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We describe a new fault-tolerant algorithm for solving a variant of Lamport’s 
clock synchronization problem. The algorithm is designed for a system of dis- 
tributed processes that communicate by sending messages. Each process has its own 
read-only physical clock whose drift rate from real time is very small. By adding a 
value to its physical clock time, the process obtains its local time. The algorithm 
solves the problem of maintaining closely synchronized local times, assuming that 
processes’ local times are closely synchronized initially. The algorithm is able to 
tolerate the failure of just under one-third of the participating processes. It main- 
tains synchronization to within a small constant, whose magnitude depends upon 
the rate of clock drift, the message delivery time and its uncertainty, and the initial 
closeness of synchronization. We also give a characterization of how far the clocks 
drift from real time. Reintegration of a repaired process can be accomplished using 
a slight modification of the basic algorithm. A similar style algorithm can also be 
used to achieve synchronization initially. 0 1988 Academic Press, Inc. 
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1. INTRODUCTION 

Keeping the local times of processes in a distributed system synchronized 
in the presence of arbitrary faults is important in many applications and is 
an interesting problem in its own right. In order to be practical, any 
algorithm to synchronize clocks must be able to deal with process failures 
and repairs, clock drift, and varying message delivery times, but these con- 
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ditions complicate the design and analysis of algorithms. In this paper, we 
describe an algorithm which meets these requirements, assuming that the 
clocks are initially close together and that fewer than one-third of the 
processes are faulty. 

In our model, processes are assumed to have access to local read-only 
physical clocks, which are subject to a very small rate of drift. A process’ 
local time is obtained by adding the value of the physical clock to the value 
of a local “correction” variable. We assume that the communication 
network is fully connected, so that every process can send a message 
directly to every other process. Processes possess the capability of broad- 
casting a message to all the processes at the same time. All messages are 
delivered within a fixed amount of time plus or minus some uncertainty. 
We do not require the existence of unforgeable signatures. 

The problem of keeping clocks synchronized in the fault-free case was 
first addressed by Lamport in [La]. Further work in association with 
Melliar-Smith [LM] produced three fault-tolerant algorithms. Our work 
is based on the interactioe convergence algorithm in [LM]. Their algorithm 
also requires a reliable, completely connected communication network, and 
handles arbitrary process faults. It runs in rounds, resynchronizing every so 
often to correct for the clock drift. At every round, each process obtains a 
value for each of the other processes’ clocks, and sets its clock to the 
average of those values that are not too different from its own. 

Our algorithm also runs in rounds. Clock values are collected at each 
round, but they are averaged using a fault-tolerant averaging function 
based on those in [DLPSWI] to calculate an adjustment. The function is 
designed to be immune to some fixed maximum number, 5 of faults. It first 
throws out the f highest and f lowest values, and then applies some 
ordinary averaging function to the remaining values. We choose the mid- 
point of the range of the remaining values, to be specific. The properties of 
the fault-tolerant averaging function allow the distance between the clocks 
to be roughly halved at each round. Consequently, the averaging function 
can be considered the heart of the algorithm. 

An important capability of a practical clock synchronization algorithm is 
to allow a failed process that has been repaired to synchronize its clock 
with the other nonfaulty processes. Our algorithm provides a very simple 
method for this reintegration. 

The problem addressed so far is only that of maintaining syn- 
chronization of local times once it has been established. There is, of course, 
the separate problem of establishing such synchronization in the first place. 
The fact that the fault-tolerant averaging function used in our maintenance 
algorithm halves the error at each round suggests that it could be used to 
bring into synchronization clocks that begin with arbitrary values. In fact, 
a variant of the algorithm in this paper can be used to establish the initial 
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synchronization, in the face of clock drift, uncertainty in the message 
delivery time, and arbitrary process faults. This variant is also presented. 

We consider the main contributions of this paper to be the following. 
The new algorithm itself is of interest because it has efficient b&avior, sup- 
ports reintegration of repaired processes, and can be modified to establish 
synchronization initially. In fact, the algorithm, with slight modifications, 
has been implemented. Precise statements of the conditions to be achieved 
by the algorithm are provided, including one for validity, and the 
correctness of the main algorithm is carefully demonstrated. Finally, clock 
synchronization is shown to be an interesting application for work on 
approximate agreement. 

The remainder of this paper is organized as follows: In Section 2 we 
describe the underlying model upon which our work is based. In Section 3 
the assumptions we make about clock behavior are given and the problem 
to be solved is stated precisely, in terms of the model. Our basic algorithm 
is presented in Section 4; it is described first in words, and then in a high- 
level “programming language.” Sections 5 through 8 show with what 
precision the algorithm solves the problem posed earlier. In Section 9 we 
briefly discuss extensions to the basic algorithm in order to reintegrate a 
repaired process and to establish synchronization initially, and discuss the 
implementation. Finally, in Section 10 we compare our algorithm to several 
others. 

2. A MODEL FOR SYSTEMS OF PROCESSES WITH CLOCKS 

This section is an informal description of the model used to describe a 
system of processes which have physical clocks. A completely formal 
development can be found in [Lull. 

2.1. Processes, Clocks, and Systems 

We model a distributed system consisting of a set of processes that com- 
municate by sending messages to each other. Each process has a physical 
clock that is not under its control. Processes are interrupt-driven. An 
interrupt can be an ordinary message, consisting of text and the sending 
process’ name, or initial system start-up, or the event that the process’ 
physical clock reaches a particular value. It is convenient to model the lat- 
ter two events uniformly with the messages, as special START and TIMER 
messages. START indicates that the recipient should begin the algorithm, 
and TIMER is received when the recipient’s physical clock has reached a 
designated time. By sending a TIMER message to itself, a process can 
ensure that an interrupt will occur at a specified time in the future. We 
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neglect local processing time by assuming that the processing of an arriving 
message is instantaneous. 

In more detail, a process is an automaton with a set of states and a 
transition function. The transition function describes the new state the 
process enters, the messages it sends out, and the timers it sets for itself, all 
as a function of the process’ current state, received message, and physical 
clock time. At a process step, the process receives a message, changes state, 
and sends out some messages. If the process is nonfaulty, the new state and 
messages sent obey the transition function. Otherwise the process is faulty. 
By not restricting the state changes or messages sent by faulty processes, 
we model arbitrary, or Byzantine, process faults. 

We define a clock to be a monotonically increasing, everywhere differen- 
tiable function from R to R, interpreted as being a function from real times 
to clock times, or vice versa. Throughout this paper, lower case letters will 
represent real times, and upper case letters clock times. A clock from real 
times to clock times will be denoted with upper case, and its inverse will be 
denoted by the same name in lower case. A system consists of a set of 
processes and a set of clocks, the physical clocks, from real times to clock 
times, one clock for each process. The physical clock for process p will be 
denoted Ph,. 

2.2. The Message System 

Every process can communicate directly with every process, including 
itself. The message system is modelled by a global message buffer. When a 
process sends a message at real time t to another process, the message is 
placed in the message buffer together with a time t’ greater than t. At real 
time t’, the message is received by the proper recipient and is deleted from 
the buffer. The message delay is t’- t. In its initial state the message buffer 
contains no messages except for START messages, exactly one for each 
process, together with their scheduled delivery times. 

When a process p sets a timer, say for time T, a TIMER message with 
recipient p and delivery time Ph;‘( T) is placed in the message buffer, 
provided Ph;‘(T) is greater than the current real time. If it is not, no 
message is placed in the buffer. 

