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tion fields. The most popular choice is perhaps the Tweedie model, which
is obtained by tempering the Positive Stable distribution. Through tem-
pering, we suggest a very flexible four-parameter family of distributions
that generalizes the Tweedie model and that could be applied to data sets
of non-negative observations with complex (and difficult to accommodate)
features. We derive the main theoretical properties of our proposal, through
which we show its wide application potential. We also embed our proposal
within the theory of Lévy processes, thus providing a strengthened prob-
abilistic motivation for its introduction. Furthermore, we derive a series
expansion for the probability density function which allows us to develop
algorithms for fitting the distribution to data. We finally provide applica-
tions to challenging real-world examples taken from international trade.
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5 Connection with Lévy processes . . . . . . . . . . . . . . . . . . . . . . 3882

6 Application to international trade . . . . . . . . . . . . . . . . . . . . 3886

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3891

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3891

1. Introduction

There already exist rather flexible and probabilistically founded models that
have experienced successful applications in different areas. For instance, a popu-
lar class is provided by stable distributions and by their tempered versions. Such
models possess a nice probabilistic interpretation in terms of Lévy processes and
have proven to be useful for describing phenomena that exhibit skewness and
kurtosis, especially in economics and finance; see, e.g., Barndorff-Nielsen and
Shephard [9], Brix [10], Carr et al. [11], Cont and Tankov [15], Devroye and
James [16], Favaro et al. [19, 20], Lijoi and Prunster [33], Rachev et al. [39].

It is worth noting that even if stable distributions represent a very attractive
mathematical framework, they may not provide realistic descriptions in many
practical applications. Indeed, stable distributions do not generally display fi-
nite moments, while the size of random phenomena are bounded in real-world
situations. This shortcoming has motivated the study of their tempered versions
(Grabchak [23]). Tempering allows for models that are similar to original dis-
tributions in some central region, even if they possess lighter – i.e., tempered
– tails. Therefore, even if the original stable distribution and its tempered ver-
sion may be statistically indistinguishable, their tail behavior is different in the
sense that the former may have infinite expectation, while the latter possesses
all finite moments.

A frequently adopted choice for tempering the Positive Stable distribution is
the three-parameter Tweedie model (Jörgensen [28], Tweedie [43]), which en-
compasses both the exponentially-tilted stable distribution and the compound
Poisson of Gamma distributions as special cases. The possibility to represent
skewness, heavy tails and a point mass at zero (the latter arising, e.g., as a con-
sequence of rounding errors or confidentiality issues in real surveys) all under
the same umbrella has made the Tweedie distribution a very attractive frame-
work for modelling international trade data, where such features occur very
frequently (Barabesi et al. [5]). However, a possible limitation of the Tweedie
model is that it may not adequately describe data that simultaneously exhibit
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both a heavy tail and the point mass at zero. It is not a fault of this three-
parameter system, which can control scale, shape and tail heaviness through its
parameters, but which might have problems in accommodating both skewness
and kurtosis simultaneously. As also shown by Barabesi et al. [5], alternative
and rather ad hoc three-parameter mixtures – that might occasionally provide
acceptable results – lack a general probabilistic interpretation and show highly
variable performance over different data sets.

The goal of this paper is to introduce a very flexible four-parameter fam-
ily of distributions that overcomes the shortcomings described above and that
could be applied to data sets of non-negative observations with complex (and
difficult to accommodate) features, thus improving over the Tweedie model. For
this purpose we rely on the three-parameter Positive Linnik distribution (Pakes
[37]), which provides an extension to the Positive Stable law. The proposed
family is obtained by tempering the Positive Linnik distribution and yields the
Tweedie distribution in the limit as the shape parameter approaches zero. We
derive the main theoretical properties of our four-parameter system, including
various stochastic representations, through which we show its wide application
potential. We also embed our proposal within the theory of Lévy processes, thus
providing a strengthened probabilistic motivation for its introduction. Further-
more, we derive explicit expressions of the probability density function in terms
of the Mittag-Leffler function. These expressions allow us to develop algorithms
for fitting the distribution to data. In addition, random variate generation is
considered by means of the achieved stochastic representations. A related pro-
posal for genuinely integer-valued data is given in Barabesi et al. [3].

The paper is organized as follows. In §2 we review the Positive Linnik distri-
bution and the Tweedie model. Our new family of distributions is proposed in
§3. Its main theoretical properties are derived in §4, while §5 provides connec-
tions with the theory of Lévy processes. Applications to challenging real-world
examples taken from international trade are provided in §6.

2. Two distribution families related to the Positive Stable law

Before introducing the new distribution, we describe and provide some basic
features of two well-known laws, that are connected to our proposal. These are
the Positive Linnik and the Tweedie families. Both of them encompass the Pos-
itive Stable law either as a special case, or in the limit. A repeatedly-adopted
notation in our work is as follows. If X represents a random variable, the cor-
responding Laplace transform is given by LX(s) = E [exp(−sX)], Re(s) > 0. In
addition, if X is an integer-valued random variable, the corresponding proba-
bility generating function (p.g.f.) is given by gX(s) = E

[

sX
]

, s ∈ [0, 1].

2.1. The Positive Linnik distribution

The Positive Linnik (PL) law was originally given by Pakes [37] and extends the
law introduced by Linnik [35, p.67]. The law is also named Generalized Mittag-
Leffler, since it involves the generalized Mittag-Leffler function (see Haubold
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et al. [24]). By introducing a slight change in the parametrization suggested by
Christoph and Schreiber [14], the absolutely continuous PL random variable,
say XPL, has Laplace transform given by

LXPL
(s) = (1 + λδsγ)−1/δ, Re(s) > 0, (1)

where (γ, λ, δ) ∈ ]0, 1]×R
+×R

+, with R
+ = ]0,∞[. It is worth noting that γ is a

“tail” index (see below for more details), while λ is actually the scale parameter
and δ is the shape parameter. We also adopt the notation XPL := XPL(γ, λ, δ)
to emphasize dependence on the parameters.

