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A NEW FAMILY OF STABLE MIXED FINITE ELEMENTS
FOR THE 3D STOKES EQUATIONS

SHANGYOU ZHANG

Abstract. A natural mixed-element approach for the Stokes equations in the
velocity-pressure formulation would approximate the velocity by continuous
piecewise-polynomials and would approximate the pressure by discontinuous
piecewise-polynomials of one degree lower. However, many such elements are
unstable in 2D and 3D. This paper is devoted to proving that the mixed finite
elements of this Pk-Pk−1 type when k ≥ 3 satisfy the stability condition—
the Babuška-Brezzi inequality on macro-tetrahedra meshes where each big
tetrahedron is subdivided into four subtetrahedra. This type of mesh simplifies
the implementation since it has no restrictions on the initial mesh. The new
element also suits the multigrid method.

1. Introduction

The analysis of mixed methods for the Stokes problem (cf. the books [2] and
[4] for references) can be based on the general theory of saddle point problems
where the central task is to verify an inf-sup stability condition—the Babuška-Brezzi
inequality. However many mixed-element pairs fail to satisfy this inequality. In the
velocity-pressure formulation of the Stokes equations, the velocity and pressure
are in the Sobolev spaces H1(Ω)d and L2

0(Ω), respectively. A natural approach of
approximation would then be to use continuous piecewise-polynomials of degree k
or less for the velocity and discontinuous piecewise-polynomials of degree (k − 1)
or less for the pressure. Such mixed element solutions satisfy the incompressibility
condition, pointwise. Scott and Vogelius showed that the Babuška-Brezzi inequality
holds for the natural mixed triangular elements in 2D if k ≥ 4 and if the meshes
are singular-vertex free (see [8]). An internal vertex in 2D is said to be singular
if edges meeting at the point fall into two straight lines. The problem of finding
such a minimal degree k in 3D was posed by Scott and Vogelius in [8] almost
two decades ago, but it remains open. The study in 3D is difficult since one has
to search for all possible types of problematic vertices or edges, similar to the 2D
singular vertex found in [8]. The 3D triangulation is complicated and would be even
worse if additional constraints are applied to avoid singularities, if they are known.
Furthermore, if one applies the multigrid method to solve such tetrahedral mixed
elements, the multigrid refinement would produce a known-type singular edge; i.e.,
all triangles meeting at one edge fall into two planes, when refining each tetrahedron

Received by the editor October 3, 2002 and, in revised form, January 9, 2003.
2000 Mathematics Subject Classification. Primary 65N30, 65F10.
Key words and phrases. Stokes problem, finite element, mixed element, inf-sup condition,

multigrid method.

c©2004 American Mathematical Society

543

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



544 SHANGYOU ZHANG

into eight half-sized tetrahedra. Some additional comments on computation with a
singular vertex are presented at the end of this paper.

In this paper, we will extend the result of Scott and Vogelius in [8] in a different
direction. Instead of finding all possible types of singular vertices and edges, we
propose a new macro-element type mesh which is shown to have no singular vertices
or singular edges; i.e., the space of divergence of P0

k is equal to the space Pk−1 on
such meshes. We will show that the Pk-Pk−1 element is stable if the polynomial
degree k for velocity is 3 or higher. In the new method, starting with any quasi-
uniform tetrahedral mesh, the mesh for mixed-elements is generated by subdividing
each initial tetrahedron into four subtetrahedra by connecting the bary-center with
four vertices (see Figure 1). The Pk-Pk−1 mixed elements are defined on this new
mesh. The velocity of the mixed-element solution is divergence free pointwise.
The significance of the new approach is in the two aspects mentioned above, i.e.,
reducing the difficulty in mesh generator and allowing the possibility of applying
the multigrid method. When applying the multigrid algorithm to the new macro-
elements, we should remove the internal triangles first to turn the four subtetrahedra
back into one element. We now refine each big tetrahedron into eight subtetrahedra
as usual (note that the new subtetrahedra may not always be similar to the parent
tetrahedron; see [13]–[14]) and then subdivide each of eight subtetrahedra into four
subsubtetrahedra to get the grid on the next level. The multilevel meshes generated
this way are not nested and nonnested multigrid features are needed here (cf. [15]–
[16]).