2.3. Executions 

There is only one type of event in this model, receive(m, p), the receipt of 
message m by process p. In order to discuss how an event affects the system 
as a whole, we define a configuration to consist of a state for each process 
and a state for the message buffer. An event surrounded by two con- 
figurations of the system, e.g., (J’, e, F), is an action. 
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We define an execution of the system to be a mapping from real times to 
finite sequences of actions with the following properties: 

1. Only a finite number of actions occurs before any fixed real time 
(so concatenating the sequences for real times in order of increasing times 
produces a sequence of actions); 

2. the first configuration of the first action consists of initial states for 
the processes and the message buffer; 

3. the configurations match up corectly; that is, the second con- 
figuration of an action is the same as the first one of the following action; 

4. all TIMER messages received by a particular process p that arrive 
at real time t are ordered after any non-TIMER messages for p that arrive 
at real time t (so messages that arrive at the same time as a timer is due to 
go off get in “just under the wire”); 

5. an action (F, receive(m,p), F) occurs at real time t if and only if 
m, with delivery time t, is in the message buffer in configuration F; 

6. if an action (F, receive(m,p), F) occurs at real time t, then the 
only differences between F and F are that p’s state may change and that 
the message buffer in F no longer contains m but may contain some 
mesages and timers from p; furthermore, if p is nonfaulty, then its new state 
and the additions to the message buffer are determined by p’s transition 
function acting on p’s state in F, the message m, and the physical clock 
time Ph,( t). 

The sixth property implies that at each event receive(m,p), only the 
message buffer and process p’s state are allowed to change. However, this 
condition is not very restrictive, since faulty processes are not constrained 
to obey their transition functions-they can change state arbitrarily and set 
whatever timers they like for themselves. Therefore, they can choose when 
they take steps and can do anything they want at a step. 

The configuration at time t is the second configuration in the final action 
of the sequence to which t is mapped. If t is mapped to the empty sequence, 
then the configuration at time t is the configuration at time t’, where t’ is 
the greatest time less than t such that t’ is not mapped to the empty 
sequence. (If t is earlier than the first action of the execution, then the con- 
figuration at time t is the first configuration of the first action of the 
execution.) Thus the state of a process or the message buffer at time t is 
determined by the configuration at time t. 

3. THE CLOCK SYNCHRONIZATION PROBLEM 

3.1. p-Bounded Clocks 

The notion of a p-bounded clock is useful for defining a clock whose 
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drift is small, i.e., one that does not gain or lose time drastically. The 
amount of clock time elapsed on a p-bounded clock during some real time 
interval is close to the amount of real time that has elapsed. 

For a very small constant p >O, we define a clock C to be p-bounded 
provided that for all t 

l/(1 +p)QdC(t)/dtd 1 +p. 

A simple corollary is that 1 -p < dC(t)/dt d l/(1 -p). The two lower 
bounds, l/( 1 + p) and 1 -p, are very close for small p (similarly the upper 
bounds), and we will use whichever formulation is more convenient. 
Similarly, clock c is p-bounded provided that for all T 

l/(l+p)<dc(T)/dTdl+p 

We give several straightforward lemmas about the behavior of p-bounded 
clocks. First we observe that the inverse of a p-bounded clock is itself a p- 
bounded clock, by the definition. The next three lemmas quantify changes 
in clock time values in terms of changes in real time values. They are all 
stated in terms of upper case clocks, but the previous observation implies 
that analogous results hold for lower case clocks (the inverses). 

LEMMA 1. Let C be any clock. If t, < tZ, then 

Prooj Straightforward by the mean value theorem. 1 

LEMMA 2. Let C and D be clocks. Then for any tl and tZ, 

G-9 I(c(t,)-t,)-(C(t,)-tt,)I~p It,-41. 

(b) I(c(t,)-D(t2))-(C(f,)-D(t,))l~2~Itz-t,I. 

Proof (a) Note that I(C(t,)-t,)-(C(tl)-ttl)l = j(C(t,)-C(t,))- 
(t2-tl)l. We do one of the four cases. Suppose t,2t, and C(t,)-C(t,)> 
t2- t,. Then 

I(c(t,)-c(t,))-(t*--,)l =(C(t*)-C(t,))-(t2--t,) 

~(l+P)(t2-fl)-(tZ-fl), by Lemma 1 

= P I t2 - t1 I. 
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(b) And 

I(C(t,)-D(t,))-(C(t,)-D(t,))l 

=I((C(t,)-t,)-(C(t,)-t,))-((D(t,)-t,)-(D(t,)-t,))l 

~I(C(~,)-t,)-(C(t,)--t,)l+l(D(~z)--t,)-(D(t,)--t,)l 

62pIt,-t,I,bypart(a). I 

LEMMA 3. Let C and D be clocks, T, 6 T2, Assume 1 c(T) - d(T) I < c( for 
all T, T, d T< Tz. Let t, =min{c(T,), d(T,)} and t2=max{c(T,), d(T,)}. 

Then for all t, t, d t 6 t,, 

Proof. There are four cases, which can easily be shown to be 

exhaustive. 

Case 1. c(T,)<t<c(Tz). Let T,=C(t), so that T,<T,dT,. Then 

I C(r) - D(t)1 = I T, - D(f)1 

6(1 +P)Id(T,)-tl, by Lemma 1 

=(l +P)ld(T,)-c(T,)I 

d(l+p)a, by hypothesis. 

Case 2. d( T,) < t d d( T,). This case is analogous to the first. 

Case 3. c(T2)<t<d(T1). Then c(T1)<t<d(T1). So C(t)>D(t), and 
thus 

IC(t)-D(t)l=C(t)-D(t)=(C(t)-T,)+(T,-D(t)) 

~(l+~)(t--c(T,))+(l+p)(d(T,)-t), by Lemma 1, 

=(l+~)(d(T,)-c(T,))~(l+p)cr. 

Case 4. d( T,) < t < c( T,). This case is analogous to the third. 1 

3.2. Problem Statement 

We assume that each process p has a local variable CORR, which 
provides a correction to its physical clock to yield the local time. During an 
execution, p’s local variable CORR takes on different values. Thus, for a 
particular execution, it makes sense to define a function CORR,(t), giving 
the value of p’s variable CORR at real time t. 
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For a particular execution, we define the local time for p to be function 
L,, which is given by Ph, + CORR,. 

A logical clock of p is Ph, plus the value of CORR, at some time. Let Ci 
denote the initial logical clock of p, given by Ph, plus the value, in p’s 
initial state, of CORR,. In keeping with our notational convention, we let 
ci denote the inverse function of Co Each time p adjusts its CORR 
variable, it can be thought of as changmg to a new logical clock. The local 
time can be thought of as a piecewise continuous function, each of whose 
pieces is part of a logical clock. 

We make the following assumptions: 

(Al) Fix a small constant p for the remainder of the paper. All clocks 
are p-bounded, including those of faulty processes. (Since faulty processes 
are permitted to take arbitrary steps, faulty clocks would not increase their 
power to affect the behavior of nonfaulty processes.) 

(A2) There are at mostf faulty processes, for a fixed constant f, and the 
total number of processes in the system, n, is at least 3f+ 1. (Dolev, 
Halpern, and Strong [DHS] show that it is impossible without authen- 
tication to synchronize clocks unless more than two-thirds of the processes 
are nonfaulty.) 

(A3) Fix nonnegative constants 6 and E, with 6 > F, for the remainder of 
the paper. The delay for every message is in the range [S -E, 6 + a]. 

(A4) Fix a constant b and a clock time To for the remainder of the 
paper. We want to assume that the initial logical clocks are closely syn- 
chronized, but for technical reasons, we instead give a condition on the 
inverses of the initial logical clocks. More formally, I cg( 7”) - ct( To)\ < fl, 
for all nonfaulty p and q. Furthermore, a START message arives at each 
process p at time To on its initial logical clock CF. These two conditions 
say that all the nonfaulty processes wake up within an interval of length /?, 
when their logical clocks reach To. 

