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A NEW FAMILY OF PARTIALLY BALANCED INCOMPLETE BLOCK 

DESIGNS WITH SOME LATIN SQUARE DESIGN PROPERTIES' 


Purdue Vniuersity and University of North Carolina 

0. Summary. An extensive family of two-class PBIB designs is defined in 
Section 1and given the title of NL designs. Several analogies of NL designs with 
Latin square type designs are discussed in Sections 1and 2. Some of these designs 
have already appeared in scattered contexts. Section 3 gives a construction 
based on finite geometry for an infinite class of XL designs, and others can be 
constructed by methods to be taken up elsewhere. An extension to designs with 
more than two associate classes is indicated in Section 4. 

1. NL designs. We adopt the standard ([4], [13], [5]) definitions and terminol- 
ogy for m-class partially balanced incomplete block (PBIB) designs and associ- 
ation schemes. Pi denotes them X m matrix whose element in the j ,  k position is 
p:.k . If N is the v X b incidence matrix of objects and blocks, then NNT has 
m + 1 distinct characteristic roots Bo = rk, 61 , . .. ,6, with respective multi- 
plicities ao , . . . ,a, . For a two-class design we define 

For later reference we list the known relations [lo] 

and [12] 

Two two-class association schemes are co~npleinents of each other if andonly if 
each can be obtained from the other by interchanging the designation of first 
and second associates. 

Most known two-cla.ss PBIB designs have been classified by Bose and Shima- 
mot0 [5] into five types, distinguished primarily by the structure of their associ- 
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572 DALE M. MESNER 

ation schemes. We recall that known cyclic type schemes have parameters which 
may be expressed as follows in terms of an integer t: 

Association schemes with parameters (1.6), whatever their combinatorial struc- 
ture, will be called pseudo-cyclic. An association scheme of Latin square type with 
v = n2 objects and g constraints, which we denote as an Lo (n) scheme, is defined 
by an n X n square array of the objects and a set of g - 2 pairwise orthogonal 
Latin squares of order n. Two objects are first associates if and only if they occur 
in the same row or column of the array or in positions occupied by the same letter 
in any of the Latin squares. If to the set of Latin squares we adjoin two more 
n X n arrays of n letters, one in which the ith letter occupies all positions in the 
ith row and another in which the ith letter occupies all positions in the ith 
column, we have g pairwise orthogonal squares (not all Latin) and may define 
the first associates somewhat more symmetrically as objects which occur in 
positions occupied by the same letter in any of the squares. Finite nets ( [6], [7]) 
and orthogonal arrays [8] may be used as the basis for equivalent definitions. 
Lo(n)  parameters are given by 

These lead to further parameters 

Association schemes with parameters ( 1.7), whatever their combinatorial struc- 
ture, will be called pseudo-Latin square. 

Since there can be a t  most n - 1pairwise orthogonal Latin squares of order n, 
g cannot exceed n + 1;  moreover, if g = n + 1, all pairs of objects are first 
associates and the design reduces to a BIB design. The result is the same with 
g = 0.A Latin square association scheme with g = 1constraint is a special case of a 
group divisible scheme, while it is easy to show that itscomplementhas this struc- 
ture in the case g = n. I t  is therefore convenient to assume 
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We observe that the complement of a Latin square association scheme with g 
constraints is a pseudo-Latin square scheme with n + 1 - g constraints. As a 
result, any pseudo-Latin square association scheme may be reduced by choice of 
notation to a pseudo-Latin square scheme with 2 5 g 5 ( n  + 1)/2. These are 
simply the schemes of this family for which nl 5 n2 . 

An example will show that not all pseudo-Latin square schemes have Latin 
square structure. An L3(6) scheme can be constructed from any 6 X 6 Latin 
square. I ts  complement then has L4(6) parameters but cannot have Latin square 
structure since no set of 4 - 2 = 2 orthogonal 6 X 6 Latin squares exists. On the 
other hand, i t  is known ([16], [7], [ l l ] )  for a wide range of values of n and g that 
an association scheme with parameters ( 1.7) necessarily corresponds to a set of 
g - 2 painvise orthogonal Latin squares of order n. 

