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'e purpose of this paper is to introduce a new four-step iteration scheme for approximation of fixed point of the nonexpansive
mappings named as S∗-iteration scheme which is faster than Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, 'akur, and Ullah
iteration schemes. We show the stability of our proposed scheme. We present a numerical example to show that our iteration
scheme is faster than the aforementioned schemes. Moreover, we present some weak and strong convergence theorems for
Suzuki’s generalized nonexpansive mappings in the framework of uniformly convex Banach spaces. Our results extend, improve,
and unify many existing results in the literature.

1. Introduction

Most of the nonlinear equations can be transformed into a
fixed point problem as follows:

Fu � u, (1)

whereF is a self-map on a certain distance spaceX and the
solution of the aforementioned equation is considered as a
fixed point of the mapping F. Banach [1] proved that if a
self-map F on a complete metric space is such that

d(Fu,Fv)≤ q d(u, v), (2)

for 0≤ q< 1, then it possesses a unique fixed point u∗.
Moreover, the iterative process

Fun � un+1, (3)

called the Picard iteration process, converges to u∗. It is
worth mentioning that Picard iteration process is useful for

the approximation of the fixed point of the contraction
mappings but the case when ones dealing with nonexpansive
mappings it may fail to converge to the fixed point even ifF
has a unique fixed point. Krasnosel’skii [2] showed that
Mann [3] iteration process can approximate the fixed points
of a nonexpansive mapping. In this iteration scheme, the
sequence (un) is generated by an arbitrary u0 ∈ C as

un+1 � 1 − αn( )un + αnFun, ∀ n≥ 0, (4)

where (αn) is in (0, 1).
In 1974, Ishikawa [4] developed an iterative scheme to

approximate the fixed point of nonexpansive mappings,
where (un) is defined iteratively starting from u0 ∈ C by

un+1 � 1 − αn( )un + αnFvn

vn � 1 − βn( )un + βnFun
}, (5)

for all n≥ 0, where (αn) and (βn) are in (0, 1).
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For the approximation of the fixed point of non-
expansive mappings, Mann and Ishikawa iterative methods
have been studied by several authors (see e.g., [5–9]).
Another iteration scheme was proposed by Noor [10] in

2000, for u0 ∈ C, the sequence (un) is defined by

un+1 � 1 − αn( )un + αnFvn

vn � 1 − βn( )un + βnFwn

wn � 1 − cn( )un + cnFun

, (6)

for all n≥ 0, where (αn), (βn), and (cn) are in (0, 1).
Agarwal et al. [11], in 2007, proposed the following it-

erative scheme: for arbitrary u0 ∈ C, a sequence un{ } is
generated by

un+1 � 1 − αn( )Fun + αnFvn

vn � 1 − βn( )un + βnFun
}, (7)

for all n≥ 0, where (αn) and (βn) are in (0, 1). 'ey proved
that this procedure converges faster than Mann iteration for
contraction mappings.
In 2014, Abbas and Nazir [12] developed an iterative

schemewhich is faster thanAgarwal et al.’s [11] scheme,where a
sequence (un) is formulated from arbitrary u0 ∈ C by

un+1 � 1 − αn( )Fvn + αnFwn

vn � 1 − βn( )Fun + βnFwn

wn � 1 − cn( )un + cnFun

, (8)

for all n≥ 0, where (αn), (βn), and (cn) are in (0, 1).
Later in 2016, 'akur et al. [13] developed the following

iterative procedure, where a sequence (un) is generated it-
eratively by arbitrary u0 ∈ C and

un+1 � 1 − αn( )Fwn + αnFvn

vn � 1 − βn( )wn + βnFwn

wn � 1 − cn( )un + cnFun

, (9)

for all n≥ 0, where (αn), (βn), and (cn) are in (0, 1).
Recently, in 2018, Ullah and Arshad developed a new

iteration process which converges faster than all the
aforementioned process, where the sequence is constructed
by taking arbitrary u0 ∈ C and

un+1 � Fvn

vn � F 1 − αn( )wn + αnFwn( )
wn � 1 − βn( )un + βnFun

, (10)

for all n≥ 0, where (αn), (βn), and (cn) are in (0, 1).
Our aim is to introduce a new faster iteration process

than those mentioned above and to prove the convergence
results for Suzuki’s generalized nonexpansive mappings in
the context of uniformly convex Banach spaces. We also
show that our process is stable analytically. Numerically, we
compare the rate of convergence of our iteration process
with the existing iteration processes.