The PL family encompasses the Positive Mittag-Leffler law (originally pro-
posed by Pillai [38]) for δ = 1, and the Gamma law for γ = 1. In addition,
the Laplace transform of the Positive Stable (PS) random variable XPS :=
XPS(γ, λ), i.e.

LXPS
(s) = exp(−λsγ), Re(s) > 0,

is obtained as a special case of (1) when δ → 0+. Obviously, the law of XPS

reduces to a Dirac mass at λ for γ = 1. See Zolotarev [45] for more details on
the PS law.

We now recall a key property of the PL law. Let the random variable XG :=
XG(α, β) be distributed according to a Gamma law with Laplace transform
given by

LXG
(s) = (1 + αs)−β , Re(s) > 0,

where (α, β) ∈ R
+×R

+. Therefore, the corresponding probability density func-
tion (p.d.f.) with respect to the Lebesgue measure on R is given by

fXG
(x) =

1

αβΓ(β)
xβ−1 exp(−x/α), x ∈ R

+.

Hence, by considering the Gamma random variable XG(λδ, 1/δ), it follows that
(1) may be also expressed as

LXPL
(s) = LXG

(sγ) = E [exp(−sγXG)] ,

so that the PL distribution is actually a scale mixture of the PS law over a
Gamma mixing. The genesis of the PL distribution is thus apparent, since from
the previous expression it turns out that (see, e.g., James [26] and Jose et al.
[29]),

XPL(γ, λ, δ)
L
= XG(λδ, 1/δ)

1/γXPS(γ, 1),

which may also be rewritten as

XPL(γ, λ, δ)
L
= XPS(γ,XG(λδ, 1/δ)). (2)

Our notation in (2) actually emphasizes that the conditional distribution of
XPS given XG is PS and the unconditional distribution is PL. In what follows,
similar notations have the same meaning. Identity (2) also proves to be useful
for random variate generation, since many generators for Gamma variates are
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available, while PS variates can be obtained by means of Kanter’s representa-
tion (Kanter [30]). The reader may refer to James [26] and Lin [34] for further
noteworthy stochastic representations of XPL.

In order to achieve an explicit expression for the p.d.f. of XPL, we make use
of the generalized Mittag-Leffler function given by

Ec
a,b(z) =

∞
∑

k=0

(

−c
k

)

Γ(ak + b)
(−z)k,

where Re(a) ∈ R
+, Re(b) ∈ R

+, c ∈ R
+ and z ∈ C, while

(

c

k

)

=
c(c− 1) · · · (c− k + 1)

k!

for c ∈ R (see, e.g., Mathai and Haubold [36], or the recent monograph by
Gorenflo et al. [22]). Reasoning as in Haubold et al. [24, p.37], the p.d.f. of XPL

can be obtained by initially expanding (1) as

LXPL
(s) = (λδsγ)−1/δ(1 + (λδsγ)−1)−1/δ =

∞
∑

k=0

(

−1/δ

k

)

(λδsγ)−k−1/δ.

Since for q ∈ R
+ and α ∈ R

+ it holds that

q−α =
1

Γ(α)

∫ ∞

0

xα−1 exp(−qx)dx,

it also follows that

LXPL
(s) =

∞
∑

k=0

(

−1/δ

k

)

(λδ)−k−1/δ 1

Γ(γk + γ/δ)

∫ ∞

0

xγk+γ/δ−1 exp(−sx)dx

=

∫ ∞

0

exp(−sx)
1

x

∞
∑

k=0

(

−1/δ
k

)

Γ(γk + γ/δ)

(

xγ

λδ

)k+1/δ

dx.

Hence, from the uniqueness of Laplace transform, it follows that the p.d.f. of
XPL with respect to the Lebesgue measure on R is given by

fXPL
(x) =

1

x

∞
∑

k=0

(

−1/δ
k

)

Γ(γk + γ/δ)

(

xγ

λδ

)k+1/δ

=
xγ/δ−1

(λδ)1/δ
E

1/δ
γ,γ/δ

(

−
xγ

λδ

)

, x ∈ R
+.

(3)
The generalized Mittag-Leffler function may be expressed in terms of the Fox

H-function (see, e.g., Haubold et al. [24, p.17]) and it can be computed by means
of routines which are commonly available in mathematical software packages,
thus allowing practical evaluation of fXPL

. In any case, it should be noticed that
James [26, Remark 3.2] provides an integral representation for fXPL

. Under our
parametrization, this alternative expression of fXPL

turns out to be

fXPL
(x) =

1

π(λδ)1/γ

∫ ∞

0

exp(−xy/(λδ)1/γ) sin(πγFγ(y)/δ)

(y2γ + 2yγ cos(πγ) + 1)1/(2δ)
dy, x ∈ R

+,
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where

Fγ(y) = 1−
1

πγ
cot−1

(

cot(πγ) +
yγ

sin(πγ)

)

, y ∈ R
+.