While minor infringements of inequality (1.9) lead only to trivial special cases, 
we now obtain something interesting by committing a major violation. Negative 
values of n and g lead in many cases to parameters (1.7) which are non-negative 
integers, but differ from the parameters of any of the types of association 
schemes in the Bose-Shimamoto classification. This suggests the existence of a new 
series of 2-class PBIB designs, based on association schemes with such parameters. 
We shall designate this as the NL family of designs and association schemes. The 
simplest case is n = -4, g = -1, giving the following, which could be termed 
L-I( -4) parameters. 

Designs are known with these parameters, showing that the NL family is not 
vacuous. 

Instead of using (1.7) with negative arguments for NL parameters it is con- 
venient to have expressions in terms of positive arguments, which we shall still 
denote, however, by the same letters n and g. Then using the negative integers 
-n and -g  in (1.7) we arrive a t  

In  terms of the positive integers n and g, we denote these as NL,(n ) parameters. 
Using (1.10) in (1.1) and (1.31, 
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Alternatively, values of u,7,ai could be obtained by using the negative integers 
-n and -g  in (1.8). This amounts to using the negative square root of A in 
(1.1) and leads to negative values of u and T ,  finally giving values of B i and ai 

which differ from those of ( 1.2) and (1.11) by an interchange of indices 1and 2. 
I n  adopting expressions (1.11) we are following the customary [lo] notation for 
O i  and ai . 

The abbreviations Lo(n) and NLo(n) will sometimes be shortened to Lo and 
NL, when it is not necessary to specify the value of n. 

Like the pseudo-Latin square family, which is also defined in terms of the 
form of its parameters, the NL family of association schemes contains the 
complement of each of its members; specifically, the complement of an NL,(n) 
scheme is an NLn,-l(n) scheme. As a result, any NL scheme may be reduced by 
choice of notation to one for which g 5 +(n - I ) ,  or equivalently, nl 5 n2 . The 
well-known relation for sums of parameters ni and pik and for products nipin are 
satisfied identically in n and g. The requirement that pi1 is non-negative places a 
lower bound on g. 

If n is odd, we note that Ltc,+l,(n) parameters are identical with NLl(n-l,(n) 
parameters and that both agree with pseudo-cyclic parameters ( 1.6) with argu- 
ment t = (n2- 1)/4. These are the only Lo or NL, schemes for which nl =nz and 
the only pseudo-cyclic schemes for which v is a square. No other schemes are 
common to any two of these three families. 

We conclude this section with an outline of the present state of knowledge 
about NLo(n) schemes in the range n 5 10, subject to n l 5  n2. The schemes 
NL1(3), NL2(5), NLS(7) and NL4(9) are of the pseudo-cyclic and Latin square 
type just discussed and are known. The schemes NLI(4) can be constructed [9] 
by deducing the table of first associates directly from the definition and param- 
eter values; there are also several geometrical and algebraic methods of con-
structing this scheme. The scheme NL2(S) is known [14]; its construction will 
be described in Section 4. A new method of construction in Section 4 will provide 
solutions for NL1(4), NL3(8) and NL2(9). Methods to be presented in later 
papers give solutions for some of the foregoing as well as for NL3(9) and NL2( 10). 
The schemes NL2(6), NL2(7), NL3( lo ) ,  and NL4( 10) are still unknown. Some 
designs are known for each of the known schemes. 

2. A characterizing property. 
THEOREM2.1. I n  order for the parameters a1 , a 2  in a two-class association scheme 

to be equal in sonze order to the paranzeters nl ,n2 , it is necessary and suficient that 
the scheme be of pseudo-cyclic, pseudo-Latin square, or NL type. 

PROOF.Sufficiency follows trivially from (1.6), (1.7), (1.8), (1.10), and (1.11). 

Let the parameters al,a 2  of a two-class scheme be equal in some order to nl ,n2. 