2. Preliminaries

'roughout this paper, E is a nonempty closed convex
subset of a uniformly convex Banach spaceX, N denotes the
set of all positive integers and F(F) denotes the set of all
fixed points of F, that is,

F(F) ≔ y: Fy � y{ }. (11)

Definition 1 (see [14]). A Banach space X is said to be
uniformly convex if for each ϵ ∈ (0, 2], there exists a δ > 0
such that for all u, v ∈ X,

‖u‖≤ 1

‖v‖≤ 1

‖u − v‖> ϵ


implies

u + v
2














≤ δ. (12)

Definition 2 (see [15]). A Banach space X is said to satisfy
Opial property if for each sequence (un) in X, converging
weakly to u ∈ X, we have

lim sup
n⟶∞

un − u




 



< lim sup

n⟶∞
un − v




 



, (13)

for all v ∈ X such that u≠ v.

Definition 3. AmappingF: E⟶ E is called a contraction
if there exists α ∈ (0, 1), such that

‖Fu −Fv‖≤ α‖u − v‖, for all u, v ∈ E. (14)

Definition 4. A mapping F: E⟶ E quasi-nonexpansive
if for all u ∈ E and p ∈ F(F) and α ∈ (0, 1), we have

‖Fu − p‖≤ α|‖u − p‖. (15)

Definition 5 (see [16]). A mapping F: E⟶ E is called
Suzuki’s generalized nonexpansive mapping if for all
u, v ∈ E, we have
1

2
‖u −Fu‖≤ α‖u − v‖ implies ‖Fu −Fv‖≤ ‖u − v‖.

(16)
Suzuki [16] proved that the generalized nonexpansive

mapping is weaker than nonexpansive mapping and
stronger than quasi-nonexpansive mapping and obtained
some fixed points and convergence theorems for Suzuki’s
generalized nonexpansive mappings. Recently, many au-
thors have studied fixed-point theorems for Suzuki’s gen-
eralized nonexpansive mapping (see, e.g., [17]).
Senter and Dotson [7] introduced a class of mappings

satisfying condition (I).

Definition 6. A mapping F: E⟶ E is said to satisfy
condition (I), if there exists a nondecreasing function
f: [0,∞)⟶ [0,∞) with f(0) � 0 and f(δ)> 0 for all
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δ > 0 such that ‖u −Fu‖≥f(d(u, F(F))), for all u ∈ E,
where d(u, F(F)) � inf

p∈F(F)
‖u − p‖.

Proposition 1 (see [16]). Let F: E⟶ E be any mapping.
9en,

(i) If F is nonexpansive, then F is a Suzuki’s gener-
alized nonexpansive mapping.

(ii) If F is a Suzuki’s generalized nonexpansive mapping
and has a fixed point, then F is a quasi-non-
expansive mapping.

(iii) If F is a Suzuki generalized nonexpansive mapping,
then

‖u −Fv‖≤ 3‖Fu − u‖ +‖u − v‖, ∀u, v ∈ E. (17)

Lemma 1 (see [16]). Suppose F: E⟶ E is Suzuki’s gen-
eralized nonexpansive mapping satisfying Opial property. If
(un) converges weakly to u and limn⟶∞‖Fun − un‖ � 0,
then Fu � u.

Lemma 2 (see [16]). Let X be a uniformly convex Banach
space andE be a weakly convex compact subset of X. Assume
that F: E⟶ E is Suzuki’s generalized nonexpansive
mapping. 9en, F has a fixed point.