If FXPL
represents the distribution function (d.f.) of XPL, it is interesting to

assess the asymptotic behavior of FXPL
(x) as x → ∞. Since for each s ∈ R+ it

holds that
LXPL

(sτ)

LXPL
(τ)

→ 1

as τ → 0+, an application of the Tauberian Theorem (see Feller [21, p.443])
shows that for each y ∈ R

+

FXPL
(xy)

FXPL
(x)

→ 1

as x → ∞, i.e. FXPL
is slowly varying at infinity. It thus follows that

FXPL
(x) ∼ LXPL

(1/x) = (1 + λδx−γ)−1/δ

as x → ∞. In addition, on the basis of the result provided by Feller [21, Example
(c), p.447], it also holds that

1− FXPL
(x) ∼ 1− LXPL

(1/x) ∼ λx−γ

as x → ∞, and it is now apparent that γ is a “tail” index. Moreover, by consid-
ering the previous expression, FXPL

interestingly turns out to be asymptotically
equivalent to the d.f. of a Burr III distribution, also known as the Dagum distri-
bution, a popular and flexible model for income and economic data; see Fattorini
and Lemmi [18] and Kleiber [32] for the genesis of this law.

As Christoph and Schreiber [14] emphasize, a further property of the PL
law is that XPL is self-decomposable and hence infinitely divisible. This follows
from representation theorems for self-decomposable random variables in terms
of their Laplace transform (see, e.g., Steutel and van Harn [42]).

Finally, by generalizing (2), it is worth noting that we can obtain a “scale”
mixture of PS random variables, say XMPS , with a mixturing absolutely contin-
uous and positive random variable V , on the basis of the identity in distribution

XMPS
L
= XPS(γ, V ). (4)

Obviously, the PS law is achieved by assuming a degenerate distribution for V ,
i.e. P (V = λ) = 1. The Laplace transform of XMPS turns out to be

LXMPS
(s) = LV (s

γ), Re(s) > 0, (5)

where LV is the Laplace transform of V . Families of mixtures of PS random
variables can thus be generated on the basis of (4) and (5) by suitably selecting
V . As an example, if V is distributed according the Geometric Gamma law, we
obtain the Geometric Generalized Mittag-Leffler distribution proposed by Jose
et al. [29].
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2.2. The Tweedie distribution

The Tweedie distribution is actually a Tempered Positive Stable (TPS) distri-
bution, as pointed out by Hougaard [25]; see also Aalen [1]. We thus denote the
Tweedie random variable as XTPS . With a slight change in the parametrization
proposed by Hougaard [25] and Aalen [1], the Laplace transform of XTPS is
given by

LXTPS
(s) = exp(sgn(γ)λ(θγ − (θ + s)γ)), Re(s) > 0, (6)

where (γ, λ, θ) ∈ { ]−∞, 1]× R
+ × R

+}∪{ ]0, 1]× R
+ × {0}}. Formulation (6)

does not require to define the Laplace transform for analytical continuity when
γ = 0. Indeed, under this parametrization it is apparent that the Dirac distri-
bution with mass at zero is obtained for γ = 0. By following the usual route,
we also write XTPS := XTPS(γ, λ, θ).

Obviously,XTPS(γ, λ, 0)
L
= XPS(γ, λ) when γ ∈ ]0, 1]. Moreover, for γ ∈ ]0, 1]

it holds that

LXTPS
(s) =

LXPS
(θ + s)

LXPS
(θ)

. (7)

In such a case, if fXPS
denotes the p.d.f. of XPS(γ, λ) with respect to the

Lebesgue measure on R, the p.d.f. of XTPS(γ, λ, θ) is obtained from (7) as

fXTPS
(x) =

exp(−θx)fXPS
(x)

LXPS
(θ)

. (8)

Hence, expression (8) reveals the exponential nature of the tempering and it is
apparent that θ is actually the tempering parameter.

Since fXPS
may be expressed as the convergent series (see, e.g., Sato [41,

p.88])

fXPS
(x) =

1

x

∞
∑

k=1

1

k!Γ(−kγ)

(

−
xγ

λ

)−k

, x ∈ R
+,

when γ ∈ ]0, 1], it also follows from (8) that

fXTPS
(x) =

exp(−θx+ λθγ)

x

∞
∑

k=1

1

k!Γ(−kγ)

(

−
xγ

λ

)−k

, x ∈ R
+.

It is worth noting that tempering extends the range of parameter values with
respect to the PS distribution. Indeed, γ may now assume negative values, even
if θ must be strictly positive in such a case. This is an interesting feature, since
when γ ∈ R

−, with R
− = ] − ∞, 0[, it is possible to reformulate XTPS as a

compound Poisson of Gamma random variables. Let XP := XP (λ) be a Pois-
son random variable with parameter λ, whose probability generating function
(p.g.f.) is given by

gXP
(s) = exp(−λ(1− s)), s ∈ [0, 1].
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Thus, by considering a Gamma random variable XG(1/θ,−γ), expression (6)
may be rewritten as

LXTPS
(s) = exp(−λθγ(1− LXG

(s))) = E[LXG
(s)XP ],

where in this case XP = XP (λθ
γ). Since the sum of independent Gamma ran-

dom variables is in turn a Gamma random variable, from the previous expression
the following identity in distribution holds for γ ∈ R

−

XTPS(γ, λ, θ)
L
= XG(1/θ,−γXP (λθ

γ)). (9)

Hence, XTPS displays a mixed distribution, given by a convex combination of a
Dirac distribution with mass at zero and an absolutely continuous distribution,
which proves to be a very useful property for modelling data with an excess of
zeroes (Barabesi et al. [5]). On the basis of expression (9), it can be shown that

P (XTPS = 0) = exp(−λθγ),

while the p.d.f. of XTPL conditional on the event {XTPL > 0} is given by

hXTPS
(x) =

1

1− exp(−λθγ)

exp(−θx− λθγ)

x

∞
∑

k=1

1

k!Γ(−kγ)

(

−
xγ

λ

)−k

,

for x ∈ R
+.