We denote the real time c$ To) by tj. We let tmax’ = maxp nonlau,ty{ tj} 
and analogously for tmin’. These are respectively the latest and earliest real 
times when START messages arrive at nonfaulty processes. 

The object is to design an algorithm such that every execution satisfies 
the following two properties: 

(1) y-agreement: 1 L,(t) - L,(t)1 < y, for all t > tmin’ and all non- 
faulty p, q. 

(2) (a,, M2, @,)-validity: a,(t - tmax’) - a3 < L,(t) - To d a,(t 
- tmin’) + q, for all t 2 t,” and all nonfaulty p. 

The agreement property states that at any real time, all the nonfaulty 



FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 9 

processes’ clocks differ by at most y. We would, of course, like to minimize 
y in order for the clock values to be close to each other. The validity 
property implies that the local time of a nonfaulty process increases in 
some linear relation to real time. This condition can be formulated in a 
variety of ways; this particular one, with tmax’ and tmin’, fits in best with 
our analysis. We would like L,(t) - To to be close to t - ti (i.e., the amount 
of elapsed clock time to be close to the amount of elapsed real time); this is 
the case when ~1, and CI~ are near 1 and CI~ is near 0. 

4. THE ALGORITHM 

4.1. General Description 

The algorithm executes in a series of rounds, with a resynchronization 
occurring in each round at a fixed local time. The ith round for process p is 
triggered by its ith logical clock reaching some value T’. (It will be shown 
that all the ith logical clocks of nonfaulty processes reach this value within 
real time b of each other.) When p’s ith logical clock reaches T’, p broad- 
casts a T’ message. Meanwhile, p collects T’ messages from as many 
processes as it can, within a particular bounded amount of time, measured 
on its logical clock. The bounded amount of time is of length 
(1 + p)(/? + 6 + E), and is chosen to be just large enough to ensure that p 
receives T’ messages from all the nonfaulty processes. After waiting this 
amount of time, p averages the arrival times of all the T’ messages received, 
using a particular fault-tolerant averaging function. The resulting average is 
used to calculate an adjustment to p’s correction variable, thereby 
switching p to its (i + 1 )st logical clock. 

The process p then waits until its (i + 1)st logical clock reaches time 
T ‘+ ’ = T’+ P, by setting a timer, and repeats the procedure. P, then, is the 
length of a round in local time. (Section 5.1 discusses constraints on the 
size of P and p.) 

The fault-tolerant averaging function is derived from those used in 
[DLPSWl] for reaching approximate agreement. The function is designed 
to be immune to some fixed maximum number, f, of faults. It first throws 
out the f highest and f lowest values, and then applies some ordinary 
averaging function to the remaining values. In this paper, we choose the 
midpoint of the range of the remaining values, to be specific. It turns out 
that using the midpoint causes the error to be halved at each round. 

It is possible for the clock to be set backwards in this algorithm. 
However, this is not a real problem, since there are known techniques for 
stretching a negative adjustment out over the resynchronization interval. 
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4.2. Code for an Arbitrary Process 

We use the following conventions to present algorithms for our 
interrupt-driven model. Several clusters of pseudo-code are listed, each one 
preceded by the condition under which it is to be executed. The condition, 
must contain a receive statement, meaning that the receipt of a certain 
message triggers the execution of the cluster. The cluster manipulates the 
state of the process, represented by local variables, and may include the 
sending of messages. Since we are only concerned with deterministic 
algorithms, for each message received at any point in any execution, at 
most one cluster can be applicable. (If no cluster is applicable, then nothing 
happens.) 

We now present our clock synchronization algorithm. 
Global constants: n, 5 p, fl, 6, E, and P, as defined above. 
Local variables: 

l ADJ, AV: initially arbitrary; scalars used in calculating the 
correction. 

l ARR[l . . . n] : initially arbitrary; array containing the arrival 
times, measured in local time, of the most recent messages, one entry for 
each process. 

l CORR: initially whatever value is needed to attain required 
degree of synchronization with other processes’ clocks; scalar holding 
correction value for physical clock. 

l FLAG: initially BCAST; flag that toggles between the values 
BCAST and UPDATE, used to alternate between broadcasting clock value 
and updating clock, upon receipt of a timer. 

l T: initially To; scalar taking on the values To, To + P, To + 2P, 
etc., the beginnings of the rounds. 

Subroutines called: 

l broadcast(m): send the message m to every process. 

l mid(M): applied to a multiset M of real numbers, returns the 
midpoint of the set of values in the multiset. (The midpoint is the 
arithmetic mean of the smallest and largest elements in the multiset.) 

l local-time( ): returns the local time (current value of the physical 
clock + CORR). 

l reduce(A): applied to an array A, returns the multiset consisting 
of the elements of the array, with the f largest and f smallest elements 
removed. 

l set-timer(T): given a time value T, sets a timer for when the 
physical clock reaches the value T- CORR, for the current value of 
CORR. (Equivalent to setting a timer for when the current logical clock 
reaches T. ) 
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Code: 

receive(m) from q: 

ARR[q] := local-time( ) 

(receive( START) or receive(TIMER)) and (FLAG = BCAST): 
broadcast(T) 
set-timer(T+(l +p)(/?+6+~)) 
FLAG := UPDATE 

receive(TIMER) and (FLAG = UPDATE): 
AV := mid(reduce(ARR)) 
ADJ:= T+G--AV 
CORR := CORR + ADJ 
T:=T+P 
set-timer(T) 
FLAG : = BCAST 

If an ordinary message arrives, its arrival time is stored in the array. If a 
timer (or start) arrives and it is time to broadcast, then the time T, 
marking the beginning of the current round, is broadcast, a timer is set to 
update the clock later on, and the flag is toggled. If a timer arrives and it is 
time to update the clock, then the fault-tolerant averaging function is com- 
puted, T is updated to be the beginning of the next round, and a timer is 
set for that time (on the new logical clock). Again, the flag is toggled. 

5. PRELIMINARIES TO THE ANALYSIS 

Although the algorithm is fairly simple, its analysis is surprisingly com- 
plicated and requires a long series of lemmas. Our final goal is to provide 
values for y, tll, 01~, and t13 in the y-agreement and (tli, Q, a,)-validity 
properties defined in Section 3.2. In this section, the notation used to 
analyze the algorithm is described, and bounds are given on some of the 
parameters. Several important facts are proved inductively for every round 
in Section 6. Section 7 consists of the proof of agreement, and validity is 
demonstrated in Section 8. 

5.1. Notation 

Let T’= T’+iP and U’= T’+(l +p)(j?+6+~), for all i>O. 
For each i, every process p broadcasts T’ when its ith logical clock Ci 

reaches time T’ (recall this is real time ti). Then it sets a timer to go off 
when its ith logical clock reaches u’. Define ui to be the real time when this 
occurs. When the ith logical clock reaches U’ (at real time $), the process 
resets its CORR variable, thereby switching to a new logical clock, denoted 
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C’ + I. Also at real time ui 
cl&k C+ i P’ 

the process sets a timer for when its new logical 

that C:’ 
reaches T’+ . We will require that P be big enough to ensure 

has not already passed T’+ ‘, and therefore this new timer is 
being set for a time in the future. The process moves through an infinite 
sequence of clocks Ci, CA, etc, where C: is in force in the interval of real 
time (- CO, u:), and each CL, i > 1, is in force in the interval of real time 
[ui-‘, ui). 