Lemma 3 (see [18]). Let X be a uniformly convex Banach
space and (tn) be any real sequence such that
0<p≤ un ≤ q< 1 for all n≥ 1. Suppose that (un) and (vn) be
any two sequences of X such that lim supn⟶∞‖un‖≤ r,
lim supn⟶∞‖vn‖≤ r, and lim supn⟶∞‖tnun + (1 − tn)vn‖ �
r hold for some r≥ 0. 9en, lim supn⟶∞‖un − vn‖ � 0.

Definition 7. (see [19]). LetX be a Banach space and E be a
nonempty closed convex subset ofX. Assume that (un) is a
bounded sequence in X. For u ∈ X, we set
r(u, (un)) � lim supn⟶∞‖un − u‖. 'e asymptotic radius of
(un) relative to E is the set
r(E, (un)) � inf r(u, (un)): u ∈ E{ } and the asymptotic
center of (un) relative to E is given by the following set:

A E, un( )( ) � u ∈ E: r u, un( )( ) � r E, un( )( ){ }. (18)

It is known that, in a uniformly convex Banach space,
A(E, (un)) consists of exactly one point.

Definition 8. (see [20]). Let X be a Banach space and
F: X⟶ X. Suppose that u0 ∈ X and un+1 � f(F, un)
define an iteration procedure which gives a sequence of
points (un) in X. Assume that (xn) converges to the fixed
point p. Suppose (vn) be a sequence in X and (ϵn) be a
sequence in R

+ � [0,∞) given by ϵn � ‖vn+1 − f(F, vn)‖.
'en, the iteration procedure defined by un+1 � f(F, un) is
said to be F-stable or stable with respect to F if

lim
n⟶∞
ϵn � 0 iff lim

n⟶∞
vn � p. (19)

Definition 9 (see [21]). Let X be a Banach space and
F: X⟶ X. 'en,F is called a contractive mapping onX
if there exist L≥ 0, a ∈ [0, 1) such that for each u, v ∈ X,

‖Fu −Fv‖≤L‖u −Fu‖ + a‖u − v‖. (20)

By using (7), Osilike [21] established several stability
results most of which are generalizations of the results of
Rhoades [22] and Harder and Hicks [23].

Definition 10 (see [24]). Let X be a Banach space and
F: X⟶ X. 'en,F is called a contractive mapping onX
if there exist b ∈ [0, 1) and a monotone increasing function
φ: R+⟶ R

+ with φ(0) � 0, such that for each u, v ∈ X,
‖Fu −Fv‖≤φ(‖u −Fu‖) + b‖u − v‖. (21)

Lemma 4 (see [25]). If λ is a real number such that 0≤ λ< 1,
and (ϵn) is the sequence of positive numbers such that

lim
n⟶∞
ϵn � 0, (22)

then for any sequence of positive numbers vn satisfying

vn+1 ≤ λvn + ϵn, for n � 1, 2, . . . , (23)

we have

lim
n⟶∞

vn � 0. (24)

3. S∗-Iteration Process

'roughout this section, C be a nonempty set of a Banach
space X, and for all n≥ 0, (αn), (βn), (cn) and (ζn) are real
sequences in the interval (0, 1).
We generate the sequence (un) iteratively, taking arbi-

trary u0 ∈ C, by
un+1 � F 1 − αn( )vn + αnFvn( )
vn � F 1 − βn( )wn + βnFwn( )
wn � F 1 − cn( )xn + cnFxn( )
xn � F 1 − ζn( )un + ζnFun( )


. (25)

First, we show that S∗-iteration scheme (25) converges
faster than all aforementioned iteration schemes for con-
tractive mappings due to Berinde [26] and is stable.