For further features of the Tweedie distribution see, e.g., Barabesi et al. [5],
who also describe computationally efficient algorithms for parameter estimation
and for random variate simulation.

3. The new family of distributions

By following one of the general paths suggested by Klebanov and Slámová [31]
and extending expression (2), we introduce a tempered version of the PL ran-
dom variable, say XTPL := XTPL(γ, λ, δ, θ), on the basis of the identity in
distribution

XTPL(γ, λ, δ, θ)
L
= XTPS(γ,XG(λδ, 1/δ), θ). (10)

The new family is thus defined as the scale mixture of a TPS law over a Gamma
mixing. On the basis of (6), Identity (10) yields the Laplace transform of XTPL

as
LXTPL

(s) = (1 + sgn(γ)λδ((θ + s)γ − θγ))−1/δ, Re(s) > 0, (11)

where (γ, λ, θ, δ) ∈ { ]−∞, 1]× R
+ × R

+ × R
+} ∪ { ]0, 1]× R

+ × {0} × R
+}.

The Laplace transform of XTPS(γ, λ, δ) is obtained from (11) as δ → 0+. Ex-
pression (10) also provides a suitable tool for generating TPL variates through
the generators available for XTPS (see Barabesi et al. [5]). Alternatively, variate
generation could be directly implemented by means of the method proposed by
Barabesi and Pratelli [6, 7].
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Some comments on the TPL distribution are in order according to the two
main subsets of the γ domain that strongly characterize this law. First, let us
consider γ ∈ ]0, 1]. In this case, if λδθγ = 1 expression (11) reduces to

LXTPL
(s) = (1 + (λδ)1/γs)−γ/δ, Re(s) > 0, (12)

which is the Laplace transform of a Gamma random variable XG((λδ)
1/γ , γ/δ).

On the other hand, if λδθγ �= 1 and by considering the PL random variable
XPL(γ, ψ, δ), for the TPL random variable XTPL(γ, λ, δ, θ) it holds

LXTPL
(s) =

LXPL
(θ + s)

LXPL
(θ)

, (13)

where λ = ψ/(1+ψδθγ). Thus, if fXPL
is the p.d.f. of XPL(γ, ψ, δ) with respect

to the Lebesgue measure on R, the p.d.f. of XTPL(γ, λ, δ, θ) is obtained from
(13) as

fXTPL
(x) =

exp(−θx)fXPL
(x)

LXPL
(θ)

. (14)

Therefore, an exponentially-tilted Linnik occurs and the exponential nature of
the proposed tempering is transparent, as in the case of the Tweedie law.

A stochastic representation generalizing (9) is obtained for γ ∈ R
−. To this

aim, let XNB := XNB(π, κ) be a Negative Binomial random variable with p.g.f.
given by

gXNB
(s) =

(

1− π

1− πs

)κ

= (1 + φ(1− s))−κ, s ∈ [0, 1],

where (π, κ) ∈ ]0, 1[ × R
+ and φ = π/(1− π) ∈ R

+. By considering the random
variable XG(1/θ,−γ), the Laplace transform (11) can be rewritten as

LXTPL
(s) = (1 + λδθγ(1− LXG

(s)))−1/δ.

Therefore, the following identity in distribution holds for γ ∈ R−

XTPL(γ, λ, θ, δ)
L
= XG(1/θ,−γXNB(λδθ

γ/(1 + λδθγ), 1/δ))

L
= XG(1/θ,−γXP (XG(λδθ

γ , 1/δ))),

(15)

where the second identity follows from the well-known representation of the
Negative Binomial law as a compound Poisson law (see, e.g., Johnson et al. [27,
p.212]). It is apparent from (15) that the TPL random variable is a compound
Negative Binomial of Gamma random variables. As a consequence, similarly to
the TPS law, XTPL displays a mixed distribution given by a convex combi-
nation of a Dirac distribution with mass at zero and an absolutely continuous
distribution.

We also emphasize that XTPL is self-decomposable when γ ∈ ]0, 1]. Indeed,
since Identity (13) holds in this case, self-decomposability – and hence infinite
divisibility – can be proven by means of Proposition V.2.14 of Steutel and van
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Harn [42] and by reminding that XPL is in turn self-decomposable. In contrast,
XTPL is not self-decomposable when γ ∈ R

−, since a self-decomposable random
variable must be necessarily absolutely continuous (see the discussion in Steutel
and van Harn [42]). However, from the results given in §5, it follows that XTPL

is infinitely divisible for γ ∈ R
−.

Finally, as in (4) and (5), Identity (10) can be extended to a general “scale”
mixture of TPS random variables, say XMTPS , with a mixturing absolutely
continuous and positive random variable V having Laplace transform LV . In
this case, we consider the following identity in distribution

XMTPS
L
= XTPS(γ, V, θ). (16)

The Tweedie law is obtained by assuming a degenerate distribution for V , i.e.
P (V = λ) = 1. Moreover, it is apparent from (16) that the Laplace transform
of XMTPS turns out to be

LXMTPS
(s) = LV (sgn(γ)((θ + s)γ − θγ)), Re(s) > 0. (17)

Families of mixtures of TPS random variables can thus be generated on the basis
of (16) and (17) by suitably selecting V . As an example, if V is distributed
according the Geometric Gamma law, a tempered version of the Geometric
Generalized Mittag-Leffler distribution is achieved.