The analysis for the stability of the macro-element type Pk-Pk−1 mixed element
is based on a framework of Stenberg [11]. The only work left to do is to show a
macro-element condition (see (4) below). The same approach has been adopted by
Qin in [5] where the quadratic and cubic mixed macro-elements in 2D are shown to
be stable (the case k ≥ 4 is proved for general meshes by [8]). Some low-order 3D
mixed-elements on tetrahedral meshes have been studied in [1] and [12], but the
finite element spaces for pressure are continuous there.

2. Mixed finite elements

We consider the stationary Stokes problem: Find functions �ψ (the fluid velocity)
and τ (the pressure) on a 3D polyhedral domain Ω such that

(1)

−ν∆�ψ + ∇τ = f

div�ψ = 0

�ψ = 0

in Ω,
in Ω,
on ∂Ω,

where f is the body force and ν is the kinematic viscosity. We adopt notation in
[11] or conventional notation. Given a quasi-uniform (cf. [3]) tetrahedral mesh
Mh = {M}, where h denotes the mesh size, on Ω, we let Th = {T } denote the
corresponding macro-element mesh where each tetrahedron M of Mh is cut into
four by connecting the bary-center with four vertices as depicted in Figure 1. Let
P0

k,h,Ω and P−1
k,h,Ω denote the vector (three components) piecewise-continuous and

piecewise-discontinuous polynomials of degree k or less on the mesh Th, respectively.
When there is no confusion, we will use shorthand notation like Pk for P0

k,h,Ω, or
P0

k,h,M , or P0
k,h0,M0

where M is an element in Mh and M0 is the reference, unit
(h0 =

√
2) macro-element depicted in Figure 1. Similarly, Pk−1 stands for P−1

k−1,h.
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Figure 1. The reference macro-element M0 (a unit tetrahedron).

It is understood that boldface letter P stands for a continuous piecewise-polynomial
space while the letter P stands for a discontinuous one. Let

o

Pk = Pk ∩H1
0 (Ω) = {v ∈ P0

k,h,Ω | v = 0 on ∂Ω},
o

P k = Pk ∩ L2
0(Ω) = {p ∈ P−1

k,h,Ω |
∫

Ω

p = 0}.

The mixed elements approximation to (1) in weak formulation is: Find uh ∈
o

Pk

and ph ∈
o

P k−1 such that

(2)
ν(∇uh,∇v) − (divv, ph) = (f,v)

(divuh, µ) = 0
∀v ∈

o

Pk,

∀µ ∈
o

P k−1.

The Babuška-Brezzi stability condition reads: there exists a constant C > 0 such
that

(3) sup
v∈

o
Pk,v�=0

(divv, p)
|v|1

≥ C‖p‖0 ∀p ∈
o

P k−1,

which ensures the convergence of the mixed elements solutions. In [11], it is shown
that the following “macro-element condition” is sufficient for (3) to be valid:

dim(NM ) = 1 for all M ∈ Mh,(4)

where NM
def= {p ∈ P−1

k−1,h,Ω |(divv, p) = 0 ∀v ∈
o

P
0

k,h,M},
if k ≥ 3. The condition k ≥ 3 is only to guarantee that there is at least one degree
of freedom for the discrete velocity functions in the interior of each face triangle
of tetrahedron (cf. Lemma 3.3 in [11]). Under this condition, the analysis for the
2D case in [11] remains the same in 3D. In particular, to be rigorous, we can use
the polynomial interpolation result in [9] which defines precisely the interpolation
operator needed in the proof of Lemma 3.3 in [11]. We now verify the condition
(4), which only needs to be done on the reference macro-element.

Let M0 be the unit reference tetrahedron abcd at the origin, as depicted in Figure
1. We denote the bary-center (1

4 ,
1
4 ,

1
4 ) by e. To use bary-centric coordinates, we
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define the 4th variable x4 = 1 − x1 − x2 − x3. Sequentially, we denote the four
subtetrahedra bcde, dcae, abde and acbe by T1, T2, T3 and T4. We note that the
subtetrahedron Ti has precisely one boundary triangle of M0 as its face.