4. Convergence and Stability Results of
S∗-Iteration Process

First, we establish convergence results for S∗-iteration
process:
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Theorem 1. Let X be a Banach space and E be a nonempty
closed convex subset of X. Let F be a nonexpansive self
mapping on E, (un) be a sequence defined by (25), and
F(F)≠ϕ. 9en, limn⟶∞‖un − p‖ exists for all p ∈ F(F).

Proof. Let p ∈ F(F) for all n ∈ N. From (16), we have

xn − p




 



 � F 1 − ζn( )un + ζnFun( ) − p



 





≤ 1 − ζn( )un + ζnFun − p




 




≤ 1 − ζn( ) un − p



 



 + ζn Fun − p





 




≤ 1 − ζn( ) un − p



 



 + ζn un − p





 




� un − p




 



,

(26)

wn − p




 



 � F 1 − cn( )xn + cnFxn( ) − p



 





≤ 1 − cn( )xn + cnFxn − p




 




≤ 1 − cn( ) xn − p



 



 + cn Fxn − p





 




≤ 1 − cn( ) xn − p



 



 + cn xn − p





 




� xn − p




 




≤ un − p




 



,

(27)

vn − p




 



 � F 1 − βn( )wn + βnFwn( ) − p



 





≤ 1 − βn( )wn + βnFwn − p




 




≤ 1 − βn( ) wn − p



 



 + βn Fwn − p





 




≤ 1 − βn( ) wn − p



 



 + βn wn − p





 




� wn − p




 




≤ un − p




 



.

(28)

'us,

un+1 − p




 



 � F 1 − αn( )vn + αnFvn( ) − p



 





≤ 1 − αn( )vn + αnFvn − p




 




≤ 1 − αn( ) vn − p



 



 + αn Fvn − p





 




≤ 1 − αn( ) un − p



 



 + αn vn − p





 




≤ 1 − αn( ) un − p



 



 + αn un − p





 




� un − p




 



.

(29)

Hence, limn⟶∞‖un − p‖ exists for all p ∈ F(F). □

Theorem 2. Let X a uniformly convex Banach space and E

be a nonempty closed convex subset of X. Let F: E⟶ E be
a nonexpansive mapping. Suppose that (un) is defined by the
iteration process (25) and F(F)≠ ϕ. 9en, the sequence un{ }
converges to a point of F(F) if and only if
lim infn⟶∞d(un, F(F)) � 0 where
d(u, F(F)) � inf ‖u − p‖: p ∈ F(F){ }.
Proof. Necessity is obvious. Suppose that
lim infn⟶∞d(un, F(F)) � 0. As proved in 'eorem 1,

limn⟶∞‖un − u‖ exists for all u ∈ F(F), so
limn⟶∞d(un, F(F)) exists and lim infn⟶∞d(un, F(F)) �
0 by assumption. Now, we will prove that (un) is a Cauchy
sequence in E. For given ϵ> 0, there exists N ∈ N such that
for all n≥N,

d un, F(F)( )< ϵ
2
. (30)

In particular, inf ‖uN − p‖: p ∈ F(F){ }< (ϵ/2). Hence,
there exists p∗ ∈ F(F) such that ‖uN − p∗‖< ϵ/2. Now for
all m, n≥N,

um+n − un




 



≤ um+n − p∗



 



 + un − p

∗



 



≤ 2 uN − p∗



 



< ϵ,
(31)

which shows that (un) is a Cauchy sequence in E. But E is a
closed subset of X, so there exists p ∈ E such that
limn⟶∞un � p. Now, limn⟶∞d(un, F(F)) � 0 gives
d(p, F(F)) which implies p ∈ F(F).
Next, we prove that our iteration process is F-stable or

stable with respect to F. □

Theorem 3. LetX be a Banach space andF: X⟶ X be a
mapping satisfying (21). Suppose F has a fixed point p. Let
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(un) be a sequence in X satisfying (9). 9en, S∗-iteration
process (9) is F-stable.

