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Abstract. We present an adaptive fast multipole method for solving the Poisson equation in
two dimensions. The algorithm is direct, assumes that the source distribution is discretized using
an adaptive quad-tree, and allows for Dirichlet, Neumann, periodic, and free-space conditions to be
imposed on the boundary of a square. The amount of work per grid point is comparable to that of
classical fast solvers, even for highly nonuniform grids.
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1. Introduction. A variety of problems in scientific computing involve the so-
lution of the Poisson equation

∆ψ = f,(1)

subject to appropriate radiation or boundary conditions. In simple geometries (cir-
cular or rectangular domains) with regular grids, there are well-known fast direct
solvers [6, 7] which typically rely on the fast Fourier transform (FFT) and are well
suited to the task. When either restriction is relaxed, however, these methods no
longer apply. Since practical problems tend to involve complex geometries, highly
inhomogeneous source distributions f , or both, there has been a lot of effort directed
at developing alternative approaches. Most currently available solvers rely on itera-
tive techniques using multigrid, domain decomposition, or some other preconditioning
strategy [5, 9, 21]. Unfortunately, while such multilevel strategies can achieve nearly
optimal efficiency in theory, they require an appropriate hierarchy of coarse grids
which is not provided in practice. Although there has been significant progress in this
direction [1, 2, 10, 11, 20, 23], the available solvers compare unfavorably with the fast
direct solvers in terms of work per grid point.

In this paper, we describe an integral equation method for solving the Poisson
equation in two dimensions which is direct, high order accurate, insensitive to the
degree of adaptive mesh refinement, and accelerated by the fast multipole method
(FMM) [16, 17, 26]. It is competitive with standard fast solvers in terms of work per
grid point. This is a rather stringent test, since we compare the time for a classical,
FFT-based solver using N mesh points with our adaptive, FMM-based solver using
the same number of points, ignoring the fact that the latter solver uses grids which
are highly inhomogeneous. We allow for the imposition of various combinations of
free-space, periodic, Dirichlet, and Neumann conditions on the boundary of a square.

Earlier work on FMM-based integral equation schemes in two dimensions includes
[15, 22, 29]. The paper [22] describes a fast Poisson solver for complex geometries,
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where the boundary can be arbitrarily shaped and multiply-connected, but where
the right-hand side is specified on a uniform underlying mesh. The other two papers
discuss the inversion of (1) in free space by evaluation of the analytic solution

ψ(x) =
1

2π

∫

D

f(y) log(|x− y|) dy.(2)

The algorithms of both [15] and [29] are highly adaptive, with the former relying on a
quad-tree and the latter relying on an unstructured triangulation. Neither, however,
goes beyond the free-space problem.

The present approach is similar to that outlined in [15] but differs in several
respects.

1. In the method of [15], one solves local Poisson problems with spectral methods
on each leaf node of a quad-tree data structure and then patches the solutions
together using the FMM in a domain decomposition approach. Here, we apply
the FMM directly to the volume integral, using high order quadratures.

2. We incorporate a new version of the FMM described in [19], which is based
on diagonal forms for translation operators (see section 3.8).

3. We incorporate the method of images to solve a variety of boundary value
problems on a square (with adaptive refinement).

4. For fourth and sixth order accurate discretizations, we use locally uniform
meshes, compatible with adaptive mesh refinement (AMR) data structures
[3]. For eighth order accuracy, we follow [13, 15, 24] and rely on local spectral
meshes.

The paper is organized as follows. In section 2, we outline the relevant potential
theory, with particular emphasis on the method of images. In section 3, we describe
the fast multipole algorithm itself, and in section 4, we present several numerical
examples. Finally, it should be noted that our algorithm shares a number of features
with the recently developed scheme of [12] for solving the pseudodifferential equation

(−∆)1/2ψ = ω(3)

in the plane via the integral representation

ψ(x) =

∫

R2

ω(y)

|x− y|
dy.

2. Potential theory. To complete a description of a well-posed problem, we
must obviously add to the Poisson equation (1) a specification of boundary conditions
on the unit square D. We allow the free-space conditions defined by (2), periodic
boundary conditions, Dirichlet conditions, and Neumann conditions. We can also
handle mixed conditions, but assume that the transition from one type to another
(Dirichlet–Neumann, etc.) occurs only at corners. The solution to all these problems
can be constructed analytically using the method of images.

For periodic boundary conditions, one simply imagines the entire plane to be tiled
with copies of the source distribution contained in the unit cell D. (How to compute
the influence of each of these images efficiently is discussed in the next section.) For
other boundary conditions, the construction is a bit more subtle. Let us consider, for
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example, the boundary value problem

∆ψ = f in D,

ψ = gL on ΓL,

ψ = gR on ΓR,(4)

∂ψ/∂n = gT on ΓT ,

∂ψ/∂n = gB on ΓB ,

where ΓL denotes the “left” boundary (x = −0.5,−0.5 ≤ y ≤ 0.5), ΓR denotes the
“right” boundary (x = 0.5,−0.5 ≤ y ≤ 0.5), ΓT denotes the “top” boundary (−0.5 ≤
x ≤ 0.5, y = 0.5), and ΓB denotes the “bottom” boundary (−0.5 ≤ x ≤ 0.5, y = −0.5).