3. Analysis

In this section, we will show the perfect matching of the mixed finite element

pairs on the reference macro-element M0 : div
o

P
0

k,h0,M0
=

o

P
−1

k−1,h0,M0
. It is to be

done by mathematical induction. By this result, we will obtain the stability and
the optimal order of convergence for the mixed finite elements by the framework of
Stenberg [11].

Lemma 1. If p ∈
o

P k−1 satisfies

(5)
∫

M0

divu p dx = 0

for all u ∈
o

P1, then

(6)
∫

Ti

pdx = 0, 1 ≤ i ≤ 4.

In particular, if p is in
o

P 0, then p ≡ 0 on M0.

Proof. Let v be the piecewise linear nodal basis function at e, i.e., v(e) = 1 and
v|∂M0 = 0. In fact, v|Ti = 4xi on each of four subtetrahedra. Defining ui as the
vector function whose ith component is v and the other two components are 0. A
simple calculation would lead to

(7) divui =




0 x ∈ Tj, 1 ≤ j ≤ 3, j 
= i,

4 x ∈ Ti,

−4 x ∈ T4,

for 1 ≤ i ≤ 3.

Letting u = ui in (5), we get three equations. Now as p ∈
o

P k−1 (the fourth

equation), we get (6). If p ∈
o

P 0, then p is a piecewise constant function and (6)
would ensure that all four constants on the four subtetrahedra are the same, 0. �

We may not need the next two lemmas in order to prove Theorem 4, where
Lemma 1 is needed in order to apply the method of mathematical induction. But
for two reasons, we listed the proof of the next two lemmas. The first reason is to
help readers understand nodal basis functions and the approach of the proof. The
second reason is to shorten the proof of Theorem 4.

Lemma 2. If p ∈
o

P k−1 satisfies (5) for all u ∈
o

P2, then

(8)
∫

Ti

xjpdx = 0, i, j = 1, 2, 3, 4.

In particular, if p is in
o

P 1, then p ≡ 0 on M0.
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Proof. Let v0 be the piecewise-quadratic nodal basis function at the bary-center
e, i.e., v0|Ti = 32xi(xi − 1

8 ). Constructing three vector functions by v0 as we did
before (7), we would get

(9)
∫

Ti

xipdx =
∫

Tj

xjpdx, i, j = 1, 2, 3, 4.

Let vi be the piecewise-quadratic nodal basis function at the midpoint(
δ1i

2
+

1
8
,
δ2i

2
+

1
8
,
δ3i

2
+

1
8

)

of one of the three interior edges, ae, be and ce of M0, where δji is the Kronecker
delta symbol. For example, we have

v1(x) =




0, x ∈ T1,

16x2(x1 − x2), x ∈ T2,

16x3(x1 − x3), x ∈ T3,

16x4(x1 − x4), x ∈ T4,

(10)

div


v10

0


 =




0 in T1,

16x2 in T2,

16x3 in T3,

16(3x4 − x1) in T4,

and div


 0
v1
0


 =




0 in T1,

16(x1 − 2x2) in T2,

0 in T3,

16(2x4 − x1) in T4.

By (5), (9), (10) and the symmetry, it follows that∫
Ti

xjpdx = 5
∫

Ti

xipdx, i, j = 1, 2, 3, 4 and i 
= j.

In particular, on tetrahedron T1, we have

5
∫

T1

x1pdx =
∫

T1

x2pdx,

5
∫

T1

x1pdx =
∫

T1

x3pdx,

5
∫

T1

x1pdx =
∫

T1

x4pdx.

(11)

Noting x4 = 1 − x1 − x2 − x3, we can add (11) to get 16
∫
T1
x1pdx =

∫
T1
pdx = 0

where we applied (6). Therefore (8) is proved. For any p ∈
o

P 1, a linear combination
of (8) would lead

∫
M0

p2dx = 0, which implies p ≡ 0. �

Before we apply the principle of mathematical induction to prove the general

case of arbitrary degree k, we repeat Lemmas 1 and 2 for
o

P3.