We first assert that this is the case if and only if v = A. This assertion follows from 

(1.4) and the relation al + a2= nl + n2 . 

If the scheme is of pseudo-cyclic type, there is nothing to prove. For schemes 
of other types, Theorems 5.3 and 5.5 of [lo] may be applied to show that A = n2 
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for some i nteger n. Therefore v = n2. Then 

Using (1.1), 

partially identifying u and T. 

CASEI. Suppose nl = a1 .Then from (1.3) and (2.1), 

reducing to nl = ( u  + 1)  ( n  - 1).This identifies u and T completely. If we set 
u + 1 = g we have 

and from (1.5) 

The parameters v, ni , -pi2are of the form of (1.7), and it follows from standard 
identities that the same is true of the remaining pSk  . Therefore the scheme is 
of pseudo-Latin square type. 

CASE11.Suppose nl = a 2 .  Then using (1.3) and (2.1) as in Case I we find 
nl = r (n  + 1) and setting T = g we again use (1.5), this time arriving a t  param- 
eters of the form of (1.10). Therefore the scheme is of NL type and the proof is 
complete. 

I t  is clear from the proof that the condition on ni and ai in Theorem 2.1 could 
be replaced by the condition v = A. The fact that v is a.square is a distinctive 
property of the Latin square and NL schemes but is not peculiar to them, as 
shown for example by numerous group divisible schemes and by the triangular 
scheme with v = 36. However, inspection of a list of arithmetically possible 
parameters for two-class association schemes leads to the interesting conjecture 
that when v is a square, a high proportion of these parameters fall in thegroup 
divisible, L, and NL, series. As an illustration, in the range v $ 100, v a square, 
there are at  most 65 sets of two-class parameters, of which 59 are in these three 
series. 

3. Constructions in finite geometry which give NL designs. I n  this section 
infinitely many PBIB designs are constructed from finite geometries by a general- 
ization of a method due to Ray Chaudhuri [14]. Some of the designs are shown 
to be of NL type. 

Let Z = PG(n, s) be a projective space of dimension n and order s, where s 
is a prime power. Let r be a fixed hyperplane, i.e., a subspace of dimension 
n - 1, and let A be the complement of r in 2 . Thus A is an affine space of di- 
mension n, containing sn points. I t  will sometimes be convenient to refer to points 
of A and r as affine and ideal points respectively. Each line of A contains s points 
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and is contained in a unique line I of 2,  along with a unique point of r. We say 
that this is the ideal point of I .  For any set R c r ,  define C(R)  to be the incom- 
plete block design whose objects are the sn points of A and whose blocks are those 
lines of A whose ideal points are contained in R. Define two points of A to be first 
associates if the line containing them is a block of c (R)  and second associates 
otherwise. While c (R)  does not in general satisfy the conditions of partial 
balance, the following parameters are determined. IRI denotes the cardinality of 
set R.  

v = sn, nl = ( s  - l)IRI, 

(3.1) r = IRI, k = S, b = sn-I IRI, 

X 1 = 1 ,  Xz=O. 

In order for c (R)  to be a two-class PBIB design, it is now necessary and sufficient 
[3] that the following condition be satisfied for some integers p:1 and p211 . 

Given any two objects which are ith associates, i = 1, 2, there are exactly pll 
other objects which are first associates of both. We proceed to interpret this as a 
condition on set R. 

will denote the complement of R in r. Define T,(R), v = 0, . . . , s + 1, to 
be the set of lines of r which contain exactly N points of R. For two points A and 
B of A, we denote by D the ideal point of line AB. If A and B are ith associates, 
i = 1, 2, we denote by p f l ( ~ ,  B) the number of points C which are common first 
associates of A and B. The required points C are of two different types which will 
be enumerated separately. Define C to be a c-point of A and B (collinear common 
first associate) if C is on line AB. The number of c-points of A and B is clearly 
s - 2 if D E R and zero if D E R. Define C to be a d-point of A and B (diagonal 
common first associate) if C is not on line AB. In this case lines AC and BC of 2 
intersect r in points E E R and F E R respectively, where D, El F are distinct 
points of the line m of intersection of plane ABC and hyperplane r. Suppose that 
m contains v points of R. Then the ordered pair of points E, F car1 be chosen in 
(v - l)(v - 2) ways if D E R and in v(v - 1) ways if D E I?, and in each case 
a like number of d-points of A and B occur in the plane determined by A, B and 
7n. The total number of d-points of A and B can be obtained by summing over 
all lines m which are in r and contain D. Define fD(v), v = 0, 1, . . . , s + 1, as 
the number of lines of T,(R) which contain D. The preceding remarks on c-points 
and d-points imply the following statement. 