%he inPerva1 of real time [CL, t’ + ’ 
Let tmin’ denote min, nonfau,ty{ tY } 

) constitutes round i for process p. 
p , an analogously for tmax’, umin’, and d 

umax’. 
For p and q nonfaulty, let ARRb(q) denote the time of arrival of a T’ 

message from q to p, sent when q’s ith logical clock reaches time T’, where 
the arrival time is measured on p’s logical clock Ck. (We will prove that CL 
is actually in force by the time this message arrives.) ARR; will denote the 
multiset of values ARR$q) for all q. Let AVL denote the value of AV 
calculated by p using the ARRI, values, i.e., the “average” arrival time of T’ 
messages calculated by throwing out the f earliest and f latest ones and 
taking the midpoint of the rest. Let ADJ; denote the corresponding value 
of ADJ calculated by p, i.e., the “adjustment” calculated by subtracting the 
average from the ideal arrival time. Thus, Cb’ ’ = CL + ADJb. 

5.2. Bounds on the Parameters 

In a real system, the parameters p (drift rate), 6 (median message delay), 
and E (uncertainty in the delay) would be fixed by the hardware and low- 
level communication protocols employed, whereas the algorithm designer 
would have some freedom in the choice of P (round length) and /? (how 
closely in real time processes reach the same round), subject to the 
reasonableness of the assumption that the clocks initially begin the 
algorithm within 8. To keep the clocks as closely synchronized as possible, 
/? must be as small as possible. However, the smaller /J is, the smaller P 
must be (i.e., the more frequently we must synchronize). 

However, P cannot be arbitrarily small. In order for the algorithm to 
work correctly, P must be sufficiently large to ensure the following. 

(1) After a nonfaulty process p resets its clock, the local time at 
which p schedules its next broadcast is greater than the local time on the 
new clock, at the moment of reset. 

(2) A message sent by a nonfaulty process p at round i, which will be 
used to set the (i + 1 )st logical clock, arrives at a nonfaulty process q after q 
has already set its ith logical clock. 

Although it is not obvious at this point, the analysis to be presented 
demonstrates that sufficient conditions relating the parameters are 
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and 

P d /?/(4p) - E/p - p(p + 6 + E) - 2p - 6 - 28. 

It follows that 

/?~4.5+4p(4/?+6+4.s+max{f&/?+s}) 

+ 4p2(3fi + 26 + 3~ + max(6, fl+ 8)). 

Any combination of P and fl which satisfies these inequalities will work in 
our algorithm. If P is regarded as fixed, then /?, the closeness of syn- 
chronization along the real time axis, is roughly 4s + 4pP. This value is 
obtained by solving the upper bound on P for p and neglecting terms of 
order p. 

6. INDUCTIVE ANALYSIS 

This section is devoted to proving the following theorem. 

THEOREM 4. Let p and q be nonfaulty processes, and i >, 0. 

(a) Zfi> 1, then IADJL-‘I ~(1 +p)(fi+s)+p& 

(b) Ifi>l, then W1+ADJiP’<T’. 

(cl I$-t;I 6B. 

(d) Zfi>l, then tf+8-e>uip1. 

This theorem states that for each i and each nonfaulty process p, (a) the 
adjustment that created p’s ith logical clock, ADJL-‘, is bounded in size; 
(b) the time to broadcast round i messages is still in the future when p’s ith 
logical clock is started; (c) p begins round i within fl real time of any other 
nonfaulty process; and (d) p’s round i message arrives at q after q has 
already set its ith logical clock. (Note that (b) and (d) are the same as the 
conditions that necessitate a lower bound on the size of P, the round 
length.) 

The proof of the base case of the theorem, when i = 0, is easy: (a), (b), 
and (d) are vacuously true, and (c) is true by assumption A4. For the 
remainder of this section, we assume the theorem is true for i, for any two 
nonfaulty processes p and q, and prove it for i+ 1. (Thus, integer i is fixed 
for the rest of this section.) 

6.1. Bounding the Adjustment 

In this subsection, we prove several lemmas leading up to a proof of part 
(a) of Theorem 4 for i+ 1. The first lemma gives an upper bound on the 
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error in a process’ estimate of the difference in real time between its own 
clock and any other nonfaulty process’ clock reaching T’. 

LEMMA 5. Let p and q be nonfaulty processes. Then 

Proof The intuition behind this result is as follows: p assumes that q’s 
message took exactly 6 time to arrive at p, and that its own clock has no 
drift. If these assumptions were true, then 6 time before the message arrived 
would be when q reached T’, and so ARRL(q)- (T’+ 6) would indeed be 
the diffeence in real time between the two processes’ clocks reaching T’. 

However, the message could have taken as much as E more or less time, 
and the drift of p’s clock could have introduced error the entire time 
between p reaching T’ and p receiving q’s message, which could be as long 
as /I + 6 + E. A careful proof follows. 

Let a be the real time of arrival of q’s message at process p. 

\(ARR;(q)-(T’+6))-(c;(T’)-c;(T’))j 

< I(ARRk(q) - T’) - (a - cb(T’))I + 1 a - ct(T’) - 6 1. 

The second term is at most E, by the bound on the message delay. 
By applying Lemma 2 to the first term with t, = a, t, = c;( T’), and 

C= CL, we obtain an upper bound of p 1 a - c;( T’)]. By part (c) of 
Theorem 4 for i, and the bounds on the message delay, I a - ci(T’)I < 

j? + 6 + E. The result follows. 1 

LEMMA 6. Let p be a nonfaulty process. Then there exist nonfaulty 
processes q and r with 

ARRL( q) < AV6 < ARRL( r ). 

Proof. By throwing out the f highest and f lowest values, the process 
ensures that the remaining values are in the range of the nonfaulty 
processes’ values. i 

The following lemma proves part (a) of Theorem 4 for i + 1. 

LEMMA 7. For any nonfaulty process p, I ADJL I < (1 + p)(p + a) + ~6. 

Proof Since ADJ; = T’+ 6 - AVd, Lemma 6 implies that for some 
nonfaulty q and r, 

T i + 6 - ARRi( q) < ADJ; < T’ + b - ARRi( r). 
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Now Lemma 5 implies 

1 T’+&ARR;(r)l < Ic;(T’)-c;(T’)I+s+p(p+~+@ 

<p+E+p(P+E+&, by part (c) of Theorem 4 for i. 

This simplifies to the required expression. 1 

6.2. Timers Are Set in the Future 

In this subsection, we prove part (b) of Theorem 4 for i+ 1, that when a 
process sets its (i + 1)st logical clock, the scheduled time for the next 
broadcast is still in the future. We simply assume that P, the round length, 
is sufficiently large. 

LEMMA 8. For any nonfaulty process p, u’ + ADJ; < T’+ ‘. 

Proof. By part (a) of Theorem 4 for i + 1, which has already been 
proved, 

U’ + ADJ; 

< V+(l +p)(P+s)+pd 

< V+P-(l+p)(P+J+E), by the assumed lower bound on P 

= if 1 
T > by definition of u’ and T’+ ‘. i 

6.3. Bounding the Separation of Clocks 

In this subsection, we prove part (c) of Theorem 4 for i+ 1, i.e., that 
nonfaulty processes’ clocks reach Tifl within /I of each other. Several 
lemmas lead up to this result. 

This lemma is the key to why the algorithm works. It states that the 
adjustments of processes p and q compensate for the difference in their 
clocks’ reaching T’ with an error of approximately o/2. Since the clocks 
reached T’ within /? real time, the difference between the clocks has been 
cut roughly in half. The halving is due to the properties of the fault-tolerant 
averaging function used in the algorithm. Consequently, the averaging 
function can be considered the heart of the algorithm. The averaging 
function is defined on multisets of values, and the proof of the lemma 
requires some definitions and results about multisets, which are presented 
in the Appendix. 