Proof. Let (tn) be an arbitrary sequence in X and the se-
quence generated by (25) is un+1 � f(F, un) converging to a

unique fixed point p and ϵn � ‖tn+1 − f(F, tn)‖. We will
prove that limn⟶∞ϵn � 0⟺ limn⟶∞tn � p. Assume that
limn⟶∞ϵn � 0 and

tn+1 − p




 



 � tn+1 − f F, tn( ) + f F, tn( ) − p



 





≤ tn+1 − f F, tn( )



 



 + f F, tn( ) − p



 




≤ tn+1 −F 1 − αn( )sn + αnFsn( )



 



 + F 1 − αn( )sn + αnFsn( ) − p



 




≤ ϵn + b 1 − αn(1 − b)[ ] sn − p



 




� ϵn + b 1 − αn(1 − b)[ ] F 1 − βn( )rn + βnFrn( ) − p



 




≤ ϵn + b2 1 − αn(1 − b)[ ] 1 − βn(1 − b)([ ] rn − p



 




� ϵn + b2 1 − αn(1 − b)[ ] 1 − βn(1 − b)([ ] F 1 − cn( )vn + cnFvn( ) − p



 




≤ ϵn + b3 1 − αn(1 − b)[ ] 1 − βn(1 − b)([ ] 1 − cn(1 − b)[ ] vn − p



 




� ϵn + b3 1 − αn(1 − b)[ ] 1 − βn(1 − b)([ ] 1 − cn(1 − b)[ ] F 1 − ζn( )tn + ζnFtn( ) − p



 




≤ ϵn + b4 1 − αn(1 − b)[ ] 1 − βn(1 − b)([ ] 1 − cn(1 − b)[ ] 1 − ζn(1 − b) tn − p





 



.[

(32)

Since b ∈ [0, 1) and (αn), (βn), (cn), and (ζn) are in
[0, 1],

b4 1 − αn(1 − b)[ ] 1 − βn(1 − b)([ ] 1 − cn(1 − b)[ ]
· 1 − ζn(1 − b)[ ]



< 1. (33)

Hence by Lemma 4, we have limn⟶∞‖tn − p‖ � 0, which
gives limn⟶∞tn � p. On the other hand, suppose that
limn⟶∞tn � p. 'en,

ϵn � tn+1 − f F, tn( )



 




� tn+1 − p + p − f F, tn( )



 




≤ tn+1 − p




 



 + b 1 − αn( ) + bαn[ ] sn − p



 




� tn+1 − p




 



 + b 1 − αn( ) + bαn[ ] F 1 − βn( )rn + βnFrn( ) − p



 




≤ tn+1 − p




 



 + b2 1 − αn( ) + bαn[ ] 1 − βn(1 − b)([ ] rn − p



 




� tn+1 − p




 



 + b2 1 − αn( ) + bαn[ ] 1 − βn( ) F 1 − cn( )vn + cnFvn( ) − p



 




≤ tn+1 − p




 



 + b3 1 − αn(1 − b)[ ] 1 − βn(1 − b)([ ] 1 − cn(1 − b)[ ] vn − p



 




� tn+1 − p




 



 + b3 1 − αn(1 − b)[ ] 1 − βn(1 − b)([ ] 1 − cn(1 − b)[ ] F 1 − ζn( )tn + ζnFtn( ) − p



 




≤ tn+1 − p




 



 + b4 1 − αn(1 − b)[ ] 1 − βn(1 − b)([ ] 1 − cn(1 − b)[ ] 1 − ζn(1 − b)[ ] tn − p



 



.

(34)

Taking limit as n⟶∞ in (34), we get limn⟶∞ϵn � 0.
Now, we present an example to compare the rate of

convergence of our iteration scheme with others. □

Example 1. LetX � R andC � [1, 50]. LetF: C⟶ C be a
mapping defined by Fu �

����������
u2 − 9u + 54

√
for all u ∈ C. For

u1 � 30 and αn � βn � cn � 3/4, n � 1, 2, 3, . . ..From Table 1,
we can see that all the iteration procedures are converging to
p∗ � 6. Clearly, our iteration process requires the least
number of iteration as compared to other iteration schemes.
In Figure 1, black curve represents our iteration process.