This problem can be conveniently broken up into two parts. First, we can solve
the Poisson equation:

∆ψ1 = f in D,

ψ1 = 0 on ΓL,

ψ1 = 0 on ΓR,(5)

∂ψ1/∂n = 0 on ΓT ,

∂ψ1/∂n = 0 on ΓB .

Then we can solve the Laplace equation with inhomogeneous boundary conditions:

∆ψ2 = 0 in D,

ψ2 = gL on ΓL,

ψ2 = gR on ΓR,(6)

∂ψ2/∂n = gT on ΓT ,

∂ψ2/∂n = gB on ΓB .

Clearly, ψ = ψ1 + ψ2.
To solve (5), suppose that we tile the plane with the pattern of images depicted

in Figure 1. The shaded box is the computational domain containing the source
distribution f . fT denotes the even reflection of the function f across the top boundary
ΓT , −fR denotes the odd reflection of the function f across the right boundary ΓR,
and −fRT denotes the even reflection of the function −fR across the line y = + 1

2 . It
is easy to verify that the vertical lines x = ± 1

2 are lines of odd symmetry and that the
horizontal lines y = ± 1

2 are lines of even symmetry. Thus, the desired homogeneous
boundary conditions are enforced if we account for the field due to all images. This
task is simplified by the observation that the 2 × 2 supercell outlined with dashes in
Figure 1 tiles the plane periodically.

To handle the inhomogeneous boundary conditions in (6), we recall the following
classical results from potential theory [18, 30].

Lemma 2.1. Let u(x, y) satisfy the Laplace equation ∆u = 0 in the half-space
y > 0 with Dirichlet boundary conditions u(x, 0) = f(x). Then u(x, y) is given by the
double layer potential

u(x, y) = 2

∫ ∞

−∞

∂G

∂y
(x− ξ, y) f(ξ) dξ =

1

π

∫ ∞

−∞

y

(x− ξ)2 + y2
f(ξ) dξ.
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Fig. 1. A source distribution tiling the plane which solves the Poisson equation with the homoge-
neous boundary conditions described by the system (5). The shaded box represents the computational
domain itself. fT denotes the even reflection of the function f across the top boundary ΓT , −fR
denotes the odd reflection of the function f across the right boundary ΓR, and −fRT denotes the
even reflection of the function −fR across the line y = + 1

2
. The 2 × 2 “supercell” with the dashed

outline can be seen to tile the plane periodically.

The solution satisfying Neumann boundary conditions ∂u∂n (x, 0) = g(x) is given by the
single layer potential

u(x, y) = 2

∫ ∞

−∞

G(x− ξ, y) g(ξ) dξ =
1

π

∫ ∞

−∞

ln
√

(x− ξ)2 + y2 g(ξ) dξ.

Consider now the system of layer potentials depicted in Figure 2. We leave it to
the reader to verify that, from the preceding lemma and symmetry considerations,
the boundary conditions of (6) are satisfied. As with the tiling of source distributions,
the task of accounting for the field due to all images is simplified by the observation
that the layer potentials on boundary segments outlined with dots in Figure 2 tile the
plane periodically. The evaluation of layer potentials is discussed in section 3.7.

3. Data structures and the FMM. We assume that the source distribution
f in (2) is supported inside the unit square D, centered at the origin, on which is
superimposed a hierarchy of refinements (a quad-tree). Grid level 0 is defined to be
D itself, and grid level l+1 is obtained recursively by subdividing each square at level
l into four equal parts. Using standard terminology, if d is a fixed square at level l,
the four squares at level l + 1 obtained by its subdivision will be referred to as its
children. In order to allow for adaptivity, we do not use the same number of levels
in all regions of D. We do, however, assume that the quad-tree satisfies one fairly
standard restriction, namely, that two leaf nodes which share a boundary point must
be no more than one refinement level apart (Figure 3).

3.1. The volume integral. We restrict our attention, for the moment, to the
free-space problem. Extended volume integrals such as the ones depicted in Figure 1
will be discussed in section 3.6.

