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Abstract. This paper presents a new fault diagnosis procedure for rotating machinery using the wavelet packets-fractal technology

and a radial basis function neural network. The faults of rotating machinery considered in this study include imbalance,

misalignment, looseness and imbalance combined with misalignment conditions. When such faults occur, they usually induce

non-stationary vibrations to the machine. After measuring the vibration signals, the wavelet packets transform is applied to these

signals. The fractal dimension of each frequency bands is extracted and the box counting dimension is used to depict the failure

characteristics of the vibration signals. The failure modes are then classified by a radial basis function neural network. An

experimental study was performed to evaluate the proposed method and the results show that the method can effectively detect

and recognize different kinds of faults of rotating machinery.

Keywords: Fault diagnosis, rotating machinery, wavelet packets, fractal, box counting dimension, radial basis function neural

network

1. Introduction

Rotating machine faults detection and diagnosis are typically based on vibration measurements [1,2]. In general,

the Fast Fourier Transform (FFT) is applied to obtain the power spectrum of the emitted vibration signals. The
spectrum offers the frequency components of the time history signals. The spectral contents are analyzed to ascertain

the operating conditions of the monitored machine. The spectrum of a vibration signal x(t) can be obtained by the

following equation:

X(ω) =

∫ +∞

−∞

x(t) ∗ eiωtdt (1)

From Eq. (1), every frequency component of the vibration signal will be displayed in its spectrum. Unfortunately,
the rotating speed of the rotary machinery is hard to keep in a steady condition due to the factors such as loads,

power supply, and faults. Then, the smearing effect will be generated a spectrum as shown in Fig. 1. In Fig. 1(b),

the operating condition of a machine is worse. However, due to the amplitude and frequency modulations effect, the

amplitude of the frequency component 79.1 Hz is smaller than that in Fig. 1(a). For this limitation of the FFT in
analyzing non-stationary signals leads to the introduction of time-frequency or time-scale signal processing tools.

Recently, the wavelet packets transform has been widely applied to analyze non-stationary signals, and has proven

effective in fault diagnosis of rotating machinery [3–7]. Wavelet packets transform is a time-frequency method,

∗Corresponding author: Chih-Hao Chen, Department of System Engineering and Naval Architecture, National Taiwan Ocean University, 2

Pei-Ning Road, Keelung 20224, Taiwan. Tel.: +886 2246 22192 ext. 6033; Fax: +886 2246 24634; E-mail: d92510003@mail.ntou.edu.tw.

ISSN 1070-9622/08/$17.00  2008 – IOS Press and the authors. All rights reserved



586 C.-H. Chen et al. / A new fault diagnosis method of rotating machinery

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

X: 79.1

Y: 221.3X: 39.55

Y: 255

frequency

d
B

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

X: 39.55

Y: 279.9

X: 79.1

Y: 205.5

frequency

d
B

(a)                            (b) 

Fig. 1. The smearing effect in power spectrum.

which is a feature of multi-resolution analysis, and highlights localized signal characteristics in time and frequency

domains simultaneously [8,9]. Thus, the signals can be presented from a global to specific time properties. Other

key issues in fault diagnosis of rotating machinery include how to extract the valuable operating characteristics from

the vibration signals and how to describe the non-stationary signals in a quantitative way that permits its evolution

analysis.

Fractal refers to the fact that its geometric dimension is often a fraction rather than an integer [10]. It is able

to describe some geometric objects that are not possible in traditional Euclidean geometry. Fractal was firstly

introduced by Mandelbrot in his study of coastlines. Because of its universal existence [11,12], fractal analysis

has been widely applied to many fields, including philosophy, economics, information, chemistry [13], medical

science, and geography. Academics and experts use fractal theory to interpret varying and unpredictable physical

phenomenon, and have achieved substantial results in image and signal processing [14]. But the application of

fractal analysis to fault diagnosis in rotating machinery remains at its early stages.

Neural networks are widely used in the field of pattern recognition and classification because of their capacity to

map non-linear functions [15]. Many types of networks have been successfully developed for rotating machinery fault

classification. For example, Back Propagation (BP), Adaptive Resonance Theory (ART), Bidirectional Associative

Memory (BAM), Brain State in a Box (BSB), Radial Basic Function (RBF) [16–18]. Among these, the BP network,

a multi-layer feed forward network, is one of the best networks used in engineering applications. Many improved

algorithms have been developed for BP networks to increase the speed of training and to avoid falling into local

minimum during training. But their effectiveness in solving these problems is still not good enough. Furthermore,

the determination of a suitable architecture for BP networks is difficult for inexperienced users, especially in terms

of the number of neurons in the hidden layer [19,20]. The RBF network is a new and more effective training method,

as it avoids complicated calculations and the time required for training is shorter than that of the BP network.