Lemma 3. If p ∈
o

P k−1 satisfies (5) for all u ∈
o

P3, then∫
Ti

xjxkpdx = 0, i, j, k = 1, 2, 3, 4.

In particular, if p is in
o

P 2, then p ≡ 0 on M0.
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Proof. Again, first let v be the piecewise-cubic nodal basis function at the bary-
center: v3,0|Ti = 288xi(xi − 1

12 )(xi − 1
6 ). Letting u = (v3,0 0 0)� in (5), we would

get
∫

T1
x2

1p dx =
∫

T4
x2

4p dx. By symmetries, all values of
∫

Ti
x2

i p dx are the same:

(12)
∫

Ti

x2
i p dx =

∫
Tj

x2
jp dx, 1 ≤ i, j ≤ 4.

Here we used the identities listed in (6) and (8) for lower degree polynomials. Next
let v3,1 be the nodal basis function at the node with coordinates (a+ 2e)/3:

v3,1(x) =




0, x ∈ T1,

216(x1 − x2)x2(x2 − 1
12 ), x ∈ T2,

216(x1 − x3)x3(x3 − 1
12 ), x ∈ T3,

216(x1 − x4)x4(x4 − 1
12 ), x ∈ T4.

With u = (0 v3,1 0)� in (5) it would imply
∫

T2
x1x2p dx =

∫
T4
x1x4p dx. By sym-

metries, we would get

(13)
∫

Ti

xixjp dx =
∫

Ti

xixlp dx, l 
= i 
= j.

Letting u = (v3,1 0 0)� in (5), by (12)–(13), it follows that∫
T2

x2
2p dx +

∫
T3

x2
3p dx + 2

∫
T4

x2
4p dx = 2

∫
T4

x1x4p dx.

By (12), we have

(14) 2
∫

T1

x2
1p dx =

∫
T4

xix4p dx, 1 ≤ i ≤ 3.

Adding (14) for i = 1, 2, 3, we get

6
∫

T1

x2
1p dx =

∫
T4

(x1 + x2 + x3)x4p dx =
∫

T4

(1 − x4)x4p dx.

Hence,

7
∫

T1

x2
1p dx =

∫
T4

x4p dx = 0.

Therefore, ∫
Ti

x2
i p dx =

∫
Ti

xixjp dx = 0, 1 ≤ i, j ≤ 4.

Next we let v3,2 be the nodal basis function at the other node on the edge ae:
(2a+e)/3. This time, after letting u = (0 v3,2 0)� in (5), it follows that

∫
Ti
x2

jp dx =
7

∫
Ti
xixjp dx = 0 for i 
= j. Finally, let v3,f be the nodal basis function at the node

(a + d + e)/3 inside a face triangle ade. Then u = (0 v3,f 0)� would lead us to∫
T2
x1x4p dx = 13

∫
T2
x2

2p dx = 0. For the last step involving v3,f , we can see more
details in proving Theorem 4 as we will do it again for general degree k ≥ 3. �

Summarizing the three lemmas, we get, for p satisfying conditions in Lemma 3,

(15)
∫

Ti

qp dx = 0 for all q ∈ P2,h0,Ti , 1 ≤ i ≤ 4.

We thus proved special cases of the main theorem for k = 1, 2, and 3.
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Theorem 4. Let p ∈
o

P
−1

k−1,h0,M0
, k ≥ 1. If p satisfies (5) for all u ∈

o

P
0

k,h0,M0
,

then p ≡ 0 on the reference macro-element M0.

Proof. We use the principle of mathematical induction. We have proved the theo-
rem for k = 0, 1 and 2. Assuming

(16)
∫

Ti

qp dx = 0 for all degree m or less polynomials q, 1 ≤ i ≤ 4,

holds for m = k − 2, we need to prove (16) for m = k − 1. By the degree-k
finite-element nodal basis function vk,e at the bary-center e,

(17) vk,e|Ti =

∏k
j=1(xi − cj)∏k
j=1(

1
4 − cj)