The leaf nodes on which the source distribution is given will be denoted by Di.
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Fig. 2. A tiling of the plane with layer potentials to solve (6). The computational domain
is indicated with diagonal dashes. Dl denotes a double layer potential with density gL, and Dr
denotes a double layer potential with density gR. Their even reflections across the bottom boundary
ΓB are Dlb and Drb, respectively. St denotes a single layer potential with density gT , and Sb
denotes a single layer potential with density gB. Their odd reflections across the right boundary ΓR

are −Str and −Sbr, respectively. Symmetry considerations show that all four boundary conditions
are satisfied. Note that the layer potentials on boundary segments outlined with dots tile the plane
periodically.
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Fig. 3. For the childless node B, colleagues are labeled n, coarse neighbors are labeled n+,
and fine neighbors are labeled n−. The interaction list for B consists of the boxes marked i. The
boxes marked by s are children of B’s colleagues which are separated from B, so they are not fine
neighbors. They constitute the s-list for B (see Definition 3.1).
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Thus, D = ∪Mi=1Di and we rewrite (2) in the form

ψ(x) =

M
∑

i=1

1

2π

∫

Di

f(y) log(|x− y|) dy.(7)

Definition 3.1. The colleagues of a square B are squares at the same refinement
level which share a boundary point with B. (B is considered to be a colleague of itself.)
The coarse neighbors of B are leaf nodes at the level of B’s parent which share a
boundary point with B. The fine neighbors of B are leaf nodes one level finer than B
which share a boundary point with B. Together, the union of the colleagues, coarse
neighbors, and fine neighbors of B will be referred to as B’s neighbors. The s-list of a
box B consists of those children of B’s colleagues which are not fine neighbors of B.

The interaction region for B consists of the area covered by the neighbors of
B’s parent, excluding the area covered by B’s colleagues and coarse neighbors. The
interaction list for B consists of those squares in the interaction region which are at
the same refinement level, as well as leaf nodes in the interaction region which are at
coarser levels. When the distinction is important, the squares at the same refinement
level will be referred to as the standard interaction list, while the squares at coarser
levels will be referred to as the coarse interaction list.

In our FMM, following [8, 16, 17], terms in the convolution integral (7) from
neighbor leaf nodes are computed directly. More distant interactions are accounted
for on coarser levels, through the use of a hierarchy of far-field and local multipole
expansions. We consider the local interactions first.

3.2. Local interactions. For fourth and sixth order accuracy, we assume that
we are given f on a cell-centered k × k grid for each leaf node B, with k = 4 or 6,
respectively. We can, therefore, take these k2 data points and construct a kth order
polynomial approximation to f of the form

fB(x, y) ≈

Nk
∑

j=1

cB(j) bj(x− xB , y − yB),

where Nk = k(k+1)
2 is the number of basis functions needed for kth order accuracy and

where (xB , yB) denotes the center of B. The basis functions b1(x, y), . . . , bNk
(x, y) are

given by

{xiyj | i, j ≥ 0, i+ j ≤ k − 1}.

If we let �fB ∈ Rk
2

denote the given function values (in standard ordering), then the
calculation of the coefficient vector �cB is clearly overdetermined. We obtain it through
a least squares fit based on the singular value decomposition. The pseudoinverse
matrix P ∈ RNk×k

2

, such that

�cB = P �fB ,

can be precomputed and stored.
Remark 3.1. For eighth order accuracy, we assume that f is given on a scaled

8 × 8 classical tensor product Chebyshev grid [7] and use as basis functions

{Ti(x)Tj(y)| i, j ≥ 0, i+ j ≤ k − 1},
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where Ti(x) denotes the Chebyshev polynomial of degree i. The coefficients of the
Chebyshev expansion can be computed efficiently using the fast cosine transform.

Consider now a target point Q, which lies in a neighbor of B. The field induced
at Q by fB is approximated by

ψB(Q) =

Nk
∑

n=1

cB(n)f(Q,n),(8)

where

f(Q,n) =
1

2π

∫

B

bn(x− xB , y − yB) log |Q− (x, y)| dxdy.(9)

Since the target points Q are regularly spaced in each neighboring square, we can
precompute the weights (9) for each of the k2 possible locations at each of 9 possible
colleagues, 12 possible fine neighbors, and 12 possible coarse neighbors. To be more
precise, we can precompute the weights assuming that B is the unit square [−0.5, 0.5]2

because of the following straightforward lemma.
Lemma 3.2. Let B be a leaf node at level l and let Q denote a target point in

one of B’s neighbors. Let Q∗ denote the scaled target point for the unit cell centered
at the origin

Q∗ = 2l−1 · (Q− (xB , yB)),

let

f∗(Q∗, n) =
1

2π

∫ 1/2

−1/2

∫ 1/2

−1/2

bn(x, y) log |Q∗ − (x, y)| dxdy,(10)

and let

f̄(n, l) =
1

2π

(

1

2l−1

)d+2 ∫ 1/2

−1/2

∫ 1/2

−1/2

bn(x, y) log

(

1

2l−1

)

dxdy.(11)

Then the integral f(Q,n) defined in (9) is given by

f(Q,n) =

(

1

2l−1

)d+2

f∗(Q∗, n) + f̄(n, l),

where d is the degree of the polynomial basis function bn.
Thus, we need only obtain weights for a box of unit area. Elementary counting

arguments show that the storage required for this precomputation is

k × k ·Nk · 9 real numbers for colleagues,

k × k ·Nk · 12 real numbers for fine neighbors,

k × k ·Nk · 12 real numbers for coarse neighbors,

for a total of approximately 17 × k4 real numbers.
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3.3. Far-field interactions. We turn now to the calculation of far-field inter-
actions, which are computed by means of multipole expansions. We refer the reader
to [14, 16] for more detailed discussions of potential theory. Our starting point is
the usual multipole expansion for a charge distribution, which we state formally as a
theorem.