Furthermore, it is capable of fast convergence and automatically determining the number of neurons in the hidden

layer during training. Hence, in this study, we will use the RBF network to identify the faults of rotating machinery.

Fault diagnosis refers to the evaluation of the operating conditions of rotating machinery, based on measurements

of dynamic signals, identification of the cause and position of the fault. In this paper, we investigated the following

fault conditions, such as unbalance, misalignment, base looseness and unbalance combined with misalignment.

After measuring the vibration signals, wavelet packets analysis is used to decompose vibration signals into a series
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of localized wavelet functions. Then, fractal theory is used to calculate the box-counting dimension of different

frequency bands, and a structure fractal dimensions feature vector is established in a quantitative manner. Applying

this vector as an input to a radial neural network, effective fault diagnosis model and fault model recognition can

be established for rotating machinery. We used an experimental study to evaluate the performance of the proposed

diagnosis method.

2. Theory

2.1. Wavelet transform

Wavelet transforms are particular linear combinations of wavelet functions called packets. They form an orthogonal

bases that can retain many of the smoothness and time frequency localization properties of their corresponding

wavelet. Moreover, the wavelet packet decomposition, which is an extension of the classical wavelet decomposition,

offers a richer signal analysis and is a time-frequency function set {un(t)}n∈Z (Z = 1, 2, 3, . . .) which describes

the information of function of f(t) in various time windows and frequency bands as:

sn(t) = 2
−j/2sn(2jt− k) (2)

The integer j and k are the index scale and the translation operations, respectively. The index n = 0, 1, . . . is

called the modulation parameter. The first two wavelet packet functions are the scale and mother wavelet function,

respectively:

s0(t) = φ(t)
s1(t) = ψ(t)

(3)

Wavelet packet functions for n = 1, 2, . . . are then defined by the following recursive relationships:

h(t) = 1
2

〈

φ[ t
2 ], φ[t− k]

〉

g(t) = 1
2

〈

ψ[ t
2 ], ψ[t− k]

〉
t ∈ R, k ∈ Z (4)

s2n(t) =
√

2
∑

k∈Z

h(k)sn(2t− k)

s2n+1(t) =
√

2
∑

k∈Z

g(k)sn(2t− k)
(5)

where h(t) and g(t) are the quadrature mirror filter bank associated with predefined scaling function and mother

wavelet function. The wavelet packet coefficient of a function f(t) can be computed via

coef =

∫

f(t)sn(t)dt (6)

Because the wavelet packet basis is orthogonal, the coefficients of every frequency band represent the fractal

dimension of signals in this frequency band. It is obvious that the features of the fault diagnosis of rotating machinery

can be obtained by using these coefficients. But not all frequency bands are available. We should choose the most

important features that can reflect the fault conditions of rotating machinery. The wavelet packet decomposition tree

is produced as shown in Fig. 2.

2.2. Fractal theory

Fractal dimension is an important parameter to describe fractal characteristics in quantitatively and can be used

to describe the complexity of signals. In general, different signals contain different fractal dimensions. Thus,

fractal dimensions can effectively extract the characteristics of signals. Fractal dimensions have been developed into

more than a dozen different dimensions, including Hausdorff, box counting, capacity, correlation, and Lyapunov

dimensions. The calculation of the box counting dimension is relatively simple. Therefore, after using the wavelet
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Fig. 2. Wavelet packets decomposition tree.

packets decomposition, this study will use it to analyze the fractal phenomenon of vibration signals in different

frequency bands.

The algorithm of the box counting dimensions assumes a time serial signal s(j) ⊂ S, where S is a closed set R
n

in n dimension Euclidean space. Divide Rn into a very fine grid and if Nr is the number of grids in a discrete space

set of size r, then the box counting dimension is defined as:

dB = lim

(

− log(Nr)

log(r)

)

(7)

Since the highest recognition rate of time series is s(j), the sampling interval of r is unable to approach zero. In

the actual calculation it will generally be an approximate algorithm and gradually enlarge grid r to be grid k r, where

k = 1, 2, . . .. Then Nr can be calculated by using the following formulas:

P (kr) =

N0/K
∑

j=1

∣

∣

∣

∣

max

{

s
k(j−1)+1

, s
k(j−1)+2

, . . .