'e graphical view shows that our iteration process requires

less number of iterations as compared to the other iteration
processes. 'e number of iterations in which these processes
attain the fixed point is given in Table 2:

5. Some Convergence Results for Suzuki’s
Generalized Nonexpansive Mappings

'is section contains some weak and strong convergence
results for a sequence generated by S∗-iteration process for
Suzuki generalized nonexpansive mappings in the setting of
uniformly convex Banach spaces.
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Lemma 5. Suppose that E be a nonempty closed convex
subset of a Banach space X. Let F: E⟶ E be a Suzuki
generalized nonexpansive mapping with F(F)≠ϕ. For
u0 ∈ E, the sequence (un) generated by S∗-iteration process,
limn⟶∞‖un − p‖ exists for all p ∈ F(F).

Proof. Result follows from Proposition 1(i) and 'eorem
1. □

Lemma 6. Suppose that E be a nonempty closed convex
subset of a uniformly Banach space X. Let F: E⟶ E be a
Suzuki’s generalized nonexpansive mapping with F(F)≠ϕ.
For arbitrarily chosen u0 ∈ E, the sequence (un) is generated
by S∗-iteration process. 9en, F(F)≠ ϕ if and only if (un) is
bounded and limn⟶∞‖Fun − un‖ � 0.

Table 1: Comparison of the rate of convergence with various iteration schemes.

Step Picard Ishikawa Noor Agarwal Abbas 'akur K. Ullah S∗-iter.

1 30.00000000 30.00000000 30.00000000 30.00000000 30.00000000 30.00000000 30.00000000 30.00000000
2 26.15339366 25.01198240 23.48910332 24.05033082 22.61079008 21.30667585 17.14034293 7.939900241
3 22.41917610 20.25475590 17.46681907 18.43727194 15.82815627 13.58899597 7.920241534 6.000499545
4 18.83737965 15.85090878 12.32658573 13.39382036 10.25820641 8.112973955 6.038818684 6.000000071
5 15.46966242 12.01330515 8.727576617 9.372555587 7.001837925 6.225674626 6.000469229 6.000000000
6 12.41303724 9.068862033 6.958571160 6.993935718 6.119154210 6.015130221 6.000005614 6.000000000
7 9.816626625 7.282040026 6.310214626 6.186206786 6.011213258 6.000960494 6.000000067 6.000000000
8 7.875056741 6.466803146 6.097925567 6.028369366 6.001024303 6.000060749 6.000000001 6.000000000
9 6.718705828 6.160065238 6.030680843 6.004133882 6.000093304 6.000003841 6.000000000 6.000000000
10 6.218734240 6.053725040 6.009590308 6.000598188 6.000008497 6.000000242 6.000000000 6.000000000
11 6.058386534 6.017902837 6.002995608 6.000086472 6.000000774 6.000000016 6.000000000 6.000000000
12 6.014862308 6.005951431 6.000935492 6.000012498 6.000000071 6.000000001 6.000000000 6.000000000
13 6.003732823 6.001976848 6.000292122 6.000001806 6.000000005 6.000000000 6.000000000 6.000000000
14 6.00093429 6.000656462 6.000091217 6.000000261 6.000000001 6.000000000 6.000000000 6.000000000
15 6.000233641 6.000217976 6.000028483 6.000000037 6.000000000 6.000000000 6.000000000 6.000000000
16 6.000058415 6.000072376 6.000008894 6.000000005 6.000000000 6.000000000 6.000000000 6.000000000
17 6.000014603 6.000024032 6.000002778 6.000000001 6.000000000 6.000000000 6.000000000 6.000000000
18 6.000003651 6.000007979 6.000000866 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
19 6.000000912 6.000002649 6.000000270 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
20 6.000000227 6.000000880 6.000000084 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
21 6.000000057 6.000000293 6.000000026 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
22 6.000000014 6.000000097 6.000000008 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
23 6.000000003 6.000000032 6.000000003 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
24 6.000000001 6.000000010 6.000000001 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
25 6.000000000 6.000000003 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
26 6.000000000 6.000000001 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
27 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
28 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
29 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
30 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
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Figure 1: Graphical representation of convergence of iterative
schemes.