Theorem 3.3 (multipole expansion). Let ρ(y) be a charge distribution contained
within a square Di with center C and let Φ(x) denote the induced field at a point x
in the interaction list of Di:

Φ(x) =
1

2π

∫

Di

log |x− y|ρ(y) dy.

Then Φ(x) can be described by the multipole expansion

Φ(x) = α0 log |x− C| + ℜ

(

∞
∑

k=1

αk
(x1 + ix2 − C)k

)

,(12)

where C is viewed as a point in the complex plane, x = (x1, x2), and ℜ(w) denotes
the real part of the complex quantity w. The coefficients αk are given by

α0 =
1

2π

∫

Di

ρ(y1, y2)dy1 dy2,

αk = −
1

2π

∫

Di

(y1 + iy2 − C)kρ(y1, y2)

k
dy1 dy2.(13)

In the hierarchical framework of the FMM, an upper bound for the error in truncating
the expansion after n terms is given by

(

1

2

)n
1

2π

∫

Di

|ρ(y1, y2)| dy1 dy2.(14)

Theorem 3.4 (local expansion). Let ρ(y) be a charge distribution contained
outside the neighbors of a square Di with center C and let Ψ(x) denote the induced
field at x ∈ Di. Then Ψ(x) can be described by a local expansion

Ψ(x) = ℜ

(

∞
∑

l=0

βl(x1 + ix2 − C)l

)

,(15)

where C is viewed as a point in the complex plane and x = (x1, x2).
The FMM relies on the ability to manipulate multipole and local expansions for

every box in the tree hierarchy. We omit the technical details and refer the reader to
the original papers [8, 14, 16, 17].

Definition 3.5. We denote by Sl,k the kth square at refinement level l.
We denote by Φl,k the multipole expansion describing the far field due to the source

distribution supported inside Sl,k.
We denote by Ψl,k the local expansion describing the field due to the source dis-

tribution outside the neighbors of Sl,k.

We denote by Ψ̃l,k the local expansion describing the field due to the source dis-
tribution outside the neighbors of the parent of Sl,k.
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Remark 3.2. Let Sl,k be a square in the quad-tree hierarchy and let Sl′,k′ be a
square in its interaction list. Then there is a linear operator TMM for which

Φl,k = TMM [Φ(C1),Φ(C2),Φ(C3),Φ(C4)],(16)

where Φ(Cj) denotes the multipole expansion for the jth child of Sl,k. In other words,
we can merge the expansions for four children into a single expansion for the parent.
Similarly, there is a linear operator TLL for which

[Ψ̃(C1), Ψ̃(C2), Ψ̃(C3), Ψ̃(C4)] = TLLΨl,k,(17)

where Cj denotes the jth child of Sl,k. In other words, we can shift the local expansion

Ψ for a box to the corresponding expansion Ψ̃ for each of its children. Finally, there
is a linear operator TML for which the field in Sl,k due to the source distribution in
Sl′,k′ is described by Ψ = TMLΦl′,k′ . It is easy to verify that

Ψl,k = Ψ̃l,k +
∑

i∈IL

TMLΦi,(18)

where IL denotes the interaction list for square Sl,k.
Remark 3.3. One slight complication in the adaptive algorithm concerns the

interaction between boxes of different sizes. Referring to Figure 3, we need to account
for the influence of a childless square B on each box marked s and vice versa. (This
interaction doesn’t arise if B undergoes further refinement.) For the box marked s,
its multipole expansion is rapidly convergent at each of the k2 target points in B.
Thus, its influence can be computed by direct evaluation of the truncated series. For
the reverse, however, note that B’s multipole expansion is not so rapidly convergent.
In this case, we can map directly from the polynomial coefficients �cB of B to the local
expansion in s. A more precise statement than (18) is

Ψl,k = Ψ̃l,k +
∑

i∈SIL

TMLΦi,+
∑

i∈CIL

Ldirect(�ci),(19)

where SIL denotes the standard interaction list and CIL denotes the coarse in-
teraction list. The operator Ldirect, which maps the coefficients of the polynomial
approximation of the density in the coarse box onto the p coefficients of the local
expansion can be precomputed and stored.

The bulk of the work in the FMM consists of applying the operators TMM , TLL,
and especially TML in a systematic fashion. Unfortunately, these operators are dense.
Using multipole and local expansions truncated after p terms, the naive cost of appli-
cation is proportional to p2. Recent improvements in the FMM have reduced this cost
in both two and three space dimensions [17, 19]. A brief discussion of the technical
ideas is presented in section 3.8.