4. Further properties of the new family

We now obtain the p.d.f. of the proposed random variable XTPL according to
the two main subsets of the γ domain. We start by considering the case γ ∈ ]0, 1].
In such a setting, we have to consider two cases, i.e. λδθγ = 1 and λδθγ �= 1.
When λδθγ = 1, from expression (12) it holds that the p.d.f. of XTPL reduces
to

fXTPL
(x) =

1

(λδ)1/δΓ(γ/δ)
xγ/δ−1 exp(−x/(λδ)1/γ), x ∈ R

+. (18)

On the other hand, if λδθγ �= 1, from expressions (3) and (14) it turns out that

fXTPL
(x) =

exp(−θx)xγ/δ−1

(λδ)1/δ
E

1/δ
γ,γ/δ

(

−
(1− λδθγ)xγ

λδ

)

, x ∈ R
+, (19)

which obviously reduces to (3) when θ = 0.
We now address the case γ ∈ ] −∞, 0]. By assuming that ̺ = 1 + λδθγ for

the sake of notational simplicity, it follows from (15) that

P (XTPL = 0) = ̺−1/δ. (20)

Moreover, since it holds that
(

1/δ + k − 1

k

)

= (−1)k
(

−1/δ

k

)

,
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the p.d.f. of the random variable XTPL conditional on the event {XTPL > 0}
is given by

hXTPL
(x) =

1

1− ̺−1/δ

∞
∑

k=1

θ−γk

Γ(−γk)
x−γk−1 exp(−θx) ×

×

(

1/δ + k − 1

k

)

̺−1/δ

(

̺− 1

̺

)k

=
1

̺1/δ − 1

exp(−θx)

x

∞
∑

k=1

(

−1/δ
k

)

Γ(−γk)

(

−
λδ

̺xγ

)k

, x ∈ R
+.

In addition, since it holds that
(

−1/δ
k

)

Γ(−γk)
=

(γk − γ + γ/δ)
(

−1/δ
k−1

)

Γ(−γk + 1)
,

and by re-indexing the summation, hXTPL
may be finally rewritten as

hXTPL
(x) =

1

̺1/δ − 1

exp(−θx)

x

∞
∑

k=0

(γk + γ/δ)
(

−1/δ
k

)

Γ(−γk − γ + 1)

(

−
λδ

̺xγ

)k+1

=
λδ

̺(̺1/δ − 1)

exp(−θx)

xγ+1
×

×

{

E
1/δ
−γ,−γ

(

λδ

̺xγ

)

+ (γ − γ/δ)E
1/δ
−γ,−γ+1

(

λδ

̺xγ

)}

,

(21)

where x ∈ R+. As remarked in §2.1, the generalized Mittag-Leffler function can
be computed by means of mathematical software packages in order to evaluate
(19) and (21).

Finally, by differentiating (11) and equating to zero, it is easily checked that
the expectation and the variance of XTPL are given, respectively, by

μ = E[XTPL] = sgn(γ)γλθγ−1 (22)

and

σ2 = Var[XTPL] = δμ2 +
1− γ

θ
μ. (23)

It is worth noting that μ does not depend on δ, so that the TPL and the Tweedie
random variables have the same expectation if the same values of the parameters
γ, λ and θ are chosen. However, since the dispersion index is given by

D =
σ2

μ
= δμ+

1− γ

θ
,

the TPL distribution is more scattered than the Tweedie distribution.
By further differentiation of (11), and re-parameterizing in μ and σ, it also

follows that

m3 = E[(XTPL − μ)3] =
2σ4

μ
−

(1− γ)σ2

θ
+

(1− γ)μ

θ2
(24)



3882 L. Barabesi et al.

Fig 1. Plots of κ4 as a function of (δ, θ), in the case λ = 1 and for γ = 0.25 (left panel),
γ = 0.50 (central panel) and γ = 0.75 (right panel).

and

m4 =E[(XTPL−μ)4] =
6σ6

μ2
+
(3θμ− 6(1− γ))σ4

θμ
+
(5− 6γ + γ2)σ2

θ2
+
(1− γ2)μ

θ3
.

(25)
The moment expressions are useful because they provide further insight on

the flexibility of the new distribution, e.g. through the skewness coefficient κ3 =
m3/σ

3 and the kurtosis index κ4 = m4/σ
4. We sketch this flexibility in Figures 1

and 2, where we display several three-dimensional plots of κ4 as a function of
δ and θ, in the case λ = 1 and for a number of values of γ. It is clear from the
plots that the new distribution substantially extends the range of the kurtosis
index with respect to the Tweedie law. Indeed, for any given θ, κ4 rapidly
grows as δ increases for all the values of γ, either positive or negative. The
reported feature is very important also for negative values of γ, since in this
case a mixed distribution with a bold mass at zero and quite heavy tails can
be achieved – in contrast with the Tweedie distribution. We argue that this
property provides strong motivation for our proposal and shows its potential for
application. Even if the new distribution involves four parameters, it displays a
substantially extended morphology with respect to the Tweedie law – which is
anyway a special case, being recovered in the limit as δ → 0+. Empirical evidence
of the gain obtained through the TPL distribution is provided in Section 6. We
thus conclude that involving an extra parameter is worth the computational and
statistical effort: our distribution is able to capture very marked deviations from
normality, while keeping the original flexibility of the Tweedie model in terms
of shape and modality. An additional probabilistic justification of our proposal
within the framework of Lévy processes is given in the next section.