Table 2: Number of iterations in which fixed point attains.

Iterative method Number of iterations

Picard 25
Ishikawa 27
Noor 25
Agarwal 18
Abbas 15
'akur 13
K. Ullah 9
S∗-iter. 5
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Proof. Suppose that F(F)≠ϕ and let p ∈ E. 'en, by
Lemma 5, limn⟶∞‖un − p‖ exists and (un) is bounded. Let

lim
n⟶∞

un − p




 



 � r. (35)

From (26) and (37), we have

lim sup
n⟶∞

un − p




 



≤ lim sup

n⟶∞
un − p




 



 � r. (36)

By the Proposition 1(iii), we have
lim sup
n⟶∞

Fxn − p




 



≤ lim sup

n⟶∞
un − p




 



 � r, (37)

un+1 − p




 



 � F 1 − αn( )vn + αnFvn( ) − p



 





≤ 1 − αn( )vn + αnFvn − p




 




≤ vn − p




 




� F 1 − βn( )wn + βnFwn( ) − p



 




≤ wn − p




 




� F 1 − cn( )xn + cnFxn( ) − p



 




≤ 1 − cn( ) un − p



 



 + cn xn − p





 




� un − p




 



 − cn un − p





 



 + cn xn − p




 



.

(38)

'is implies that

un+1 − p




 



 − un − p





 




cn

≤ xn − p




 



 − un − p





 



[ ],

un+1 − p




 



 − un − p





 



≤ un+1 − p




 



 − un − p





 




cn

≤ xn − p




 



 − un − p





 



[ ],
un+1 − p




 



≤ xn − p



 



,

(39)

r≤ lim inf
n⟶∞

xn − p




 



, (40)

lim
n⟶∞

xn − p




 



 � r,

lim
n⟶∞

1 − ζn( )un + ζnF un( ) − p



 



 � r,
lim
n⟶∞

‖ 1 − ζn( ) un − p( ) + ζn F un( ) − p( )‖ � r.
(41)

From equations (26) and (37) and Lemma 3, we have

limn⟶∞ Fun − un




 



 � 0. (42)

Conversely, assume that (un) is bounded and
limn⟶∞‖Fun − un‖ � 0. Suppose that p ∈ A(E, (un)).
Using Proposition 1(iii), we get

r Fp, un( )( ) � lim sup
n⟶∞

un −Fp




 





≤ lim sup
n⟶∞

3 Fun − un




 



 + un − p





 



[ ]
≤ lim sup

n⟶∞
un − p




 





� r p, un( )( ).

(43)

'is shows that Fp ∈ A(E, (un). Since X is uniformly
convex,A(E, (un) is singleton. 'us, we haveFp � p, that
is, F(F)≠ ϕ. □

Theorem 4 (weak convergence theorem). Suppose thatE be
a nonempty closed convex subset of a uniformly Banach space
X with the Opial property. Let F: E⟶ E be Suzuki’s
generalized nonexpansive mapping. For arbitrarily chosen
u0 ∈ E, let the sequence (un) be generated by S∗-iteration
process with F(F)≠ ϕ. 9en, (un) converges weakly to a fixed
point of F.