3.4. The FMM algorithm.
Initialization

Comment [We assume we are given a square domain D = S0,0, on which is superim-
posed an adaptive hierarchical quad-tree structure. We let M be the number of leaf
nodes and denote them by Di, i = 1, . . . ,M . The number of grid points is, therefore,
N = 16M . We let p denote the order of the multipole expansion (p ≈ log2 ǫ, where ǫ
is the desired accuracy). We let lmax denote the maximum refinement level.]
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Step I: Multipole sweep
Upward pass

for l = lmax, . . . , 0
for all boxes j on level l

if j is childless then
form the multipole expansion Φl,j from (12)

else
form the multipole expansion Φl,j by merging the expansions of
its children using the operator TMM (see (16))

end
end

Downward pass
Initialize the local expansion Ψ0,0 = 0.
for l = 1, . . . , lmax

for all squares j on level l

Compute Ψ̃l,j by shifting its parent’s Ψ expansion using the operator TLL
Compute Ψl,j by adding in the contributions from all squares in j’s

interaction list according to (19).
if j is childless then

for all boxes k in the s-list of j:
evaluate the multipole expansion Φk at each
target in square j.

end
Evaluate the local expansion Ψl,j at each
target in square j.

endif
end

end
Cost [The upward pass requires approximately Mp2 work, where M is the number of
leaf nodes. The downward pass requires approximately 3Mp2 work using plane-wave
expansions (see section 3.8 below).]

Step II: Local interactions
Comment [At this point, for each leaf node Di, we have computed the influence of
the source distribution f over all leaf nodes Dj outside the neighbors of Di.]

do i = 1, . . . ,M
For each target point in Di, evaluate the influence of each

neighbor according to (8) using the precomputed
tables of coefficients (10).

end
Cost [The maximum number of neighbors a square can have is thirteen (twelve fine

neighbors and itself). Thus the local work is bounded by is 13 · k(k+1)
2 ·N operations.]

3.5. Periodic boundary conditions. The inversion formula (2) and the fast
algorithm described above assume that the right-hand side f is supported within a
unit square. When imposing periodic boundary conditions, as mentioned in section 2,
one can simply assume that the entire plane is tiled with copies of f centered at the
lattice points {(i, j)|i, j ∈ Z}. In order to account for the influence of these images, we
follow the approach introduced in [16], the essence of which can already be found in



A NEW FMM-BASED POISSON SOLVER IN TWO DIMENSIONS 751

Lord Rayleigh’s classic paper [25]. The main thing to notice is that, after the upward
pass in the FMM, we have a net multipole expansion describing the far field due to
the entire source distribution f contained in the unit cell centered at the origin:

φ(x) = ℜ

(

p
∑

n=1

αn
zn

)

.(20)

(There is no logarithmic term since we assume that the source distribution has no net
charge.) This is then the expansion for each of the periodic images of the box with
respect to its own center. All of these images, except for the nearest neighbors centered
at {(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0), (1,1)}, are well separated from the
computational domain itself. Thus, the fields they induce inside the computational
domain are accurately representable by a p-term local expansion where, as before, p is
the number of terms needed to achieve a relative precision ǫ. This local representation
can be written as

Ψ0,0(w) = ℜ

(

p
∑

n=0

βnw
n

)

.(21)

It remains only to obtain the operator mapping the coefficients {αn} to the coef-
ficients {βn}. We refer the reader to [4, 16, 25] for a discussion of this operator, which
is based on the precomputation of certain lattice sums. The reason we denote the
local expansion in (21) by Ψ0,0 is for consistency of notation with the FMM described
above; the downward pass is modified in the initialization step. In the remainder of
the downward pass and in Step II, only two changes are required; the interaction list
and the local computations must be adjusted for boxes near the boundary to account
for periodic images. This involves no significant increase in the amount of work.

3.6. Other homogeneous boundary conditions. As noted in section 2, prob-
lems with homogeneous Dirichlet and Neumann conditions can be solved using the
method of images. Since there is a 2 × 2 “supercell” which tiles the plane periodi-
cally, it is straightforward to embed such problems in a periodic version of the FMM.
Done naively, this would entail a fourfold increase in CPU time and storage. Careful
implementation considerations allow one to recover this overhead, but the details are
tedious and will be omitted.

3.7. Inhomogeneous boundary conditions. In order to impose inhomoge-
neous boundary conditions using potential theory, we need to consider arrangements
of single and double layer potentials such as the one depicted in Figure 2. These can
be viewed as singular charge distributions and can be handled by the same FMM as
above, with three modifications. First, the far field due to a box B with a single layer
density σ and a double layer density µ along its boundary Γ is given by

φ(x) = ℜ

(

α0 log |x1 + ix2 − C| +

∞
∑

k=1

αk
(x1 + ix2 − C)k

)

,(22)

where

α0 = −
1

2π

∫

Γ

σ(s)ds(23)

and

αk = −
1

2π

∫

Γ

(y1(s) + iy2(s) − C)kσ(s)

k
+ (y1(s) + iy2(s) − C)k−1µ(s) ds.(24)
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Here, (y1(s), y2(s)) is an arclength parametrization of Γ. Second, contributions to the
local field from a leaf node containing layer potentials are precomputed as in section
3.2. Finally, the interaction list and the local computations must be adjusted for
boxes near the boundary.