5. Connection with Lévy processes

Informally speaking, a non-negative Lévy process, sayX = (Xt)t≥0, is a stochas-
tic jump process with non-negative, independent, time-homogeneous increments.
The Laplace transform of such a process is given by the Lévy-Khintchine rep-
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Fig 2. As Figure 1, but now for γ = −0.5 (left panel), γ = −1 (central panel) and γ = −2
(right panel).

resentation
LXt

(s) = exp(−tψX(s)), Re(s) > 0,

while the function

ψX(s) =

∫ ∞

0

(1− e−sx)νX(dx)

is the characteristic exponent of the Lévy process and νX is the Lévy measure
(see Sato [41]). In what follows, we also consider subordination of the Lévy pro-
cess X. Subordination is defined as a transformation of the original process X to
a new stochastic process through random time change by a further non-negative
Lévy process Z = (Zt)t≥0 independent of X and with Laplace transform

LZt
(s) = exp(−tψZ(s)), Re(s) > 0,

where

ψZ(s) =

∫ ∞

0

(1− e−sx)νZ(dx)

is the characteristic exponent, while νZ is the Lévy measure. Hence, subor-
dination produces a new non-negative Lévy process, say Y = (Yt)t≥0, where
Yt = XZt

, with Laplace transform given by

LYt
(s) = exp[−tψZ(ψX(s))], Re(s) > 0.

We see subordination as an interesting modification of the root process for
modelling real data, since many phenomena are likely to change more rapidly
in different time segments. In such a case, it is preferable to represent the con-
nection between calendar time and the pace of the phenomenon as random, so
that a time-deformed process is achieved.

In order to provide further insight on the genesis of the TPL law, let us first
assume that X is a TPS process with γ ∈ ]0, 1[. In such a case, by considering
the exponentially-tilted stable Lévy measure, i.e.

νX(dx)

dx
=

γλ

Γ(1− γ)
x−γ−1 exp(−θx), x ∈ R

+,
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where λ ∈ R
+ and θ ∈ R

+, we obtain the following characteristic exponent
(Barabesi et al. [5])

ψX(s) = λ((θ + s)γ − θγ).

Moreover, if Z is a Gamma process with Lévy measure

νZ(dx)

dx
= ηx−1 exp(−x/δ), x ∈ R

+,

where δ ∈ R
+ and η ∈ R

+, the corresponding characteristic exponent is given
by

ψZ(s) = η log(1 + δs).

Hence, subordination of X by Z gives rise to the Lévy process Y with Laplace
transform

LYt
(s) = (1 + λδ((θ + s)γ − θγ))−ηt, Re(s) > 0. (26)

By letting ηt = 1/δ for a fixed t, when γ ∈ ]0, 1[ the TPL random variable
proposed in our work may thus be considered as the “outcome” of subordination
of a TPS process by a Gamma process.

On the other hand, when γ ∈ R
− the TPS process X may be seen as a

compound Poisson process, in such a way that the primary Poisson process has
rate ρ and each jump is assumed to be a Gamma random variable XG(−γ, 1/θ).
The corresponding Laplace transform is given by

LXt
(s) = exp[−ρt(1− (1 + s/θ)γ)], Re(s) > 0,

and X is a Lévy process with characteristic exponent

ψX(s) = ρ(1− (1 + s/θ)γ) = λ(θγ − (θ + s)γ),

where λ = ρ/θγ . Thus, if Z is taken to be a Gamma process, subordination of
X by Z gives rise to the Lévy process Y with Laplace transform

LYt
(s) = (1− λδ((θ + s)γ − θγ))−ηt, Re(s) > 0. (27)

Therefore, by letting ηt = 1/δ for a fixed t, when γ ∈ R
− the TPL random

variable is again the “outcome” of a process arising from subordination of a
TPS process – which is actually a compound Poisson process in this case – by
a Gamma process.

In general, by suitably modifying the parametrization in the expression given
by Vinogradov [44, Proposition 1.2], we write the Lévy measure of the TPS
process for γ ∈ ]−∞, 1[ as

νX(dx)

dx
=

|γ|λ

Γ(1− γ)
x−γ−1 exp(−θx), x ∈ R

+,

where λ ∈ R+ and θ ∈ R+. In such a case, we readily obtain the following
characteristic exponent

ψX(s) = sgn(γ)λ((θ + s)γ − θγ).
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If Z denotes the Gamma process considered above, subordination of X by Z
then yields the Lévy process Y with Laplace transform

LYt
(s) = (1 + sgn(γ)λδ((θ + s)γ − θγ))−ηt, Re(s) > 0.

Therefore, by letting ηt = 1/δ for a fixed t, the TPL random variable is generally
the “outcome” of subordination of a TPS process by a Gamma process.

We then derive the Lévy measure of the TPL process. When γ ∈]0, 1[, on the
basis of (19) and (26) by letting η = 1/δ, the p.d.f. of the random variable Yt

may be written as

ft(x) =
exp(−θx)

x

(

xγ

λδ

)t/δ ∞
∑

k=0

(

−t/δ
k

)

Γ(γk + tγ/δ)

(

(1− λδθγ)xγ

λδ

)k

, x ∈ R
+.

Hence, by using the method proposed by Barndorff-Nielsen [8] for computing
Lévy densities, the Lévy measure of the TPL process may be given as

νY (dx)

dx
= lim

t→0+

1

t
ft(x) =

γ exp(−θx)

δx

∞
∑

k=0

1

Γ(γk + 1)

(

−
(1− λδθγ)xγ

λδ

)k

=
γ exp(−θx)

δx
Eγ,1

(

−
(1− λδθγ)xγ

λδ

)

, x ∈ R
+.

Moreover, when γ ∈ R
−, on the basis of (21) and (27) by letting η = 1/δ, the

p.d.f. of the random variable Yt conditional on the event {Yt > 0} may be also
expressed as

ht(x) =
1

(1+λδθγ)t/δ
exp(−θx)

x

∞
∑

k=1

(

−t/δ
k

)

Γ(−γk)

(

−
λδ

(1+λδθγ)xγ

)k

, x ∈ R
+.