LEMMA 9. Let p and q be nonfaulty processes. Then 

I&;( Ti) - c:( T’)) - (ADJ; - ADJ;)[ < /I/2 + 2~ + 2p(/? + 6 + E). 

643177 I-2 
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Proof We define multisets U, V, and W, and show that they satisfy the 
hypotheses of Lemma 24. Let 

U=c;(T’)-(T’+@+ARR;, 

V=c;(T’)-(T’+@+ARR;, 

and 

W= (ci( T’): r is nonfaulty}. 

U and V have size n and W has size at least n -f: Let x = E + p(/J + 6 + E). 
Define an injection from W to U as follows: For all r, cf(T’) in W is 
mapped to cb(Ti) - (T’+ 6) + ARRi(r) in U. Since Lemma 5 implies 
that I(ARRb(r) - (T’+ 6)) - (ci(T’)- cb(T’))I GE +&/I+ 6 +E) for all the 
elements of W, d,( W, U) = 0. Similarly, d,( W, V) = 0. Since any two non- 
faulty processes reach T’ within ,Q real time of each other, diam( W) = /3. By 
Lemma 24, I mid(reduce( U)) - mid(reduce( V))I d b/2 + 2~ + 2p(/3 + 6 + E). 
Since mid(reduce( U)) = mid(reduce( cL( Ti) - (T’ + 6) + ARRL)) = cs( T’) - 
ADJL, and mid(reduce( V)) = c:( Ti) - ADJ:, the result follows. fl 

Next we bound the distance in real time between when the new clocks of 
processes p and q reach T, for any T. 

LEMMA 10. Let p and q be nonfadty processes, T any clock time. Then 

IcF’(T)-c:+‘(T)1 

d 2p I T- T’I + B/2 + 2~ + 2p(2j + 6 + 2~) + 2p2(p + 6 + E). 

ProoJ Note that cy l(T) = ci( T - ADJL), and cS+ l(T) = cb( T - ADJL). 
Now 

[c;+‘(T)-c:+‘(T)1 < Ic;(T-ADJ;)-c;(T’)-(T-ADJ;- T’)l 

+ I cf( T- ADJ;) - c;( T’) - (T- ADJ; - T’)I 

+ I c;( T’) - c;( T’) - (ADJ; - ADJ;)J . 

We bound the three terms separately. By Lemma 2, 

Ic;(T-ADJ;)-c;(T’)-(T-ADJ;- T’)l 

<p(I T- T’-ADJ;l) 

~P(IT-T’I+(~+~)(B+E)+~~), by Lemma 7. 
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The second term is bounded in the same way. Lemma 9 bounds the third 
term: 

I($( ri) - c;( T’)) - (ADJ; - ADJ;)I < /I/2 + 2.5 + 2p(/I + 6 + E). 

Adding these three bounds and simplifying gives the result. 1 

The next lemma proves part (c) of Theorem 4 for i+ 1, bounding the dis- 
tance between times when clocks reach T’+ ‘. This result uses the fact that 
we have assumed an upper bound on the round length P to ensure that the 
clocks cannot drift too far apart. 

LEMMA 11. For any two nonfaulty processes p and q, 1 t2 l- t; lI < /?. 

Proof Since $+I = c: ‘( T’+ ‘), we can apply Lemma 10, so 

p+$+1 I <2p I PI + b/2 + 2E + 2p(2B + 6 + 2.5) + 2p2(P + 6 + E). 

The assumed upper bound on P implies that this expression is at most 

P* I 

6.4. Bound on Message Arrival Time 

In this subsection, we prove part (d) of Theorem 4 for i+ 1, i.e., that 
messages arrive after the appropriate clocks have been set. This property is 
true because the round length P is assumed to be sufficiently large. 

LEMMA 12. For any two nonfaulty processes p and q, t:’ ’ + 6 - E > ui. 

Proof: Since t~1+6-E>t~1 -/-I + 6 - E by part (c) of Theorem 4 for 
i+ 1 (which was Just proved), it suffices to show that 

t’+‘-uu:,>fl-6+&. 
P 

By Lemma 1, 

ti+l-u;,(C~‘(tb+‘)-C~‘(#;))/(l+p) 
P 

=(Ti+l -(Ui+ADJ;))/(l +p) 

>(P-(1 +p)(/?+6++ADJ;)/(l +p). 

But the lower bound on P implies that P > 3( 1 + p)(j3 + E) + pd. Also, part 
(a) of Theorem 4 for i+ 1 shows that ADJL < (1 + p)(/? + E) + PC!?. 
Therefore, 
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t’+‘-u;>(3(1+p)(j3+&)+~6-(1+p)(p+6+&) P 

-tl+P)tP+~)-Pw(1 +p) 

=/l--6+&, 

as needed. a 

7. AGREEMENT 

This section culminates in the main result, bounding how far apart 
clocks of nonfaulty processes are at any given real time. 

First, we bound how closely in real time the various clocks reach 
corresponding values. If one is only concerned with the closeness of syn- 
chronization along the real time axis, then no further analysis is required 
beyond this lemma. 

LEMMA 13. Let p and q be nonfaulty, i 2 0. Then 

It;(T)-c;(T)1 </3+2p(l+p)(fi+h+~ 

for Ti-‘--P-(1+p)(p+6+~)<T<U’, if ial, and 
(/?+c?+E)< T< U’, ifi=O. 

Proof: 

) 

for To-(1 +p) 

Case 1. i=O. Choose T with To-(l+p)@+6+~)<T< U”. Thus 
I T- To I 6 (1 + p)@ + 6 + E). 

I c;(T) - c;(T)1 

d I (c;( T) - c;(T)) - (c;( To) - c;( To))1 + I c;(T’) - c;( To)1 

< 2p I T- To 1 + j?, by Lemma 2 (for inverse clocks) and assumption A4 

</3+2p(l+p)(fl+6+&), bytheboundon(T-ToI. 

Case 2. i>O. Choose T with Tie’--P-(l+p)(B+&+6)6T<U’. 
Thus IT-T’-‘I<P+(l+p)(fl+~+6). By LemmalO, 

I c;(T) - c;(T)I 

<2p IT-T’-‘1 +P/2+2~+2p(2fl+6+2~)+2p’(fi+6+&) 

< 2pP + p/2 + 2.5 + 2p(3JI + 26 + 3~) + 4p2@’ + 6 + E), 

bytheboundon)T-T’-‘I. 

The upper bound on P implies the result. 1 
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The main effort in the next three results is to take the bound proved in 
Lemma 10, concerning the closeness in real times when clocks reach the 
same value, and to restate it in terms of the closeness of clock values at the 
same real time. First, we prove a bound for a nonfaulty process’ (i + 1 )st 
clock, in terms of nonfaulty processes’ ith clocks. 

LEMMA 14. Let p be nonfaulty, i> 0. Then there exist nonfaulty 
processes, q and r, such that for uf < t < umax’, 

where CI = E + p(4/? + 6 + 5~) + 4p2(p + 6 + E) + 2p3(j? + 6 + E). 

Proof CF l(t) = Ci( t) + T’+ 6 - AVj,. Therefore, by Lemma 6 there 
are nonfaulty processes q and r for which 

CL(t) + T’+ 6 -ARR$q)< CF l(t) < C;(t)+ T’+ 6 -ARRi(r). 

We show the right-hand inequality first. Let a = ch(ARRi(r)), the real time 
at which the message arrives at p from r. Thus, C;(a) = ARR$r). Note that 
Ci(a)>T’+(l-p)(6--E). 