3.8. Fast translation operators. Consider a box B centered at XB , containing
sources {z1, . . . , zM} with source strengths {q1, . . . , qM} and a target box D centered
at XD in its interaction list. We assume for the moment that ℜ(XD) > ℜ(XB). In
the original FMM, the field outside B is represented as

φ(x) = ℜ

(

α0 log(x1 + ix2 −XB) +

p
∑

k=1

αk
(x1 + ix2 −XB)k

)

.(25)

The field inside D is represented as

φ(x) = ℜ

(

p
∑

l=0

βl (x1 + ix2 −XD)l

)

(26)

with

β0 = α0 log(XD −XB) +

∞
∑

k=1

αk
(XD −XB)k

(−1)k,

βl = −
α0

l · (XD −XB)l
+

1

(XD −XB)l

∞
∑

k=1

αk
(XD −XB)k

(

l + k − 1

k − 1

)

(−1)k for l ≥ 1.

This describes the translation operator denoted by TML in section 3.3 and requires
O(p2) work to apply. In [19], Hrycak and Rokhlin suggest an alternative representa-
tion of φ, based on the formula

1

z − w
=

∫ ∞

0

e−λ(z−w) dλ.(27)

This integral can be discretized using generalized Gaussian quadratures [31] which
take into account the nature of the integrand as well as the precise geometry of the
interaction list. The number of quadrature nodes needed to achieve a precision ǫ is
less than or equal to the number of multipole coefficients. Tables of weights and nodes
for various values of ǫ are provided in [31]. For numerical purposes, we begin with an
approximation of the form

1

zi − w
≈

p
∑

k=1

wke
−λk(zi−w).

Integrating both sides, we have

log(zi − w) ≈

p
∑

k=1

−wk
λk

e−λk(zi−w) + C,

where C is a constant of integration. Choosing

C =

p
∑

k=1

wk
λk
e−λk
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enforces the condition that log(1) = 0.
Instead of the classical multipole expansion (25), we instead work with the expo-

nential representation

φ(x) = ℜ

(

p
∑

k=1

ake
−λk (x1+ix2−XB) + C ′

)

,(28)

where the coefficients ak are exponential moments of the charge distribution:

ak =

M
∑

j=1

qje
+λk (zj−XB)

and

C ′ =





M
∑

j=1

qj



 · C.

The advantage of this approach is that translation has been diagonalized. Transmit-
ting the expansion from box B to D is carried out by computing

ψ(x) = ℜ

(

p
∑

k=1

bke
−λk (x1+ix2−XD) + C ′

)

,(29)

where the new coefficients bk are obtained from the ak through the translation formula

bk = ak e
−λk(XD−XB).

The details of how to incorporate such expansions into an adaptive two-dimensional
FMM code can be found in [19]. For the three-dimensional analogue, see [17].

4. Numerical results. Fast Poisson solvers using the algorithms described
above have been implemented in Fortran 77. Here, we demonstrate their perfor-
mance on four problems involving varying degrees of adaptivity. All of the timings
listed below correspond to calculations performed on a 440MHz SUN Ultra-10 with
256 MB RAM using the compiler option (-fast).

There are few efficient adaptive solvers which are widely available. Therefore,
we have chosen a simple and stringent standard for comparison: the time taken by
a classical FFT-based code for the same number of degrees of freedom (grid points).
Using the second order accurate FORTRAN code HWSCRT by Swartztrauber [27]
and Swartztrauber and Sweet [28] (available from www.netlib.org), with the same
machine and compiler option as above, we obtain the data shown in Table 1.

We have, as yet, said little about our adaptive refinement strategy. It is straight-
forward. Let B be a leaf node with k × k grid points, as discussed in section 3.2 and
let fB(x) denote the kth order polynomial used to approximate the right-hand side on
B. We then evaluate fB(x, y) on a 2k× 2k grid covering B and compute the discrete
L2 error E2 = ‖f(x, y) − fB(x, y)‖2 over these target points. If E2 > tol, the leaf
node B is subdivided. Of course, the tree obtained by this procedure may not satisfy
the level restriction that neighboring leaf nodes be at most one level apart. It is a
straightforward matter to “fix” the tree in a subsequent sweep. We omit the details.
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Table 1
Timing results for the FFT-based second order accurate code HWSCRT. N denotes the number

of grid points, Thwscrt denotes the required solution time in seconds, and rate denote the number
of grid points “processed” per second (N/Thwscrt).