If A and B are first associates, so that D E R, 

(3.2) P:~(A, B )  = 8 - ( V- l ) ( v  - 2)fD(v),2 + x",: 
while if A and B are second associates, so that D E R, 

(3.3) &(A, B)  = C:::V(V- I ) ~ D ( v ) .  

This is enough to prove 
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LEMMA 3.1. C(R) is a two-class PBIB design if and only if the right hand side of 
(3.2) has the same value for all points D E R and the right hand side of (3.3) has the 
same value for all points D E R. I n  this case c(R) will have parameters (3.1), along 
with pi1 = ~ : I ( A ,  B ) ,  p?1 = p?l(A, B) .  

The condition of Lemma 3.1 will be recognized as essentially a condition on the 
variance of the numbers V. I t  is implied by the condition the followinglemma 
places on their frequency distribution. 

LEMMA3.2. C(R) is a two-class PBIB design if for $xed v = 0, 1, . . . , s + 1, 
the f~equencies fD(v) are equal for all D E R and are equal for all D E R. I n  this 
chse c(R) will have parameters as stated in Lemma 3.1. 

In  our first application of these lemmas we take R = Q, a non-degenerate 
quadric in r = PG(n - 1, s), denoting Q = R. The assertions of this and the 
three succeeding paragraphs about the sets T,(Q) and the integers IQI and fD(v) 
are adapted from [15] and from Chapter 2 of [2]. All lines of r fall into the follow- 
ing sets T,(Q) : 

To(&): non-intersectors, containing no points of Q, 

(3.4) TI(&) : tangents, each containing 1point of Q, 

Tz(Q) : secants, each containing 2 points of Q, 

T,+l(Q): rulings, each containing s + 1points of Q. 

Thus non-zero frequencies fD(v) can occur only for v = 0, 1, 2, s + 1, and (3.2) 
and (3.3) reduce to 

In  a particular non-degenerate quadric Q in PG(n - 1, s ) ,  the number fD(s $: 1) 
of rulings on D is the same for all points D E Q, so that pil(A, B )  has a uniform 
value pi1 for all pairs A, B of first associates in C(&). 

We must specify the dimension n before proceeding further. If n = 2t, so 
that r has odd dimension 2n - 1, the number fD(2) of secant lines on D is the 
same for all points D E &, SO that p?l(A, B )  has a uniform value pql for all pairs 
A, B of second associates in C(Q). If n is odd, so that Q is a non-degenerate 
quadric in a space r of even dimension, the points D E Q are of different types 
which are contained in different numbers fD(2) of secant lines. In this case 
p211(~,B )  does not have the same value for all pairs A ,  B of second associates. 


We conclude that if Q is a non-degenerate quadric in r ,  the design S(Q) is a 

two-class partially balanced design if and only if the dimension n of B is even. 


Let n = 2t. In  r = PG(2t - 1, s) there are two types of non-degenerate 
quadrics, which we shall call hyperbolic and elliptic, differing in the number 
of points, 'ruling lines, and secants. In  the following formulas, the upper signs 
hold for hyperbolic quadrics and the lower signs hold for elliptic quadrics. 
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The parameters of C ( Q )  can now be computed in both cases and compared with 
(1 .7)  and (1.10) to complete the proof of 

THEOREM3.1. If n = 2t and Q i s  a non-degenerate quadric in r, the design 
C ( Q )  i s  a two-class PBIB design with association scheme parameters 

and design parameters 

(3 .9)  r = (st-' l ) ( s t='i I ) ,  k = s, b = X 1  = 1, X 2  = 0.l ) / ( s  -
If Q is hyperbolic the upper signs hold and C ( Q )  is of pseudo-Latin square type 
L , ( s~ ) ,g = st-' + 1. If Q is elliptic the lower signs hold and C ( Q )  is of type 
N L , ( s ~ ) , ~= st-' - 1. 

