C} is \mathbb{F}_{q}-linear. In the same paper, Delsarte also showed that the parameters of these codes fulfill a Singleton-like bound, i.e.

$$
|\mathcal{C}| \leq q^{\max \{m, n\}(\min \{m, n\}-d+1)}
$$

When the equality holds, we call \mathcal{C} a maximum rank distance (MRD for short) code. We will consider only the case $m=n$ and we will use the following equivalence definition for codes of $\mathbb{F}_{q}^{m \times m}$. Two \mathbb{F}_{q}-linear RM-codes \mathcal{C} and \mathcal{C}^{\prime} are equivalent if and only if there exist two invertible matrices $A, B \in \mathbb{F}_{q}^{m \times m}$ and a field automorphism σ such that $\left\{A C^{\sigma} B\right.$: $C \in \mathcal{C}\}=\mathcal{C}^{\prime}$, or $\left\{A C^{T \sigma} B: C \in \mathcal{C}\right\}=\mathcal{C}^{\prime}$, where T denotes transposition. Also, the left and right idealisers of \mathcal{C} are $L(\mathcal{C})=\{A \in \mathrm{GL}(m, q): A \mathcal{C} \subseteq \mathcal{C}\}$ and $R(\mathcal{C})=\{B \in$ $\mathrm{GL}(m, q): \mathcal{C} B \subseteq \mathcal{C}\}[17,19]$. They are important invariants for linear rank metric codes, see also [15] for further invariants.

In [24, Section 5] Sheekey showed that scattered \mathbb{F}_{q}-linear sets of $\mathrm{PG}\left(1, q^{n}\right)$ of rank n yield \mathbb{F}_{q}-linear MRD-codes with parameters $(n, n, q ; n-1)$ with left idealiser isomorphic to $\mathbb{F}_{q^{n}}$; see $[7,8,25]$ for further details on such kind of connections. We briefly recall here the construction from [24]. Let $U_{f}=\left\{(x, f(x)): x \in \mathbb{F}_{q^{n}}\right\}$ for some scattered q polynomial $f(x)$. After fixing an \mathbb{F}_{q}-basis for $\mathbb{F}_{q^{n}}$ we can define an isomorphism between the rings $\operatorname{End}\left(\mathbb{F}_{q^{n}}, \mathbb{F}_{q}\right)$ and $\mathbb{F}_{q}^{n \times n}$. In this way the set

$$
\mathcal{C}_{f}:=\left\{x \mapsto a f(x)+b x: a, b \in \mathbb{F}_{q^{n}}\right\}
$$

corresponds to a set of $n \times n$ matrices over \mathbb{F}_{q} forming an \mathbb{F}_{q}-linear MRD-code with parameters $(n, n, q ; n-1)$. Also, since \mathcal{C}_{f} is an $\mathbb{F}_{q^{n}}$-subspace of $\operatorname{End}\left(\mathbb{F}_{q^{n}}, \mathbb{F}_{q}\right)$ its left idealiser $L\left(\mathcal{C}_{f}\right)$ is isomorphic to $\mathbb{F}_{q^{n}}$. For further details see [6, Section 6].

Let \mathcal{C}_{f} and \mathcal{C}_{h} be two MRD-codes arising from maximum scattered subspaces U_{f} and U_{h} of $\mathbb{F}_{q^{n}} \times \mathbb{F}_{q^{n}}$. In [24, Theorem 8] the author showed that there exist invertible matrices A, B and $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ such that $A \mathcal{C}_{f}^{\sigma} B=\mathcal{C}_{h}$ if and only if U_{f} and U_{h} are $\Gamma \mathrm{L}\left(2, q^{n}\right)$ equivalent

Therefore, we have the following.
Theorem 4.1. The \mathbb{F}_{q}-linear $M R D$-code $\mathcal{C}_{f_{h}}$ arising from the \mathbb{F}_{q}-subspace \mathcal{U}_{h} has parameters $(6,6, q ; 5)$ and left idealiser isomorphic to $\mathbb{F}_{q^{6}}$, and is not equivalent to any previously known MRD-code, apart from the case $h \in \mathbb{F}_{q}$ and q a power of 5 .

Proof. From [6, Section 6], the previously known \mathbb{F}_{q}-linear MRD-codes with parameters $(6,6, q ; 5)$ and with left idealiser isomorphic to $\mathbb{F}_{q^{6}}$ arise, up to equivalence, from one of the maximum scattered subspaces of $\mathbb{F}_{q^{6}} \times \mathbb{F}_{q^{6}}$ described in Section 3. From Corollaries 3.8 and 3.11 the result then follows.

ORCID iDs

Daniele Bartoli (D) https://orcid.org/0000-0002-5767-1679
Corrado Zanella (D) https://orcid.org/0000-0002-5031-1961
Ferdinando Zullo (D) https://orcid.org/0000-0002-5087-2363