N Thwscrt Rate
256× 256 0.17 3.8 105

512× 512 0.78 3.4 105

1024× 1024 4.0 2.6 105

2048× 2048 19.4 2.2 105

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

-0.5

0

0.5

-0.5

0

0.5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 4. The left-hand figure shows an adaptive mesh resolving the source distribution in (30).
The right-hand figure shows a surface plot of the solution.

Example 4.1. In our first experiment, we consider the equation

∆ψ(x) =

3
∑

i=1

(4α2 ‖x− xi‖
2 − 4α)e−α‖x−xi‖

2

(30)

in free space, for which the exact solution (Figure 4) is the sum of three Gaussians

ψ(x) =

3
∑

i=1

e−α‖x−xi‖
2

.(31)

We consider the case where α = 250, x1 = (.1, .1), x2 = (0, 0), and x3 = (−.15, .1).
The right-hand side in (30) is supported, with an exponentially small error, in the
box [−0.5, 0.5]2, which we use as the computational domain. Our adaptive mesh
is depicted in Figure 4. Note that fine grids are created only near the centers of
the Gaussians. The performance of the fourth, sixth, and eighth order codes are
summarized in Table 2.
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Table 2
Timing results for the fourth, sixth, and eighth order accurate codes in Example 4.1. ǫFMM

denotes the requested precision from far-field interactions within the FMM, ǫRHS denotes the re-
quested precision in discretizing the right-hand side, and Nlev denotes the number of levels used in
the FMM hierarchy. E2 and E∞ denote the relative L2 and L∞ errors of the computed solution, N
denotes the number of grid points used, TFMM denotes the required solution time in seconds, and
rate denote the number of grid points “processed” per second (N/TFMM ).

ǫFMM ǫRHS Nlev E2 E∞ N TFMM Rate

Fourth order

10−3 10−3 7 3.7 10−4 1.2 10−4 11488 0.08 1.4 105

10−3 10−6 9 7.0 10−5 1.4 10−4 96592 0.64 1.5 105

10−6 10−6 9 4.9 10−6 1.3 10−6 96592 1.08 8.9 104

10−6 10−9 10 8.4 10−8 4.9 10−7 821824 8.38 9.8 104

10−9 10−9 10 1.4 10−8 3.4 10−9 821824 12.17 6.8 104

Sixth order

10−3 10−3 6 8.2 10−5 1.2 10−4 10296 0.08 1.3 105

10−3 10−6 7 7.0 10−5 1.6 10−4 43236 0.29 1.5 105

10−6 10−6 7 1.5 10−7 4.2 10−7 43236 0.39 1.1 105

10−6 10−9 9 8.6 10−8 5.6 10−7 279432 2.45 1.1 105

10−9 10−9 9 2.4 10−9 2.2 10−9 279432 3.48 8.0 104

10−9 10−12 10 2.3 10−10 2.4 10−9 1725984 17.19 1.0 105

10−12 10−12 10 2.0 10−12 8.4 10−13 1725984 27.28 6.3 104

Eighth order

10−3 10−3 6 1.0 10−4 2.0 10−4 13888 0.16 8.7 104

10−3 10−6 7 9.0 10−5 2.0 10−4 63616 0.68 9.4 104

10−6 10−6 7 1.7 10−7 6.8 10−7 63616 0.80 8.0 104

10−6 10−9 8 1.4 10−7 6.8 10−7 273280 3.11 8.8 104

10−9 10−9 8 4.4 10−10 2.7 10−9 273280 3.62 7.5 104

10−9 10−12 9 4.2 10−10 2.8 10−9 1281472 16.02 8.4 104

10−12 10−12 9 9.2 10−13 6.1 10−13 1281472 21.68 5.9 104

Example 4.2. For our second experiment, we consider the singular equation

∆ψ = 0 in D,

ψ = 0 on ΓL,

ψ = 0 on ΓR,(32)

ψ = 1 on ΓT ,

ψ = 0 on ΓB ,

In Figure 5, we plot the solution obtained with our solver on an adaptive grid,
the solution obtained by HWSCRT on a uniform 64 × 64 mesh, and the error in the
HWSCRT solution. Note that we resolve the corner singularities adaptively and that
our solution is exact (up to the requested FMM tolerance), since the data is piecewise
polynomial (here, constant).