Since the required projective spaces and quadrics exist for every s which is a 
prime or a power of a prime and for every positive integer t ,  our construction 
gives a doubly infinite family of designs having N L ,  association schemes. The 
following schemes with v 5 100 are included. 

The spaces 8, I', and A and the quadric Q may be used to construct other 
designs which have the same association scheme as c ( Q ) .  

We note that each block of C ( Q )  is the intersection 1 n A of A with a line 1 
of Z where 1 intersects r in a point of Q. We define a more general design C,(Q) ,  
v = 0 ,  1,  with sets of blocks constructed as follows from the set of all lines 1 
which are in 8 but not in I'. 

Design Blocks 

So(Q) 
&(Q) 

(InnI lnr E & I  
{lna I Inr E Q ]  

The subscript v may be interpreted as the number of points of Q contained in 1. 
The following theorem is now obvious. 

THEOREM3.2. If n = 2t and Q i s  a non-degenerate quadric in I?, then C , (Q) ,  
v = 0, 1, i s  partially balanced with the same association scheme as C ( Q )  and with 
association scheme parameters (3 .8) .  & ( Q )  i s  identical with C ( Q )  . SO(&)has 
design parameters 
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Let a be a plane in Z: but not in I'. rr intersects A in a set of s2points which we 
shall use as a block of a design, and intersects r in a line which falls in one of the 
classes T , ( Q ) . We define designs @,(Q)with sets of blocks constructed as follows 
from the set of all planes a which are in Z: but not in r. 

Design 	 Blocks 

v 0, 1, 2, s + 1@v ( 9 )  ( m a /T n ~ ~ T , ( & ) } ,= 

The subscript v may be interpreted as the number of points of Q contained in a. 
.If A is a point of A, planes containing A are determined by the lines of T , ( Q ) ,  

and these planes lead to the blocks of 6,(&)which contain A. Therefore A is 
contained in / T , ( Q ) 1 blocks. 

If A and B are two points of A and D is the intersection of line AB with r, 
planes containing A and B are determined by the lines of T, (Q)  which contain D ,  
and these planes lead to the blocks of @,(&) which contain both A and B. 
Therefore A and B occur together in fo ( , )blocks. We now use the fact, stated 
in part in (3 .7 ) ,  that for a non-degenerate Q in r of odd dimension, all of the 
frequencies f o ( , )  	satisfy the uniformity condition of Lemma 3.2. This gives us 
the following theorem. 

THEOREM3.3. I f  n = 2t and Q i s  non-degenerate, then @,(&), v = 0, 1 ,2 ,  s + 1,  
i s  partially balanced with the same association scheme as C ( Q ) .  @,(Q) has asso- 
ciation scheme parameters (3 .8)  and design parameters 

(3.11) r = IT,(Q)I, k = s2, b = s ~ ~ - ~ ~ T , ( Q ) I ,  

A1 = f o ( v ) ,  D .  Q; A, = f o ( v ) ,  D E &. 
Explicit formulas for IT,(&) 1 and f o ( v )  are known but will not be reproduced 

here. 
Taking Z: = PG(3,  2 t )  and R as the set of points of a non-degenerate conic 

together with the common point of the tangent lines, Ray-Chaudhuri [14] 
constructs the equivalent of c ( R )  and shows that it is a two-class PBIB design. 
The design for t = 2 is of N L z ( 8 )  type. This illustrates that there are sets R 
other than quadrics for which c ( R )  is partially balanced. As a further illustra- 
tion, our final construction of this section used an interesting set whose properties 
have been investigated by Bose [ I ] .  

