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A New Fast QR Algorithm Based ona Priori Errors
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Abstract—This letter presents a new fast QR algorithm based
on Givens rotations usinga priori errors. The principles behind
the triangularization of the weighted input data matrix via QR
decomposition and the type of errors used in the updating process
are exploited in order to investigate the relationships among
different fast algorithms of the QR family. These algorithms
are classified according to a general framework and a detailed
description of the new algorithm is presented.

Index Terms—Adaptive filters, fast QR decomposition, recur-
sive least squares, RLS algorithms.

I. INTRODUCTION

FAST recursive least squares (RLS) algorithms based on
QR decomposition (using Givens rotations) are among

those adaptive filtering algorithms with desired characteris-
tics such as numerical robustness and possibility of efficient
implementation.

From the conventional QR decomposition method
[1], [2], a number of fast algorithms were derived
[3]–[6]. These algorithms can be classified in terms of the type
of triangularization applied to the input data matrix (upper or
lower triangular) and type of errors (a posteriori or a priori)
involved in the updating process. As will be clear later, an
upper triangularization (in the notation of this work) involves
the updating of forward prediction errors, while a lower
triangularization involves the updating of backward predic-
tions errors. The classification is summarized in Table I. This
table also indicates how these algorithms will be designated
hereafter.

The proposed algorithm, referred as FQR_PRI_F, is a
fast QR that updatesa priori forward prediction errors. The
FQR_PRI_B algorithm was independently developed in [5]
and [6] using different approaches. The approach that will
be used here derives from concepts used in the inverse
QR algorithm [5], [7] (where the inverse Cholesky factor is
updated).

II. BASIC CONCEPTS OFQR DECOMPOSITIONALGORITHMS

This section reviews the basic concepts of the conventional
and inverse QR algorithms in order to establish the notation of
this letter. The RLS algorithms minimize the following cost
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TABLE I
CLASSIFICATION OF THE FAST QR ALGORITHMS

function:

(1)

where each component of the vector is the a posteriori
error at instant weighted by is the forgetting
factor). The vector is given by

(2)

In (2), is the weighted desired signal vector,
is the weighted input data matrix, is the order (the number of
coefficients is , and is the coefficient vector. The
premultiplication of the above equation by the orthonormal
matrix triangularizes without affecting
the cost function.

(3)

The weighted-square error in (1) is minimized by choosing
such that the term is zero.

Equation (3) can be written in a recursive form, as follows,
while avoiding ever increasing order for the vectors and
matrices involved [1]:

(4)

where is a sequence of Givens rotations that
annihilates the elements of the input vector

in the equation

(5)

The following relation also used in the conventional QR
algorithm is obtained by postmultiplying by
the pinning vector

(6)

where is the first element of the first row of

1070–9908/97$10.00 1997 IEEE



308 IEEE SIGNAL PROCESSING LETTERS, VOL. 4, NO. 11, NOVEMBER 1997

III. T HE NEW FAST QR-RLS ALGORITHM

The key difference in the development of the fast QR
algorithms is the way that the matrix is triangularized,
as follows:

or

(7)

In both types of triangularization, the matrix
can be partitioned as

(8)

where, using (8) in (5) and recalling that is
orthonormal, it is possible to prove that

is the normalized a posteriori
forward (upper triangularization)/backward (lower trian-
gularization) prediction error vector [6],

is the normalizeda priori forward
(upper triangularization)/backward (lower triangularization)
prediction error vector [6], and

In the derivation of fast QR algorithms, we start by applying
the QR decomposition to the forward and backward prediction
problems whose prediction errors are, respectively, defined as

(9)

(10)

It is fundamental to note that the partitioned matrices
in the last two equations correspond to
(weighted input data matrix of order Our aim is to
triangularize such that

The upper triangularization of
is implemented by premultiplying by the product

where is a set of Givens
rotations generating by eliminating the first

elements of the rotated desired vector of the forward predictor.
The result is

(11)

where
By working with nonincreasing dimensions, it is easy to

show that [1]

(12)

(13)

In the backward prediction problem, the triangular-
ization is achieved using three matrices,

where and are two sets
of Givens rotations applied to generate, respectively,
and As a result, we have

(14)

where is a submatrix of and is the
norm of the backward error of a zero-coefficient predictor.

If we take the inverse of (11) and (14), the following
relations result:

(15)

The expressions of given in (15) can be used
to obtain the vectors and The
choice of one of these vectors will determine the algorithm:
updating (a posteriori errors) will lead to the
FQR_POS_F algorithm [3] and updating (a priori
errors) will lead to the new FQR_PRI_F algorithm.

Expressing
in terms of the matrices in (15) and premultiplying

the one that comes from the backward prediction problem by
yields

(16)

Once we have the angles of
are found through the following relation obtained by postmul-
tiplying [see (8)] by the pinning vector.

(17)
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TABLE II
FQR_PRI_F ALGORITHM

The quantities required to compute the angles of
are not available at instant and a special strategy is required.
The updated is obtained [1] with the use of the
vector defined as

(18)

The submatrix consisting of the last
elements of was already obtained

in the forward prediction [see (12)]. Finally, the joint process
estimation is calculated with (4) and (6).

With the equations presented in this section, we are able to
describe the new fast QR algorithm based ona priori forward
prediction errors. Table II describes the new algorithm.

In the case of the FQR_POS_F algorithm, the vector
is expressed

in terms of the matrices in (15). The same mentioned strategy

Fig. 1. Learning curve of the new algorithm.

is used to obtain and the angles of

can be calculated if we postmultiply by the
pinning vector.

It is worth mentioning that, following similar steps as
in the upper triangularization, it is possible to obtain the
lower triangular matrix from the forward and
backward prediction problems and, after obtaining the inverse

we can update (FQR_PRI_B) or
(FQR_POS_B).

IV. SIMULATION RESULTS

In order to test the new algorithm, simulations were carried
out in a system identification problem. The system order
was the input signal was a colored noise with a
conditioning number around 55, a forgetting factor
the SNR 40 dB, and the initialization factor

The learning curve (MSE in dB) is depicted in Fig. 1,
corresponding to an average of 100 realizations.

Although finite precision analysis is under investigation, the
new algorithm showed no sign of instability when simulated
in fixed-point arithmetic—all variables represented with 16 b
and 12 b in the fractional part.
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