, 1 ≤ i ≤ 4, cj =
j − 1
4k

,

we would show as in the lemmas that all values of
∫

Ti
xk−1

i p dx are the same (cf.
(12)). Then we work with the degree-k (k ≥ 2) finite-element nodal bases at nodes

nl =
l

k
a+

(
1 − l

k

)
e =

(
k + 3l

4k
,
k − l

4k
,
k − l

4k

)
, 0 < l < k,

inside edge ae (cf. Figure 1):

vk,l =




0 on T1,

Cl

∏k−l
j=1(x2 − cj)

∏l
j=1(x1 − x2 − cj) on T2,

Cl

∏k−l
j=1(x3 − cj)

∏l
j=1(x1 − x3 − cj) on T3,

Cl

∏k−l
j=1(x4 − cj)

∏l
j=1(x1 − x4 − cj) on T4,

1 < l < k,

where the cj are defined in (17) and the Cl are constants defined properly such that
vk,l assumes value 1 at the node nl. Letting u = (0 vk,1 0)� in (5), we get, by (16),
that

−kCl

∫
T2

xk−1
2 p dx + (k − 1)Cl

∫
T2

x1x
k−2
2 p dx

= −kCl

∫
T4

xk−1
4 p dx + (k − 1)Cl

∫
T4

x1x
k−2
4 p dx

⇒
∫

T2

x1x
k−2
2 p dx =

∫
T4

x1x
k−2
4 p dx.

Here and below, by mathematical induction (16), we only need to record the inte-
grals of the product of p and degree (k−1) polynomial terms, since all the integrals
with lower degree terms are zero by (16). By symmetries or by using nodal bases
on the other three internal edges, it follows that all the values of

∫
Ti
xjx

k−2
i p dx are

the same. Now by letting u = (vk,1 0 0)� in (5), we get∫
T2

xk−1
2 p dx +

∫
T3

xk−1
3 p dx− (k − 1)

∫
T4

(x1 − x4)xk−2
4 p dx = 0 ⇒

(k + 1)
∫

T2

xk−1
2 p dx = (k − 1)

∫
T4

x1x
k−2
4 p dx.(18)
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By symmetries and repeating the process after (11), i.e., adding the three equations

(k + 1)
∫

T2

xk−1
2 p dx = (k − 1)

∫
T4

x1x
k−2
4 p dx,

(k + 1)
∫

T2

xk−1
2 p dx = (k − 1)

∫
T4

x2x
k−2
4 p dx,

(k + 1)
∫

T2

xk−1
2 p dx = (k − 1)

∫
T4

x3x
k−2
4 p dx,

we then get, as before, using x4 = 1 − x1 − x2 − x3,

(4k + 2)
∫

Ti

xk−1
i p dx = (k − 1)

∫
T4

xk−2
4 p dx = 0, 1 ≤ i ≤ 4.

By (18) we proved that (note l is only 0 and 1!)

(19)
∫

Ti

xl
jx

k−1−l
i p dx = 0, 1 ≤ i, j ≤ 4, 0 ≤ l ≤ 1.

Let u = (0 vk,2 0)� in (5). It follows that, by the newly proved results (19),∫
T2

x2
1x

k−3
2 p dx =

∫
T4

x2
1x

k−3
4 p dx

and that all values of
∫

Ti
x2

jx
k−3
i p dx are the same. Letting u = (vk,2 0 0)� in

(5), we prove (19) for l = 2. Repeatedly using vk,l for l > 2, we show (19) for all
other l:

(20)
∫

Ti

xl
jx

k−1−l
i p dx = 0, 0 ≤ l ≤ k − 1, 1 ≤ i, j ≤ 4.

We next work on the cases with three variables such as xi1
1 x

i2
2 x

i3
3 where i1 + i2 +

i3 = k − 1. We use the nodal basis functions involving three variables, i.e., not
those associated with nodes on edges but on faces. At these face nodes

ni,j =
i

k
a+

j

k
d+

k − i− j

k
e, i ≥ 1, j ≥ 1, k − i− j ≥ 1,

in the interior of triangle ade (see Figure 1), the degree-k nodal bases are

vk,i,j = Cij




0 on T1,
k−i−j∏

l=1

(x2 − cl)
i∏

l=1

(x1 − x2 − cl)
j∏

l=1

(x4 − x2 − cl) on T2,

k−i−j∏
l=1

(x3 − cl)
i∏

l=1

(x1 − x3 − cl)
j∏

l=1

(x4 − x3 − cl) on T3,

0 on T4,

where the cl are defined in (17) and the Cij are defined properly such that vk,i,j = 1
at the node ni,j . Let the u in (5) be (0 vk,1,1 0)�. When we compute (5), we only
need to watch the terms of three variables and of highest order, because of (16) and
(20). This would easily lead to