. . . , s
k(j−1)+k+1

}

− min

{

s
k(j−1)+1

, s
k(j−1)+2

, . . .

. . . , s
k(j−1)+k+1

}
∣

∣

∣

∣

(8)

where
j = 1, 2, . . . , N0

K
k = 1, 2, . . . ,K,K < N0

Nr = P (kr)/(kr) + 1 Nr > 1 (9)

The grid number Nr and grid width kr can produce a double logarithm curve (log(N r) − log(kr)). Since the

fractal phenomenon is not always present. We can use the (log(N r) − log(kr)) curve to check the existence of a

scale-invariant region.

We used the least square method to assure the linear regression is a straight line. The box counting dimension is

the slope of the straight line. The fractal size of a curve is determined by the range occupied by the curve in the

space. We used a straight line f(x) = 2x + 3 as a test example. The size of the fractal dimension of this line is

equal to topology dimension 1.0. The estimated result from the box counting dimension logarithm is 1.0418, as

shown in Fig. 3. The results show that the algorithm of the box counting dimension can accurately predict the fractal

dimension of this curve.

2.3. Radial basis function neural network

The RBF Neural Network is a feedforward network. Its architecture consists of three layers, i.e., the input layer

with R*1 input neurons, a hidden radial basis layer of S1*R neurons, and an output linear layer of S 2 ∗ 1 neurons,
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Fig. 3. Straight line box counting dimension estimation result.

Fig. 4. Structure of RBF neural network.

as shown in Fig. 4. In the RBF neural network, the transfer function of the hidden layer is a Gaussian function as

follows:

Aj = exp

(

− |x− xj |2
2σ2

j

)

, j = 1, 2, . . . , N (10)

where Aj is the output of the jth neuron in the hidden layer,xis the input mode, x j is the center of the jth neuron

Gaussian function, σ2
j is the unitary parameter, and j is the number of hidden nodes. The output of the RBF neuron

network linear layer is given by:

yk = WT
k,jAk, k = 1, 2, . . . ,M (11)
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Fig. 5. The fault diagnosis procedure of rotating machinery.

where yk is output of the kth node, Wk,j is weight vector for node k and Ak is output vector from the k th hidden

layer. Each neuron of the RBF neural network output is a value that depends on its weight from the center of the

neural network.

In this study, the RBF neural network is used for the fault recognition architecture. The fault characteristics and

fault cause are the nodes of input layer and output layer, respectively. Therefore, for the network learning and

training, the input vector is the response of the fault phenomena and the output vectors are the corresponding fault

causes. Based on the learning and training of such samples, the network structure is adjusted to be the recognition

tool in the fault diagnosis of rotating machinery.

This paper presents a new fault diagnosis approach using wavelet fractal techniques and neural networks. The

procedure of this approach is illustrated in Fig. 5. After measuring the vibration signals, the first step is to conduct

the wavelet packets decomposition and categorize the results according to each section of a perpendicular frequency

band. The next step is to calculate the box counting dimension of each frequency bands and use the results to

generate a feature vector set, which provides the input for the RBF neural network. Using this learning and training

of network, the fault causes can then be identified.

3. Experimental investigation and discussion

3.1. Experimental set-up

The experimental set-up is shown in Fig. 6. In this study, we considered 12 faults condition of unbalance,

misalignment and base looseness as shown in Table 1.

We used an accelerometer (Bruel & Kjaer 4384) with an charge amplifier (Bruel & Kjaer 2635) to measure the

vibration signals of the rotor, as shown in Fig. 7. The signals were recorded on magnetic tapes (SONY Pca 208A),

digitalized through an acquisition unit (National Instrument Daq-1200), and then analyzed using the algorithm

developed by this study. The maximum analysis frequency was set at 1000 Hz, and the sampling frequency was

2560 Hz in all the investigated cases. The rotation speed of the motor was set at 2400 rpm (f r = 40 Hz). In these

experiments were collected 35 groups of vibration signals by fault condition. From these groups of signals 20 groups

were used as training samples to train the RBF neural network. The rest 15 groups were used as samples to test the

recognition ability of the neural network.
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Table 1

Faults condition hypothesis steps

Fault condition Quantitative description Qualitative description

Condition A Use a rotor balancer (GT 5052A, G-TECH) to balance the rotor. Normal condition