CF’(t)<Ck(t)+T’+6-ARRh(r), from above 

= C:(t) + CL(a) - Cl(a) + T’+ 6 - ARRL(r) 

+(CL(t)-Cl(t))-(C;(a)-Cf.(a)) 

d Cl(t) + CL(a) - Cl(a) + T’ + 6 - ARRi(r) + 2p( t - a), 

by Lemma 2 since t > a 

< C:(t) + ARRj,(r) - T’- (1 - p)(6 -E) 

+ T’ + 6 - ARRj,(r) + 2p( t - a) 

= Cj( t) + E + p6 - p-2 + 2p( t - a). 

It remains to bound t - a. The largest t can be is umax’, and the smallest a 
can be is tmin’ + 6 -E. So t-a < urnax’- tmin’- 6 + E. In the worst case, 
one process reaches T’, then /? later (by Theorem 4, part (c)), another 
process reaches Ti, and finally (1 + p)’ (j? + 6 + E) later, the second process 
reaches U’. Thus, umaxi - tmin’ < /? + (1 + ~)~(/3 + 6 + E). Therefore, 
t-a</?+(1 +p)’ @+&+a)-86~. Thus, 

C~‘(t)<Cf(t)+E+p6-~&+2p(/?+(l+p)2(~+6+&)-6+&) 

=c;(t)+E+p(4fl+6+3&)+4p*(p+6+&)+2p3(fi+6+&) 

< Cf( t) + a. 
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For the left-hand inequality, we see that CL(t) - E - pS - PE - 2p( t - a) d 
CF l(t), where a = c;(ARRk(q)). The factor t-a is bounded exactly as 
before, so that we obtain 

The next lemma states a bound on the difference of processes’ logical 
clocks with the same index, at a time when one of the processes is using 
that logical clock for its local time. This implies that the local times of two 
nonfaulty processes are close in those intervals where both use a clock with 
the same index. 

LEMMA 15. Let p and q be nonfaulty, i > 0. Then 

I qo - C$)l 6 (1 + PM + Ml + PNB + 6 + &)) 

for min{uh-‘, US-‘} 6 t < max{uj,, ui}, if i 3 1, and for tmin’ < t < 
max{$, ui}, ifi=O. 

ProoJ Lemma 13 implies that 

k;(T)-c;(T)1 <B+2p(l +p)(P+d+~) 

for all T, T’-‘--P-(l+p)(/?+~+6)6TdU’, if ial, and for all T, 
To-(l+p)(p+6+&)<Td@, ifi=O. 

Case 1. i = 0. Lemma 3 implies the result for all t such that 

min{c,O(T’-(1+p)(/?+6+s)),c~(T”-(l+p)(B+6+s))} 

dt<max{$, u:}. 

It remains to show that 

tmino3min(c~(To-(l+p)(~+6+~)),~~(To-(1+p)(~+6+~))}. 

By Lemma 1, 

c;(T’)-c;(T’-(1 +p)(/?+6+~)) 

dp+b+E 

=-B 

> c,“( To) - tmin’, by assumption A4 and definition of tmin’. 

The result follows. 

Case 2. i>l. Let S=T’-‘--P-(l+p)(j?+d+~). Lemma3 implies 
the result for all t with min{c;(S), c:(S)} < t < max (~6, u;}. It remains to 
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show that min { u;- l, u:- l 
c#P’+ADJ;-‘I). B 

} >min{ci(S), c:(S)}. Now u;-* = cb-‘( u’-‘) = 
y part (a) of Theorem 4 for i, u’- ’ + ADJk- ’ > 

U’- ’ - (1 + p)(jJ + E) - p6 > T’- ’ > S. Since ci is monotonic, u;- l> c;(S). 
Similarly, one can show that u:- l> c:(S), and the result follows. i 

Here is the main result, bounding the error in the synchronization at any 
time. 

THEOREM 16. The algorithm guarantees y-agreement, where 

Y = P + E + p(7P + 36 + 7s) + 8p2(p + 6 + E) + 4p3(p + 6 + E). 

Proof: We must show that 1 L,(t) - L,(t)1 < y, for all nonfaulty p and q, 
and all t >, tmin’. 

Case 1. L,(t) = C;(t) and L,(t) = C:(t), so p and q are using clocks 
with the same index. Thus t is such that 

and 

max{z$ ‘, z4dP’} <t<min{u~,uf},ifi~l, 

tmin”dt<min(uj,u~},ifi=O. 

This case is covered by Lemma 15. The expression in the statement of that 
lemma simplifies to 

/I + p(3j + 26 + 2E) + 4p2(j + 6 + E) + 2p3(j? + 6 + E), 

which is less than y. 

Case 2. L.,(t) = CFI and L,(t) = C:(t) for some i 2 0. This is the case 
where one of the processes has changed to a new clock, while the other still 
retains the old clock. We must bound 1 C: l(t) - C;(t)1 for all t with ~6 < 
t < u:. Lemma 14 implies that there exist nonfaulty processes r and s such 
that 

where 

a=~+p(48+6+5~)+4p*(/?+6+~)+2p~(/I+6+~). 

[q+‘(t)-CQ(t)l 

<cr+max{ICj(t)-Ci(t)l, lpi(t)-Cf(t)l} 

~a+(l+P)(B+2P(l+P)(B+6+&)), by Lemma 15. 
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Lemma 15 is applicable since ub d t Q U; implies u;- ’ < t < u;, which implies 

min{ul-‘, u;-’ }~t~max{24~,24~}, 

and similarly for s. The result follows. i 

Now we can sketch why it is reasonable for /I to be approximately 
4s + 4pP, as mentioned at the end of Section 5.2. Assume P is fixed. The ith 
clocks reach T’ within b of each other. After the processes reset their clocks, 
the new clocks reach u’ within b/2 + 2~ (ignoring p terms) by Lemma 10. 
By the end of the round, the clocks reach T’+ ’ within about p/2 + 2~ + 2pP 
of each other, because of drift. This quantity must be at most /?. The 
ineqUality p/2 i- 2E + 2pP < /? yields p 2 4E + 4pP. 

Suppose we alter the algorithm so that during each round, the processes 
exchange clock values k times instead of just once. Then we get fl/2k + 
(4 - 22pk)~ + 2pP < /I, which simplifies to /I 3 4~ + 2~P(2~/(2~ - 1)). It 
appears that /? > 4s + 2pP is approachable. 

If n increases whilefremains fixed, a greater closeness of synchronization 
can be achieved by using the mean instead of the midpoint in the 
algorithm. Similarly to [DLPSWl 1, we can show that the convergence 
rate if the mean is used is roughly f/(n--2f), and that an error of 
approximately 2~ is approachable. 

8. VALIDITY 

The next major result is the validity condition, which states that clock 
time increases as a linear function of real time. Such a condition rules out 
trivial solutions to the clock synchronization problem such as periodically 
resetting all the clocks to 0. 

The first lemma bounds the values of the zero-index clocks. 

LEMMA 17. (l-p)(t-$!)dC;(t)-T’d(l+p)(t-$)for t&t:. 

Proof By Lemma 1. 1 

The next lemma is the main one. 

LEMMA 18. Let p be nonfaulty, ia 0. Then 

(l-p)(t-tmax’)-is<Cj(t)-T’<(l+p)(t--tmin’)+is 

for all t>ub-’ ifi>,I, andfor all tati ifi=O. 

ProojI We proceed by induction on i. We argue the right-hand 
inequality. The left-hand inequality is entirely analogous. 
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Basis: i = 0. This case follows immediately by Lemma 17, since 
t,” 2 tmin’. 

Induction: Assume the result has been shown for i>O and show it for 
i+ 1. 