By considering the remark by Applebaum [2, p.22], the same method thus pro-
vides the Lévy measure of the TPL process as

νY (dx)

dx
= lim

t→0+

1

t
ht(x) = −

γ exp(−θx)

δx

∞
∑

k=1

1

Γ(−γk + 1)

(

λδ

(1 + λδθγ)xγ

)k

= −
γ exp(−θx)

δx

(

E−γ,1

(

λδ

(1 + λδθγ)xγ

)

− 1

)

, x ∈ R
+.

As a final remark, we note that the TPL process Y can be easily simulated
by considering its discrete approximation at times t0 < t1 < . . . < tn. Indeed,
in this case the following identity in distribution holds

Yti − Yti−1

L
= XZti−ti−1

,

where i = 1, 2, . . . , n. The increments of the discrete process can thus be gen-
erated as realizations of the random variables XTPS(γ,XG(λδ, ti − ti−1), θ). A
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Fig 3. Randomly simulated paths of the proposed TPL process with 1000 steps and different
parameter configurations. Top panels: γ = 0.5, λ = 1.0, θ = 1.0 and δ = 0.3, 0.6, 2.0. Bottom
panels: γ = −1.0, λ = 1.0, θ = 1.0 and δ = 0.5, 1.0, 2.0.

few sample paths of Y with 1000 steps, obtained through this method, are dis-
played in Figure 3 for different parameter configurations. In particular, in the
top panels we show three realizations where γ = 0.5, λ = 1.0, θ = 1.0, and the
shape parameter varies as δ = 0.3, 0.6, 2.0. It is apparent that the realizations
of the process are smoother as δ increases, since in this case the Lévy measure
underlying the Gamma process tends to be more concentrated. On the other
hand, the realizations displayed in the lower panels are for a negative value of
γ, i.e. γ = −1.0, while λ = 1.0 and θ = 1.0 as before, and δ = 0.5, 1.0, 2.0. In
this setting the realizations show trajectories with jumps, in accordance with
the compound Poisson nature of the process. However, the jumps are more ev-
ident for small δ, while they reduce in size as δ increases, given the nature of
the Gamma process subordination. Such pictures thus reinforce the idea that
the proposed TPL process is considerably more flexible than the common TPS
process and that it can become a valuable candidate for representing complex
phenomena, even if it comes at the cost of an extra parameter. See also Rachev
et al. [39, Ch.8] for more refined – albeit more cumbersome – techniques for
random simulation of Lévy processes.

6. Application to international trade

We demonstrate the potential of our proposal by fitting the new TPL distri-
bution to two data sets taken from international trade. Each data set contains
the monthly aggregates of import quantities for a specific product that were
registered in European Union (EU) Member States from non-EU countries in
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the period August 2008 – July 2012. The information comes from the official
extra-EU trade statistics, Extrastat, extracted from the COMEXT database of
Eurostat. The monthly aggregates of imports are built from the customs decla-
rations collected from individuals or companies by the Member States, following
a strictly regulated process (Eurostat [17]). An overview of the resulting infor-
mation archive is given in Barabesi et al. [5]. Sound statistical modeling of such
data is an important tool when the task is to assess the performance of alterna-
tive anti-fraud methods; see, e.g., Barabesi et al. [4] and Cerioli and Perrotta [13]
for a description of some of the statistical challenges that arise when investigat-
ing fraud patterns in international trade. The availability of flexible statistical
models that adequately describe the distribution of trade quantities for a large
number of products can also provide direct support to the EU policy makers,
e.g., in the form of tools for monitoring the effect of policy measures.

Due to the combination of economic activities and normative constraints, the
empirical distribution of traded quantities is often markedly skew with heavy
tails, a large number of rounding errors in small-scale transactions due to data
registration problems, and structural zeros arising because of confidentiality
issues related to national regulations. Such features are typically not easy to an-
alyze and Barabesi et al. [5] show that the Tweedie distribution leads to sensible
models in several cases of interest. However, also the fit provided by the Tweedie
distribution can be improved for some products, especially when a very heavy
tail is present. This is the framework of our first example, concerning the prod-
uct Port (Wine of fresh grapes, including fortified wines, in containers holding 2
litres or less), within the Chapter of Beverages, Spirits and Vinegar. The empir-
ical distribution of this product only contains positive values, but many of them
are small and both skewness and kurtosis are impressively high. In particular,
the empirical skewness coefficient is κ̄3 = 5.9 and the empirical kurtosis index
is κ̄4 = 47.9, due to the presence of a small number of transactions involving
more than 5000 litres (the maximum quantity is 14148 litres). To further ap-
preciate the flexibility of our proposal, we then fit the TPL model to the traded
quantities of Fillets of Pangasius (Pangasius spp.), fresh or chilled within the
Chapter of Fish and Crustaceans, Molluscs and other Aquatic Invertebrates, a
smaller data set for which both a mass of null values and a rather heavy tail
(κ̄4 = 14.3) are present. Both examples provide relevant instances of products
that may be affected by illegal trading behavior, such as counterfeiting, smug-
gling and misdeclaration of the product values or codes. Indeed, a major fraud
due to systematic under-reporting of price for a fishery product is extensively
described by Cerasa [12] and Riani et al. [40].