Condition B 1 Put a grams screw on the adjustable disc Unbalance of the initial stage

Condition B 2 Put a grams screw on the adjustable disc Unbalance of the bad stage

Condition B 3 Put a grams screw on the adjustable disc Unbalance of the worse stage

Condition C 1 Insert one sheet of copy paper into the adjustable disc. Misalignment of the initial stage

Condition C 2 Insert two sheet of copy paper into the adjustable disc. Misalignment of the bad stage
Condition C 3 Insert three sheet of copy paper into the adjustable disc. Misalignment of the worse stage

Condition D 1 Loose one of the four screws of bearing base to 360 degrees. (one circle) The base looseness of the initial stage

Condition D 2 Loose one of the four screws of bearing base to 720 degrees. (two circles) The base looseness of the bad stage

Condition D 3 Loose one of the four screws of bearing base to 1080 degrees. (three circles) The base looseness of the worse stage

Condition E 1 Combination of the condition B 1 and C 1

Condition E 2 Combination of the condition B 2 and C 2

A
d

ju
stm

e
n

t d
isc

Fig. 6. Experimental set-up.

3.2. Power spectrum

Most of the frequency domain signal-processing methods were based on the assumption that signals are stationary.

However, in this study the smearing effect was found in the power spectrum of the measured signals. For example,

Fig. 8(a) shows the result of the fault condition C 1, where the amplitude of frequency 2f r is 129.8 dB. As the

condition changes to C 2, the amplitude of 2fr increases to 182.2dB, as shown in Fig. 8(b). When the fault condition

changes to C 3, the amplitude decreases to 98.72 dB, due to the smearing effect, as shown in Fig. 8(c). That means,

for non-stationary signals, the effect of smearing spreads the energy of the signal over a frequency band. Therefore,

in this study, we cannot use the amplitude of a frequency component in the power spectrum to diagnose the faults of

rotating machinery.

3.3. Wavelet packets-fractal

After extracting the vibration signals of different fault conditions, the raw signals were examined to see if they

contained fractal phenomenon. Following a box counting dimension calculation of the raw signals, fractal logarithm

curves were obtained, as shown in Fig. 9. The figure reveals that each curve has a major linear (some graphics

shown two linear segment) segment at the scale-invariant region. This phenomenon confirms the measured vibration

signals are suitable for the application of fractal analysis. A comparison of the measured box counting dimensions

of different fault conditions, was indicated in Fig. 10. In the figure, it is observed that:

1. Normal condition: dimension values range from 1.1 to 1.23.
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Fig. 7. Vibration signals in time domain.
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Fig. 8. The smearing effect in the power spectrum of fault condition C 3.
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Fig. 9. The fractal logarithm curves of different fault conditions
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2. Unbalance fault (condition B 1, B 2, and B 3): dimension values range from 1.42 to 1.63.

3. Misalignment fault (condition C 1, C 2, and C 3): dimension values range from 1.34 to 1.42.

4. Base looseness fault (condition D 1, D 2, and D 3): dimension values range from 1.65 to 1.83.

5. Combination of the condition B and C (condition E 1 and E 2): dimension values range from 1.71 to 1.76.

The results indicate that the box counting dimension values vary with fault conditions. The dimension value of the

normal condition is the smallest, while fault condition D 3 is the largest. Also, the dimension value of the combined

fault conditions is larger than that of each separate fault condition.

To extract the characteristics of each fault condition, wavelet packets transformation was used to divide the

measured vibration signals into five levels using Coiflet 3-order wavelet function. Each signal is divided into 32

frequency bands, and each band width is 31.25 Hz. This band width can avoid the rotating frequency f r and its

harmonic frequencies existing simultaneously in the same frequency band. The results of extracting the box counting

dimensions of the signals in each frequency band show the changes of dimension values of different fault conditions.

The obvious dimension changes in specific frequency bands of different fault conditions are summarized in Fig. 11.

The dimension change of fault condition B 1, B 2, and B 3 occurred in the second and fourth frequency bands,

i.e., fr and 2fr. Fault condition C 1, C 2, and C 3 had most prominent dimension changes in the third and fifth

frequency bands. A dimensional characteristics of fault condition D 1, D 2, and D 3 were found in the third, fourth

and seventh frequency bands and fault condition E 1 and E 2 in the second, fourth, sixth and eleventh frequency

bands. These results are consistent with the investigation described in prior study [21]. Hence, in this study, we only

calculated the box counting dimensions of the nine frequency bands i.e., (0, 1, 2, 3, 4, 7, 8, 10 and 11) and used the

results as a set of characteristic vectors. The vectors are used as the input of RBF neural network for learning and

recognition.