References

[1] D. Bartoli and M. Montanucci, Towards the full classification of exceptional scattered polynomials, J. Comb. Theory Ser. A, in press, arXiv:1905.11390 [math.CO].
[2] D. Bartoli and Y. Zhou, Exceptional scattered polynomials, J. Algebra 509 (2018), 507-534, doi:10.1016/j.jalgebra.2018.03.010.
[3] A. Blokhuis and M. Lavrauw, Scattered spaces with respect to a spread in $\operatorname{PG}(n, q)$, Geom. Dedicata 81 (2000), 231-243, doi:10.1023/a:1005283806897.
[4] B. Csajbók, Scalar q-subresultants and Dickson matrices, J. Algebra 547 (2020), 116-128, doi:10.1016/j.jalgebra.2019.10.056.
[5] B. Csajbók, G. Marino and O. Polverino, Classes and equivalence of linear sets in $\operatorname{PG}\left(1, q^{n}\right)$, J. Comb. Theory Ser. A 157 (2018), 402-426, doi:10.1016/j.jcta.2018.03.007.
[6] B. Csajbók, G. Marino, O. Polverino and C. Zanella, A new family of MRD-codes, Linear Algebra Appl. 548 (2018), 203-220, doi:10.1016/j.laa.2018.02.027.
[7] B. Csajbók, G. Marino, O. Polverino and F. Zullo, Generalising the scattered property of subspaces, Combinatorica, in press, arXiv:1906.10590 [math.CO].
[8] B. Csajbók, G. Marino, O. Polverino and F. Zullo, Maximum scattered linear sets and MRDcodes, J. Algebraic Combin. 46 (2017), 517-531, doi:10.1007/s10801-017-0762-6.
[9] B. Csajbók, G. Marino, O. Polverino and F. Zullo, A characterization of linearized polynomials with maximum kernel, Finite Fields Appl. 56 (2019), 109-130, doi:10.1016/j.ffa.2018.11.009.
[10] B. Csajbók, G. Marino and F. Zullo, New maximum scattered linear sets of the projective line, Finite Fields Appl. 54 (2018), 133-150, doi:10.1016/j.ffa.2018.08.001.
[11] B. Csajbók and C. Zanella, On scattered linear sets of pseudoregulus type in $\operatorname{PG}\left(1, q^{t}\right)$, Finite Fields Appl. 41 (2016), 34-54, doi:10.1016/j.ffa.2016.04.006.
[12] B. Csajbók and C. Zanella, On the equivalence of linear sets, Des. Codes Cryptogr. 81 (2016), 269-281, doi:10.1007/s10623-015-0141-z.
[13] P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory Ser. A 25 (1978), 226-241, doi:10.1016/0097-3165(78)90015-8.
[14] E. M. Gabidulin, Theory of codes with maximum rank distance, Problemy Peredachi Informatsii 21 (1985), 3-16, http: / /mi.mathnet.ru/eng/ppi967.
[15] L. Giuzzi and F. Zullo, Identifiers for MRD-codes, Linear Algebra Appl. 575 (2019), 66-86, doi:10.1016/j.laa.2019.03.030.
[16] M. Lavrauw, G. Marino, O. Polverino and R. Trombetti, Solution to an isotopism question concerning rank 2 semifields, J. Combin. Des. 23 (2015), 60-77, doi:10.1002/jcd. 21382.
[17] D. Liebhold and G. Nebe, Automorphism groups of Gabidulin-like codes, Arch. Math. (Basel) 107 (2016), 355-366, doi:10.1007/s00013-016-0949-4.
[18] G. Lunardon and O. Polverino, Blocking sets and derivable partial spreads, J. Algebraic Combin. 14 (2001), 49-56, doi:10.1023/a:1011265919847.
[19] G. Lunardon, R. Trombetti and Y. Zhou, On kernels and nuclei of rank metric codes, J. Algebraic Combin. 46 (2017), 313-340, doi:10.1007/s 10801-017-0755-5.
[20] G. Lunardon, R. Trombetti and Y. Zhou, Generalized twisted Gabidulin codes, J. Comb. Theory Ser. A 159 (2018), 79-106, doi:10.1016/j.jcta.2018.05.004.
[21] G. Marino, M. Montanucci and F. Zullo, MRD-codes arising from the trinomial $x^{q}+x^{q^{3}}+$ $c x^{q^{5}} \in \mathbb{F}_{q^{6}}[x]$, Linear Algebra Appl. 591 (2020), 99-114, doi:10.1016/j.laa.2020.01.004.
[22] G. McGuire and J. Sheekey, A characterization of the number of roots of linearized and projective polynomials in the field of coefficients, Finite Fields Appl. 57 (2019), 68-91, doi: 10.1016/j.ffa.2019.02.003.
[23] O. Polverino and F. Zullo, On the number of roots of some linearized polynomials, Linear Algebra Appl. 601 (2020), 189-218, doi:10.1016/j.laa.2020.05.009.
[24] J. Sheekey, A new family of linear maximum rank distance codes, Adv. Math. Commun. 10 (2016), 475-488, doi:10.3934/amc. 2016019.
[25] J. Sheekey and G. Van de Voorde, Rank-metric codes, linear sets, and their duality, Des. Codes Cryptogr. 88 (2020), 655-675, doi:10.1007/s10623-019-00703-z.
[26] C. Zanella, A condition for scattered linearized polynomials involving Dickson matrices, J. Geom. 110 (2019), Paper no. 50 (9 pages), doi:10.1007/s00022-019-0505-z.
[27] C. Zanella and F. Zullo, Vertex properties of maximum scattered linear sets of $\mathrm{PG}\left(1, q^{n}\right)$, Discrete Math. 343 (2020), 111800 (14 pages), doi:10.1016/j.disc.2019.111800.

[^0]: *The research of all the authors was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM).
 ${ }^{\dagger}$ This research of the third author was supported by the project "VALERE: VAnviteLli pEr la RicErca" of the University of Campania "Luigi Vanvitelli" and was partially funded by a fellowship from the Department of Management and Engineering (DTG) of the Padua University.

 E-mail addresses: daniele.bartoli@unipg.it (Daniele Bartoli), corrado.zanella@unipd.it (Corrado Zanella), ferdinando.zullo@unicampania.it (Ferdinando Zullo)

[^1]: ${ }^{1}$ This is sometimes called autocirculant matrix.

[^2]: ${ }^{2}$ Here $q>2$, otherwise it is not scattered.

[^3]: ${ }^{3}$ We may replace h^{ρ} by h, since $h^{q^{3}+1}=-1$ if and only if $\left(h^{\rho}\right)^{q^{3}+1}=-1$.