Remark 4.1. There is an enormous difference in the meaning of “order of ac-
curacy” in our solver and in standard finite difference or finite element codes. Our
solver is exact for a certain order of approximation of the data. A kth order accurate
PDE-based solver on an N×N mesh has a global error which decays like (1/N)k with
a constant of proportionality which depends on the kth derivative of the solution. In
the present example, our solver is exact. The finite difference code is only first order
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Fig. 5. The upper left-hand figure shows the solution obtained by HWSCRT to Example 4.2 and
the upper right-hand figure shows the solution obtained using our solver. The middle figures show
the error in the solution obtained by HWSCRT and the adaptive grid use by our solver, respectively.
The lower figures show the electrostatic energy ‖∇ψ‖2 obtained from HWSCRT and our solver,
respectively.
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Fig. 6. The left-most figure shows a surface plot of the right-hand side for 10 randomly placed
Gaussians as described in (33) with α = 100 and the figure to the right of it shows the corresponding
solution. The two lower figures show both the right-hand side and corresponding solution for α =
1000.

accurate because of the corner singularities.
Example 4.3. In order to evaluate the performance of our code with widely

varying degrees of adaptivity, we consider the source distribution

∆ψ(x) =

10
∑

i=1

−2αe−α‖x−xi‖
2

(33)

in free space. With α = 100, the distribution is fairly smooth, while with α = 1000,
the Gaussians fall off sharply and require many levels of refinement near the centers
(see Figure 6). The experiment was run using the fourth order code and ǫFMM =
ǫRHS = 10−6. Table 3 lists our timing data for various values of α.

In addition to comparing various levels of adaptivity, it is also worth noting that
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Table 3
Timings for the FMM-based solver in Example 4.3.

M N TFMM Rate N TFMM Rate
α = 100 α = 250

5 43969 0.44 9.9 104 73840 0.76 9.7 104

10 70864 0.68 1.0 105 138640 1.43 9.7 104

25 119296 1.33 8.9 104 212800 2.06 1.0 105

100 233296 2.43 9.6 104 262144 2.60 1.0 105

α = 500 α = 1000
5 97648 1.08 9.0 104 108544 1.17 9.3 104

10 196336 2.09 9.4 104 225616 2.40 9.4 104

25 377248 4.03 9.4 104 460912 4.96 9.3 104

100 785632 8.39 9.4 104 916336 9.44 9.7 104

Table 4
Timings for the FMM-based solver in Example 4.3 using free-space and periodic boundary con-

ditions.

M N TFMM Rate N TFMM Rate
Free space Periodic

10 138640 1.43 9.7 104 139696 1.63 8.6 104

30 241168 2.38 1.0 105 241552 2.63 9.2 104

50 253696 2.41 1.0 105 253840 2.62 9.7 104

100 262144 2.60 1.0 105 262192 2.94 8.9 104

the periodic and free-space solvers execute in nearly the same time. To show this, we
consider a right-hand side given by

∆ψ(x) =

M
∑

i=1

(−1)i2αe−α‖x−xi‖
2

.(34)

This ensures that the net charge in the periodic cell is zero. Table 4 compares the per-
formance of the fourth order accurate code with either free-space or periodic boundary
conditions with α = 250 and ǫFMM = ǫRHS = 10−6.

Example 4.4. Most of the preceding examples involve adaptive refinement around
a “point-like” singularity. Here we consider the case of a singularity along a curve.
We simply define a source distribution which takes the value 1 inside a circle of radius
.25 and 0 outside. The right-hand side is shown in Figure 7 along with the computed
solution. Using the fourth order solver with 7 levels or refinement and 7936 grid
points, the L2 and L∞ errors are less than 10−3 and the solver executes at the rate
1.3 105 points per second. Using the sixth order solver with 12 levels or refinement
and 681,408 grid points, the L2 and L∞ errors are less than 10−6 and the solver
executes at the rate 8.5 104 points per second. Both of these timings are comparable
to those in Example 4.1.

The following observations can be made from the preceding data.
1. The timings for the FMM-based solver grow linearly with the number of

unknowns. For fourth order accuracy with a three-digit FMM tolerance,
the present implementation achieves a processing speed between 5.9 104 and
1.5 105 points per second. The classical second order FFT-based solver pro-
cesses 2.6 105 points per second on a 1024 × 1024 grid.

2. For three-digit accuracy, the fourth order accurate code is fastest (≈ 1.4 105

points per second), while for six-digit accuracy, the sixth order accurate code
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Fig. 7. The left-hand figure shows the right-hand side. The middle figure shows the grid and
the right figure shows the solution.

is fastest (≈ 1.1 105 points per second). For twelve-digit accuracy, the sixth
and eighth order codes are only about twice as slow (≈ 6.3 104 points per
second).

5. Conclusions. We have developed a new adaptive, high order accurate solver
for the Poisson equation in two dimensions. The method is direct, fast-multipole-
based, and allows for the specification of a variety of boundary conditions on a unit
square. These include free-space conditions, periodic boundary conditions, Dirichlet,
Neumann, and a variety of mixed conditions. The amount of work scales linearly with
the number of degrees of freedom in the computational domain and is competitive
with classical FFT-based solvers in terms of work per grid point, despite the flexibility
of adaptive mesh refinement.

In order to develop a black box Poisson solver of broad interest, of course, we
need to allow for complex geometry. It would also be of value to be able to solve the
Helmholtz and linearized Poisson–Boltzmann equations,

∆u+ λ2u = f and ∆u− λ2u = f,

with a similar approach. These extensions are underway and will be reported at a
later date.
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