Choose t > ~6. Note that C;+ l (t)=Ch(t)+ADJL. By Lemma6 and the 
definition of ADJL, there exists a nonfaulty process r such that ADJL 6 
T’+ 6-- ARRL(r). Let a= cL(ARRL(r)), the real time when p receives r’s 
round i message. By the lower bound on the message delay, a 2 tl+ 6 - E. 

C;‘(t) 6 C;(t) + T’+ 6 -ARR;(r) 

= C;(t) + T’+ 6 - C;(a) 

~(1 +p)(t-a)+T’+& byLemma 1 

6 (1 + p)( t - t; - 6 + E) + T’ + 6, by lower bound on message delay 

= (1 + p)( t - tmin’) - (1 + p)(tf - tmin’) + T’+ E - p6 + PE. 

By induction, C’l( tf) - To < (1 + p)(t: - tmin’) + i&, since ti 2 u:- I, if i> 1, 
and t: > tP if i= 0. Thus, - (1 + p)( t: - tmin’) 6 - Cl(t:) + To + ie. Thus, 

C;+ ‘(t) < (1 + p)(t - tmin’) - C:(t;) + To + i& + T’+ E - p6 + PE 

<(l+p)(t-tmin0)+To+(i+1)~,sinceCf(tt)=T’and6>~. 

The result follows. 1 

Now, we can state the validity condition. Let ,I = (P - (1 + p)(fi + E) - 
p6)/( 1 + p). This is the length of the shortest round in real time, because the 
amount of clock time elapsed during a round is at least P minus the 
maximum adjustment. 

THEOREM 19. The algorithm preserves (a,, az, a,)-validity, where 

a, = 1 -p-&/l, a2 = 1 + p + E/I”, a3 = E. 

Proof: We must show for all t > tj and all nonfaulty p that 

a,(t--max’)-aa,<&(T’<a,(t-tmin’)+a,. 

We know from the preceding lemma that for i 2 0, t > uh-’ (or ti), and 
nonfaulty p 

(1 - p)( t - tmax’) - i.z < CL(t) - To < ( 1 + p)( t - tmin’) + it. 

Since L,(t) is equal to C;(t) for some i, we just need to convert i into an 



24 WELCHANDLYNCH 

expression in terms of t, etc. An upper bound on i is 1 + (t - r.$‘)/& since $’ 
is when C’i is first used. Since U: > tmax’, i < 1 + (t - tmax”)/;l. Then 

(1 +p)(t-tminO)+ic<(l +p)(t-tmin’)+(l +(t-tmax’)/l)s 

6(1 +p+e/A)(t-tminO)+e, since tmin’ < tmax’, 

and 

(1-p)(t-tmax0)-i~~(1-~)(t-tmax0)-(l+(t-tmax0)/~)~ 

3(1 ---sE/%)(t-tmax’)-.5. 

The result follows. 1 

9. EXTENSIONS 

This section indicates how the basic algorithm presented above can be 
modified to allow a repaired process to synchronize its clock with the rest 
of the system, and how a variant of the algorithm can be used to establish 
synchronization initially. It also includes a brief discussion of an implemen- 
tation of the basic algorithm. 

9.1. Reintegrating a Failed Process 

Our algorithm can be modified to allow a faulty process which has been 
repaired to synchronize its clock with the other nonfaulty processes. In this 
subsection, we give an overview; details may be found in [Lull. Let p be 
the process to be reintegrated into the system. During some round i, p will 
gather messages from the other processes and perform the same averaging 
procedure as that described previously to obtain a value for its correction 
variable such that its clock becomes synchronized. Since p’s clock is now 
synchronized, it will reach Tit1 within p of every other nonfaulty process. 
At that point, p is no longer faulty and rejoins the main algorithm, sending 
out T’+’ messages. 

We assume that p can awaken at an arbitrary time during an execution, 
perhaps during the middle of a round. As soon as it awakens, it begins 
collecting T’ messages for all plausible values of T’. It is necessary that p 
identify an appropriate round i at which it is able to obtain all the T’ 
messages from nonfaulty processes. Since p might awaken during the 
middle of a round, p will first orient itself by observing the arriving 
messages, allowing part of a round to pass before it begins to collect 
messages. 

After p has determined that it should use T’ messages to update its clock, 
it continues to collect T’ messages. It must wait a certain length of time, as 
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measured on its clock, in order to guarantee that it has received T’ 
messages from all nonfaulty processes. Immediately after p determines it 
has waited long enough, it carries out the averaging procedure and deter- 
mines a value for its correction variable. 

We claim that p reaches T’+’ on its new clock within /3 of every other 
nonfaulty process. First, observe that it does not matter that p’s clock 
begins initially unsynchronized with all the other clocks; the arbitrary clock 
will be compensated for in the subtraction of the average arrival time. 
Second, observe that it does not matter that p is not sending out a T’ 

message; p is being counted as one of the faulty processes, which could 
always fail to send a message. (Processes do not treat themselves specially 
in our algorithm, so it does not matter that p fails to receive a message 
from itself.) Finally, observe that it does not matter that p adjusts its 
correction variable whenever it is ready (rather than at the time specified 
for correct processes in the ordinary algorithm). The adjustment is only the 
addition of a constant, so the (additive) effect of the change is the same in 
either case. 

9.2. Establishing Synchronization 

In this subsection we present an algorithm to establish synchronization 
of clocks in a distributed system of processes, assuming the clocks initially 
have arbitrary values. The algorithm handles Byzantine failures of the 
processes, uncertainty in the message delivery time, and clock drift. The 
novel aspect of this approach is in not using the local times to trigger 
resynchronizations (as in the basic structure of our maintenance algorithm 
and those of [LM, HSSD]), but instead using a combination of elapsed 
physical time and number of special messages received. 

The structure of the algorithm is similar to that of the algorithm which 
maintains synchronization. It runs in rounds. During each round, the 
processes exchange clock values and use the same fault-tolerant averaging 
function as before to calculate the corrections to their clocks. However, 
rounds cannot be initiated when certain local times are reached, since 
processes’ local times might be wildly far apart. Instead, each round con- 
tains an additional phase, in which the processes exchange messages to 
decide that they are ready to begin the next round. A more detailed 
description follows. 

The algorithm guarantees that nonfaulty processes begin each round 
within real time 6 + 3s of each other. At the beginning of each round, each 
nonfaulty process p broadcasts its local time. Then p waits for an interval 
of length (1 + p)(26 + 4e), which is long enough for the process to receive a 
similar message from each nonfaulty process. At the end of this waiting 
interval, p calculates the adjustment it will make to its clock at the current 
round, but does not make the adjustment yet. 
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Then p waits a second interval of time, of length (1 +p)(4.s + 
4p(6 + 2~) + 2p’(6 + 4~)) before sending out additional messages, to make 
sure that these new messages are not received before the other nonfaulty 
processes have reached the end of their first waiting intervals, At the end of 
its second waiting interval, p broadcasts a READY message indicating that 
it is ready to begin the next round. However, if p receives f+ 1 READY 
messages during its second waiting interval, it terminates its second interval’ 
early, and goes ahead and broadcasts READY. As soon as p receives n -f 
READY messages, it updates the clock according to the adjustment 
calculated earlier, and begins its next round by broadcasting its new clock 
value. (The idea to use two criteria for ending the second interval came 
from [DLS].) 

The code for the algorithm follows. 
Local variables: 

l A: initially arbitrary; adjustment to correction for current round. 
l ASLEEP: initially true; boolean telling if process has been woken 

up yet or not. 
l CORR : initially arbitrary (clocks are not synchronized); correc- 

tion to physical clock. 
l DIFF : initially arbitrary; array of estimated differences between 

this process’ clock and the other processes’ clocks, one entry per process. 
l EARLY-END : initially arbitrary; boolean telling if second 

waiting interval was terminated early or not. 
l RCVD-READY: initially empty; set of process ids of processes 

from whom this process has received a READY message during the current 
round. 

l T: initially arbitrary; time at beginning of current round. 
l U: initially - 1; time in current round to cease collecting time 

messages and to compute the adjustment. 
l V: initially - 1; time in current round to broadcast READY. 