−(k − 2)
∫

T2

x1x3x
k−3
2 p dx = 0.
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By symmetries, it holds that∫
Tl

xmxnx
k−3
l p dx = 0, 1 ≤ l ≤ 4, m 
= n 
= l 
= m.

In (5), letting u = (0 vk,i,j 0)� in an order of increasing (i + j), we would show
sequentially that∫

Tl

xi
mx

j
nx

k−3−i−j
l p dx = 0, 1 ≤ i, j ≤ k − 2,(21)

i+ j ≤ k − 1, 1 ≤ l ≤ 4, m 
= n 
= l 
= m.

Therefore, combining (16) with m = (k − 2), (20) and (21), we get (16) again for
m = (k − 1). The proof is complete.

If p ∈
o

P k−1, then a linear combination of (16) leads to
∫

M0
p2 = 0 and p ≡ 0. �

Let us make a remark on the main result of the paper, Theorem 4, which says
that

div
o

P
0

k,h0,M0
=

o

P
−1

k−1,h0,M0

on the reference macro-element M0. The divergence of the space of polynomials of
degree k or less is exactly the space of polynomials of degree (k− 1) or less. When
posting the boundary condition, say, for a domain consisting of one tetrahedron,
we will lose a lot of degrees of freedom for the discrete velocity space, the space
of polynomials of degree k or less satisfying the zero boundary condition. To be
exact, we lose all degrees of freedom if k ≤ 4, and for k > 4,

(k + 3)(k + 2)(k + 1)
3

− (k − 1)(k − 2)(k − 3)
3

.

Meanwhile, we lose only one degree of freedom for the discrete pressure space, the
polynomials of degree (k−1) or less having mean-value zero. The specially designed
macro-element creates a lot of internal degrees of freedom for the discrete velocity
space so that the match is perfect. This macro-element is made by the simplest
grid on a single tetrahedron for the two spaces to match.

Theorem 5. Suppose that the solution of (1) satisfies �ψ ∈ Hr(Ω)3, r ≥ 1, and

τ ∈ Hs(Ω), s ≥ 0, and let (uh, ph) ∈
o

P
0

k,h,Ω ×
o

P
−1

k−1,h,Ω be the solution of (2). If
k ≥ 3, the following error estimate holds:

|�ψ − uh|1 + ‖τ − ph‖0 ≤ C(hq1−1‖�ψ‖q1 + hq2‖τ‖q2),

where q1 = min{r, k + 1} and q2 = min{s, k}.

Proof. For any M ∈ Mh and any p ∈ NM (defined in (4)), let p̄ =
∫

M p. We then

have p− p̄ ∈
o

P
−1

k−1,h,M and Theorem 4 shows that p− p̄ ≡ 0 on M (after an affine
mapping) for all k ≥ 0, which means p is a constant function p̄ on M . Therefore
dim(NM ) = 1 and (4) holds, which ensures (3) when k ≥ 3 as proved by Stenberg in
[11]. The approximation result follows the stability condition (3) (cf., e.g. [2]). �

We remark that the condition k ≥ 3 in Theorem 5 is sharp in some sense.
This can be seen by considering a domain consisting of two tetrahedra. We then
subdivide each of the two tetrahedra to get eight macro-element type subtetrahedra.
On such a mesh, the dimension of the discrete velocity space is smaller than that
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of the discrete pressure space: dim(
o

P
0

2,h,Ω) = 3 × 2 × 5 = 30 and dim(
o

P
−1

1,h,Ω) =
2 × 4 × 4 − 1 = 31. This example shows the sharpness of the analysis in Stenberg
[11] too. The k ≥ 3 is required in the Stenberg framework, which ensures at least
one internal node for the discrete velocity on the interface between any two 3D
macro-elements. Stenberg’s macro-element theory directly implies that the P3-P0

mixed element is stable on tetrahedral grids. But, of course, one would not use
such a method since it wastes “two orders” of computation. In other words, the
stability of 3D P3-P0 elements implies the stability of our macro P3-P2, or higher
degree, elements.