3.4. RBF neural network learning and testing

The box counting dimension characteristic vector was normalized to be within 0 and 1 as the input neurons of the

RBF neural network. Each input vector has ten elements, ten nodes in hidden layer, twelve nodes in output layer.

The training precision was set to 10−6. Table 1 shows the training and learning results of the RBF neural network.

From Table 1, we can conclude that the characteristics of all fault conditions have been successfully extracted from

the measured vibration signals by using wavelet packet-fractal technology. Also, the training results of the RBF

neural network for all fault condition are accurate.

Finally, the test samples were put into the trained fault recognition system to identify the type of fault. The results

are shown in Table 2. The accuracy of all recognitions is over 73%. To increase the accuracy of recognitions, one

can use more effective samples to train the system.
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Fig. 11. The wavelet packet decomposition results
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Table 2

Results of RBF-NN training and learning

RBF-NN input layer

Training Box counting dimension characteristic vector (normalized) Fault Training

sample Original S1(5,0) S2(5,1) S3(5,2) S4(5,3) S5(5,4) S6(5,7) S7(5,8) S8(5,10) S9(5,11) types result

signal

1 0.25 0.1 0.55 0.7 0.65 0.85 0.9 0.45 0.35 0.4 A A

2 0.68 0.42 0.9 0.39 0.8 0.61 0.58 0.228 0.16 0.1 B 1 B 1

3 0.75 0.51 0.9 0.28 0.77 0.59 0.64 0.1 0.2 0.13 B 2 B 2
4 0.79 0.51 0.9 0.44 0.62 0.33 0.54 0.1 0.12 0.2 B 3 B 3

5 0.9 0.1 0.47 0.75 0.53 0.96 0.65 0.59 0.53 0.62 C 1 C 1

6 0.86 0.1 0.4 0.56 0.9 0.77 0.98 0.27 0.23 0.31 C 2 C 2

7 0.77 0.1 0.36 0.67 0.31 0.9 0.54 0.36 0.33 0.38 C 3 C 3

8 0.9 0.1 0.33 0.37 0.53 0.88 0.85 0.21 0.24 0.3 D 1 D 1

9 0.9 0.1 0.29 0.33 0.9 0.86 0.86 0 0.16 0.21 D 2 D 2

10 0.9 0.12 0.45 0.28 0.94 0.69 0.74 0 0.12 0.1 D 3 D 3

11 0.88 0.46 0.86 0.5 0.9 0.88 0.9 0.1 0.14 0.3 E 1 E 1
12 0.86 0.39 0.88 0.47 0.8 0.9 0.57 0.18 0.1 0.1 E 2 E 2

Table 3

Accuracy of fault recognitions

Test Number of Number of correct Accuracy of fault recognitions

sample inputs recognitions (number of correct recognitions /number of inputs)

A 15 13 86.7%

B 1 15 12 80%

B 2 15 15 100%
B 3 15 13 86.7%

C 1 15 15 100%

C 2 15 12 80%

C 3 15 11 73%

D 1 15 13 86.7%

D 2 15 15 100%

D 3 15 15 100%

E 1 15 11 73%
E 2 15 13 86.7%

4. Conclusion

This paper proposes a new fault diagnosis method of rotating machinery which integrates wavelet packets fractal

techniques and RBF neural networks. The wavelet packets decomposition can accurately decompose vibration

signals into various perpendicular frequency bands without losing the characteristics of the measured vibration

signals. Also, fractal theory is used to extract the fault characteristics of various frequency bands and construct box

counting dimension vectors to represent the fault conditions. Finally, a RBF neural network is used to perform the

learning and recognitions of fault condition.

The results of the experimental investigation demonstrate the effectiveness of present diagnosis procedure for

extracting the characteristics and recognizing the types the fault conditions of rotating machinery. Future works of

this study will include the application of real rotating machines and the effectiveness of diagnosis for other types of

fault conditions.

Nomenclature

x(t) vibration signal

n = 0, 1, . . . modulation parameter
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h(t), g(t) quadrature mirror filter bank

φ(t) scaling function

ψ(t) mother wavelet function

Nr number of grids

r grid of size

dB box counting dimension

s(j) time series

Aj Gaussian function

σ2
j unitary parameter

Wk,j weight vector
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