Proof. Since F(F)≠ ϕ, by Lemma 6, the sequence (un) is
bounded and limn⟶∞‖Fun − un‖ � 0. Also, as X is uni-
formly convex so X is reflexive, thus by Eberlin’s theorem,
there exists a subsequence of (un) say (uni) which converges
weakly to some q1 ∈ X. Now, since E is closed and convex
so by Mazur’s theorem q1 ∈ E. Hence, by Lemma 1,
q1 ∈ F(F). We show that (un) converges weakly to q1. On
contrary, suppose that it is not true. 'en, there must exist a
subsequence of (un), say (unj), such that (unj) converges
weakly to q2 ∈ E with q1 ≠ q2. Using Lemma 1, we have
q2 ∈ F(F). Now, since limn⟶∞‖un − p‖ exists for all
p ∈ F(F). Using Lemma 6 and Opial property, we have

lim
n⟶∞

un − q1




 



 � lim

i⟶∞
uni − q1





 






< lim
i⟶∞

uni − q2





 






� lim
n⟶∞

un − q2




 





� lim
j⟶∞

unj − q2





 






< lim
j⟶∞

unj − q1





 






� lim
n⟶∞

un − q1




 



,

(44)

which is a contradiction; hence, q1 � q2.'is shows that (un)
converges weakly to a fixed point of F. □

Theorem 5 (strong convergence theorem). Suppose that E
be a nonempty closed convex subset of a uniformly Banach
space X. Let F: E⟶ E be a Suzuki’s generalized non-
expansive mapping. For arbitrarily chosen u0 ∈ E, let the
sequence (un) be generated by S∗-iteration process with
F(F)≠ϕ. 9en, (un) converges strongly to a fixed point ofF.

Proof. Using Lemma 2, we get F(F)≠ ϕ and hence by
Lemma 6, we have limn⟶∞‖Fun − un‖ � 0. By the com-
pactness of E, there exists a subsequence of (un), say (uni),
converging strongly to p for some p ∈ E. Now by using
Proposition 1(iii), we get

uni −Fp





 




≤ 3 Funi − uni






 




 + uni − p





 




. (45)

Taking limit i⟶∞, we getFp � p, that is, p ∈ F(F).
By using Lemma 5, lim n⟶∞‖un − p‖ exists for all
p ∈ F(T); hence, un{ } converges strongly to p. □
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Theorem 6. Suppose that E be a nonempty closed convex
subset of a uniformly Banach space X. Let F: E⟶ E be a
Suzuki’s generalized nonexpansive mapping. For arbitrarily
chosen u0 ∈ E, the sequence (un) be generated by S∗-iteration
process with F(F)≠ϕ. If F satisfies condition (I), then (un)
converges strongly to a fixed point of F.

Proof. By Lemma 5, limn⟶∞‖un − p‖ exists for all
p ∈ F(F); hence, limn⟶∞d(un, F(F)) exists. Let
limn⟶∞‖un − p‖ � δ for some δ ≥ 0. Now if δ � 0, then
there is nothing to prove. Suppose δ > 0; from condition (I)
and the hypothesis, we have

f d un, F(F)( )( )≤ Fun − un




 



. (46)

As F(F)≠ϕ, by Lemma 5, we have
limn⟶∞‖Fun − un‖ � 0. Hence, (46) implies that

lim
n⟶∞

f d un, F(F)( )( ) � 0. (47)

Since f is a nondecreasing function, by equation (47), we
get limn⟶∞(d(un, F(F)) � 0.'us, we have a subsequence
(uni) of (un) and a sequence (yi) in F(F) such that

uni − yi





 




< 1

2i
, for all i ∈ N. (48)

From equation (48),

uni+1 − yi





 




≤ uni − yi






 




< 1
2i
,

yi+1 − yi




 



≤ yi+1 − ui+1



 



 + ui+1 − yi





 




≤ 1
2i+1

+ 1
2i

< 1
2i− 1

.

(49)

Letting i⟶∞, we get 1/2i−1⟶ 0. Hence, yi{ } is a
Cauchy sequence in F(F), so it converges to p. As F(F) is
closed, p ∈ F(F) and then (uni) converges strongly to p.
Since limn⟶∞‖un − p‖ exists, we have un⟶ p ∈ F(F).
'is completes the proof. □
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