We perform computations through a Matlab algorithm that includes numer-
ical evaluation of the Mittag-Leffler function and constrained optimization for
Maximum Likelihood fitting. A good choice of the starting values of the param-
eters is important both for speeding up the algorithm and for reaching the best
solution, as is often the case when maximizing complex multi-parameter func-
tions. We have found that a sensible strategy is to combine random selection
with moment matching. Specifically, starting from a randomly chosen value of
γ and θ, say γ̃0 and θ̃0, we first find the values λ̃0 and δ̃0 that equate the theo-
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Fig 4. Empirical distribution function of product Port (Wine of fresh grapes, including forti-
fied wines, in containers holding 2 litres or less) and fitted TPL distribution function.

retical mean (22) and variance (23) to the empirical moments. We then use the
quadriplet (γ̃0, θ̃0, λ̃0, δ̃0) as a starting point for minimizing the distance between
the whole set of theoretical moments (22)–(25) and their empirical values. The
resulting parameter estimates, say (γ̃, θ̃, λ̃, δ̃), are taken as the starting values
of our Maximum Likelihood algorithm. An alternative, which is not considered
in this paper, could be to obtain (γ̃, θ̃, λ̃, δ̃) by minimizing a crude and fast
approximation of the L2-distance between the Laplace transform (11) and its
empirical version.

In the Port data set we have n = 299 positive observations, with a mean of
453.622 litres and a standard deviation of 1350.63 litres. Therefore, γ ∈ ]0, 1]
and, if (x1, . . . , xn) represents the observed sample, the likelihood function (with
respect to the Lebesgue measure) is

ℓ(γ, λ, θ, δ) =

n
∏

i=1

exp(−θxi)x
γ/δ−1
i

(λδ)1/δ
E

1/δ
γ,γ/δ

(

−
(1− λδθγ)xγ

i

λδ

)

.

Figure 4 shows the fit of the TPL model in our first example, by displaying
the empirical distribution function of the data together with the estimate of
the TPL distribution function obtained from (19) and restricted for clarity to
values x ∈ ]0, 8000[. This estimate is obtained through numerical integration.
Our Matlab code is based on recursive calculation of the integral that stops when
the error is < 10−6. The Matlab version used for calculations is the R2015.
The resulting parameter estimates (γ̂, θ̂, λ̂, δ̂) are also displayed in Figure 4.
Comparison with the Tweedie distribution is provided in Table 1, which reports
the log-likelihoods of the two competing models and gives the decrease in the
criterion

AIC = −2 log ℓ̂+ 2ν,
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Table 1

Comparison of the fit provided by the TPL model and by the Tweedie distribution

Log-likelihood Log-likelihood Decrease in
TPL Tweedie (TPS) AIC index

Port -1824.440 -2056.332 461.784
Fillets of Pangasius -525.646 -530.039 6.786

Fig 5. Zoom into the right-tail fit of the TPL (blue curve) and TPS (red curve) density
functions to product Port (Wine of fresh grapes, including fortified wines, in containers holding
2 litres or less).

where ℓ̂ is the maximum of the likelihood function, when moving from the
Tweedie distribution (ν = 3) to our TPL proposal (ν = 4). It is clearly seen that
our four-parameter distribution yields a major decrease in both the likelihood
function and the AIC index.

Further insight into the behavior of the two models under comparison can be
obtained by looking at Figure 5, which shows a zoom into the right-hand tail of
the estimated density functions for this product. The Maximum Likelihood esti-
mates of the parameters in (6) are γ̂ = 0.527, λ̂ = 9.529 and θ̂ = 0.0001548, using
the algorithm described in Barabesi et al. [5]. We can see that the extremely
large observed values of skewness and kurtosis lead the Tweedie distribution
to become very close to a Positive Stable one, with virtually no tempering at
all. It is thus apparent why our TPL model, which flexibly admits a very wide
(but finite) range of values for (24) and (25), provides a preferable solution in
this application. Indeed, the TPL model-based estimate of the kurtosis index
results in κ̂4 = 24.8, which is reasonably close to the corresponding empirical
coefficient, while we would obtain a value as high as κ̂4 = 159.20 under the
Tweedie model. As anticipated by the panel of Figure 1 corresponding to the
largest value of γ, when δ → 0+ (i.e. in the limiting Tweedie case) high degrees
of kurtosis can be reached only with θ = 0. A much wider range of values for
skewness and kurtosis measures is instead available through our model.
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Fig 6. Empirical distribution function of product Fillets of Pangasius (Pangasius spp.), fresh
or chilled and fitted TPL distribution function.

We obtain similar results also in our second example, for which we have
n = 117 observations, m = 6 of which are exactly zero. The number of null
observations is the realization of a Binomial random variable with n trials and
success probability (20). We thus take γ ∈ ]−∞, 0] and the likelihood function
(with respect to the Dirac measure at zero and the Lebesgue measure) of the
TPL model is

ℓ(γ, λ, θ, δ) = P (XTPL = 0)m (1− P (XTPL = 0))
n−m

n−m
∏

i=1

hXTPL
(xi)

= ̺−n/δ

(

λδ

̺

)n−m n−m
∏

i=1

exp(−θxi)

xγ+1
i

×

×

{

E
1/δ
−γ,−γ

(

λδ

̺xγ
i

)

+ (γ − γ/δ)E
1/δ
−γ,−γ+1

(

λδ

̺xγ
i

)}

,

where we have re-indexed the sample (x1, . . . , xn) in such a way that the first
(n−m) observations are non-null, while the remaining m observations are zero,
and ̺ = 1 + λδθγ as already defined in §4. Figure 6 shows the fit of our model,
together with the corresponding parameter estimates. Although in this example
the results obtained through the TPL model are qualitatively similar to those
provided by the Tweedie distribution, they still show an improvement. Again,
the AIC criterion reported in Table 1 conveys the finding that the addition of
an extra parameter is more than compensated by the corresponding decrease in
the likelihood function.
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