Take Z: = PG(3 ,  q ) ,  r = PG(2,  q ) ,  where q = s2,and represent the points of r 
by homogeneous coordinates ( y l  , y2 , y3), yi E G F ( q ) .Take R = W, where W is 
the set of points of r for which the equation 

(3.12) 	 YIS+l + yzsf l  + y:+l = 0 

is satisfied. Bose shows that 

IWI = s3 + 1;  

(3 .13)  	 f D ( l ) = 1 and f o ( s  + 1 )  = s2, D E W ;  

f o ( l )  = s + 1 and f o ( s  + 1 )  = s2 - S ,  D E W ;  
~ D ( v )  = 0, 	 otherwise. 
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We prove the following theorem by applying Lemma 3.2 and comparing param-
eters with (1.10). 

THEOREM3.4. C( W) is a two-class PBIB design with parameters 

v = s6, nl = (s2 - 1)(s3+ I ) ,  

X1 = 1, A2 = 0. 

This design is of type NL, (s3),g = s2 - 1. 
Three other designs SO(W) , @I(W) ,P9+1(W) with the same association scheme 

can be constructed from W by the methods of Theorems (3.2) and (3.3). These 
designs have the same association scheme parameters as the NL designs of 
Theorem 3.1, t = 3, but have different design parameters r, k, b, X i  . 

Only a few of the designs presented in this section have parameters in or near 
the range r 6 10, k 6 10. Additional designs exist, of course, for all of the asso-
ciation schemes which have been constructed here. 

4. Generalized L, and NL, designs with m associate classes. The Latin 
square family of two-class association schemes and designs can be generalized 
in a natural way to a larger number of associate classes. The three-class case has 
been discussed [17] by Singh and Shukla, who were aware of the full generaliza-
tion. In  this section we describe the family of m-class Latin square association 
schemes, then define an m-class NL scheme. 

The definition in Section 2 of the Latin square type association scheme is 
modified by arranging the set of g orthogonal squares into m - 1 disjoint non-
empty subsets, where, denoting by gi the number of squares in the i th set, 

(4.1) g1 + . + gm-1 = g. 
We assume g S n and denote g, = .n + 1 - g. The objects in two positions of 
the n X n array are defined as ith associates if the positions are occupied by the 
same letter in an orthogonal square of the ith subset, i = 1, . , , m - 1, and 
are defined as mth associates otherwise. I t  can be shown that this association 
relation is a partially balanced m-class scheme with the following parameters: 

v = n2, ni = gi(n - l ) ,  

(4.2) p f i =  ( g i - l ) ( g i - 2 ) + n - 2 ,  3 %  3 9 %. - I ) ,p ? . = p i . . = g . (2 3 

p'.;3 = g1.(93. - 11, pjk = gigk , i, j ,  k distinct, 1 5 i, j ,  k 6 m. 
We define an m-class association scheme to be of generalized pseudo-Latin 
square type if i t  has parameters (4.2) but does not necessarily have the com-
binatorial structure just described. 

I t  is now completely straightforward to define a generalized NL family of 
association schemes by using negative integers n, gl , . . ,g, in expressions (4.1) 
and (4.2). In  terms of positive parameters n*, gl*, we take n = -n*, 
g .I -- - gi* and substitute in (4.1) and (4.2). Dropping the stars, we have 
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(4.3) 	 g1 + + g, = n - 1, 
v = n2, ni = gi(n + I ) ,  

(4.4) 	 Pii = (gi + l)(gi + 2) - n - 2, $ 3  -- pj'i = gj(gi + I ) ,  

p!.31 = g.( .1 9 1 - k  ~ i k = g j g k ,  
i, j , k distinct, 1 5 i,j, k 5 m. 

These parameters are integers satisfying the standard relations on n i ,
C plk , and ni , p j k  , and all except possibly pfi are non-negative. The require-
ment p:i 2 0 places a lower bound on gi for a given n, i = 1, . . . ,m, and (4.3) 
then places an upper bound on the number m of associate classes for a given n. 
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