4. Numerical tests

We will verify Theorem 4 by two numerical examples in this section. In the first
case, the domain is the unit right tetrahedron at the origin (reference macro-element
M0). We subdivide the domain into four tetrahedra which make a macro-element.
We compute the singular values of the matrix A = (aij) where aij are the values

of the divergence of the Lagrange nodal basis for
o

P
0

k,h,Ω at nodes of the Lagrange

basis for
o

P
−1

k−1,h,Ω. In Table 1, we list the maximal and minimal singular values of

A. Since A is a full-rank matrix, it implies that the image of divergence of
o

Pk is
o

P k−1 and that Theorem 4 holds in this testing case.
In the second test, the domain is the unit cube with initial mesh consisting of six

tetrahedra. We get the macro-element mesh Th by subdividing the six tetrahedra
into 24 tetrahedra. In Table 2, we list the maximal and minimal singular values of
A. The data show that the condition k ≥ 3 is necessary in Theorem 5.

Table 1. Singular values in the case of one tetrahedron domain

Degree Singular Values dim(
o

P
0

k) dim(
o

P
−1

k−1) difference
k Minimal Maximal

1 1.0000 2.0000 3 3 0

2 1.1856 10.5279 15 15 0

3 1.2365 25.3072 45 39 6

4 1.0176 51.9827 105 79 26

5 0.7936 101.0454 207 139 68

6 0.7903 193.8626 363 223 140

7 0.8074 372.5908 585 335 250

8 0.8178 720.7702 885 479 406

Table 2. Singular values in the case of one cube domain

Degree Singular Values dim(
o

P
0

k) dim(
o

P
−1

k−1) difference
k Minimal Maximal

1 — — 18 23 −5

2 — — 93 95 −2

3 2.7663 94.9330 294 239 55

4 2.3348 203.4540 693 479 214

5 2.1847 379.1579 1362 839 523
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Figure 2. The errors for the discrete pressure (P4-P3) when a
singular vertex presents. The discrete linear system is solved by
the Gaussian elimination (top) or by the iterated penalty method
(bottom, at a different scaling, where the maximal nodal error is
1/20 of that on the top).

Finally, we make a few additional comments on singular vertices. For each
additional singular vertex in 2D, the space of discrete divergence-free velocity has
one more dimension. Therefore, the finite element space for velocity would be less
“locking” and “singular vertices” are good in some sense. However, we should
point out that this might be true only for lower-degree finite element spaces. For
example, the degrees of freedom of divergence-free velocity in some P1-P0 mixed
elements are mainly provided by singular vertices in [6]. Furthermore, even “nearly
singular vertices” are not necessarily bad since they could provide an additional
approximation for the unknown velocity, depending on what and how iterative
methods are applied to the discrete linear system. In Figure 2, we plot the errors
of computed pressure when solving Stokes equations on the unit square, where the
velocity �φ = curlg and the pressure τ = −∆g, for g = (x− x2)2(y− y2)2, by P4-P3

mixed elements. The error for discrete velocity is typical of the optimal order. We
used both the Gaussian elimination and an iterated penalty method [10]. When a
singular vertex (at the center in Figure 2) or a nearly singular vertex is present, the
Gaussian elimination method (without filtering out the extra degree of freedom in
discrete pressure) would produce a big nodal error there for the discrete pressure,
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because the linear system is singular (within the round-off error) or nearly singular.
However, for the iterated penalty method or Uzawa, or incomplete Uzawa, or most
other iterative methods, the discrete pressure solution from the iteration does not
have any unusual error near the singular vertex, shown in Figure 2. This is because
most iterative methods would smartly limit the iterates for pressure within the
proper subspace or not too far off the subspace (see [7].) The conclusion we would
draw is still that we should avoid singular/nearly singular vertices if possible, for
high-degree mixed elements.
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