Subroutines and global variables are the same as those for the previous 
algorithm. begin-round is a macro; its expansion is given first. 

begin-round = = /*macro*/ 
T := local-time( ) 
broadcast(T) 
U:=T+(l+p)(26+4&) 
set-timer(U) 
EARLY -END : = false 
RCVD-READY := $3 

receive(START) and ASLEEP: 
ASLEEP := false 
begin-round 
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receive(T) from q: 
DIFF[q] := T + 6 - local-time( ) 
if (ASLEEP) then 

ASLEEP := false 
begin-round 

endif 
receive(TIMER) and (local-time( ) = Ii): 

A := mid(reduce(DIFF)) 
v:= cJ+(1 +p)(4&+4p(X+2&)+2pz(6+2&)) 
set-timer(V) 

receive(TIMER) and (local-time( ) = V) and (not EARLY-END): 
broadcast( READY) 

receive(READY, q) : 
RCVD-READY := RCVD-READY u {q} 
if (( ) RCVD-READY 1 =f+ 1) and 

(local-time( ) < V)) then 
broadcast( READY) 
EARLY-END := true 

endif 
if (1 RCVD-READY I= n -f) then 

DIFF := DIFF - A 
CORR := CORR + A 
begin-round 

endif 

A complete analysis of the closeness of synchronization attainable by this 
algorithm may be found in [Lull; here we merely state the main results. 

Let B’ be the maximum difference between nonfaulty clock values at the 
latest real time when a nonfaulty process begins round i (i.e., when it 
broadcasts its clock value). As before, the fault-tolerant averaging function 
used in the algorithm causes the difference to be approximately halved at 
each round. More precisely (ignoring terms of order p2), 

LEMMA 20. For i>O, Bit’<Bi/2+2.s+2p(116+39s). 

Since the limit of B’ as the round number increases without bound 
is 4s + 4p( 116 + 39s), we see that the algorithm achieves a closeness of 
synchronization of about 4.5. 

Two modes of operation are possible. One is for the processes to run the 
start-up algorithm indefinitely. The other is to run the start-up algorithm 
just until the desired closeness of synchronization is achieved and then to 
switch the maintenance algorithm. A protocol to perform the switch 
between the algorithms may be found in [Lull. 
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9.3. Implementation 

A slightly modified version of the maintenance algorithm was implemen- 
ted by the first author at AT&T Bell Laboratories during the summer of 
1986. The program was written in the C language and was designed to 
synchronize the clocks of Suns ,running Berkeley Unix on an Ethernet. For 
a more complete description of the project, see [LUG]. 

This project provided an interesting example of practice influencing 
theory-the algorithm had to be modified because of real-world 
constraints. Implementing the computational part of the algorithm was 
very easy. The challenging part was interacting with the operating system 
and the network, and trying to satisfy the assumptions of the model. 

The major discrepancy between the model used in this paper and the 
reality of the Ethernet is the assumption of the existence of reliable, 
bounded delay communication, as well as a broadcast primitive. These 
appear to be mutually exclusive. Virtual circuits provide reliability, but the 
sending machine must connect to each recipient individually, and since the 
time to make each connection is nonzero, sending the same time in each 
message, as the algorithm requires, would not be correct. Another draw- 
back of virtual circuits is that it is infeasible to keep nz virtual circuits open 
when n is big, due to limitations imposed by the size of certain data 
structures in the kernel. 

On the other hand, broadcast is available using datagrams, but it is not 
reliable. Once datagrams arrive at a machine, they are stored in a buffer, 
and if too many arrive at once, the old ones are overwritten. In the 
algorithm of this paper, every process broadcasts as soon as its logical 
clock reaches a certain time. If the logical clocks are closely synchronized, 
all the processes will reach this value at about the same real time, and 
datagrams will get lost in the traffic jam, leading to the unfortunate 
situation that when the system behaves well, it is punished. 

The solution to the problem is to use datagrams and to stagger the 
broadcast times. A spacing interval (T is chosen, and process p, for p 

between 0 and n - 1, broadcasts at logical clock time T’ +po. The spacing 
interval should be big enough so that collisions are sufficiently infrequent 
that they can be attributed to faulty processes. Worst-case analysis shows 
that the modified algorithm behaves very similarly to the original one. 

10. COMPARISON WITH OTHER WORK 

This section is a brief, and high-level, comparison of the maintenance 
algorithm presented in this paper with the interactive convergence 
algorithm of [LM] and the algorithms in [HSSD, M, MS, ST]. The 
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different assumptions made by the authors are pointed out, and various 
performance measures are discussed. 

All the algorithms handle arbitrary (or “Byzantine”) process faults, as 
long as n > 3f (except where noted). They also all require known bounds 
on the message delays and clock drift, and that the processes be initially 
synchronized. For the rest of this section, we divide the algorihthms into 
two groups, those that need a fully connected network, and those that do 
not. 

Our maintenance algorithm, and the algorithms in [LM, MS], assume a 
fully connected network. Since each process broadcasts at each round, n2 
messages are sent in every round. Our algorithm has already been 
described. Clocks stay synchronized to within about 4s (E is the uncertainty 
in the message delay, in our model). The synchronized clock’s rate of drift 
does not exceed by very much the drift of the underlying hardware clocks. 
The size of the adjustment at each round is about 5s. Rejoining is easy and 
a variant of the algorithm works when clocks are not initially 
synchronized. 

The algorithm of Lamport and Melliar-Smith [LM] was described in 
the introduction. Let E’ be the uncertainty in the message delay in their 
model. The closeness of synchronization achieved is about 2nd. Validity is 
close to that of the underlying hardware clocks (although it is not explicitly 
discussed). The size of the adjustment is about (2n + 1) E’. Superficially this 
performance looks worse than our algorithm’s; however, in converting 
between the different models, it may be the case that E = ns’, because of 
the necessity of polling n queues for incoming messages [La2, LM]. This 
is an example of the many pitfalls encountered in comparing clock syn- 
chronization algorithms. Reintegration and initialization are not discussed 
in [LM]. - 

The algorithms of Mahaney and Schneider [MS] are also based on the 
algorithm of [LM], and the model is the same. At each round, clock 
values are exchanged. All values that are not close enough to n -f other 
values (thus are clearly faulty) are discarded, and the remaining values are 
averaged. However, the performance is analyzed in different terms, with 
more emphasis on how the clock values are related before and after a single 
round, so agreement, validity, and adjustment size values are not readily 
available for comparison. Reintegration and initialization are not discussed. 
A pleasing and novel aspect of this algorithm is that it degrades gracefully 
if more than one-third of the processes fail. 

The next set of algorithms (those in [M, HSSD, ST]) does not require a 
fully connected network. Again, every process communicates with all its 
neighbors at each round, but since the network is not necessarily fully 
connected, the message complexity per round could be less than O(d). The 
estimates of agreement, validity, and adjustment size presented in the rest 
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of this subsection for these algorithms are made assuming n = 3f+ 1, and a 
fully connected network with no link failures, in order to facilitate 
comparison (although, as mentioned above, the algorithms do not require 
that these conditions hold). 

The key idea of Marzullo’s algorithm [M] is for each process to main- 
tain an upper bound on the error of its clock. This bound allows an inter- 
val that includes the correct real time to be constructed. Periodically each 
process requests the time from each of its neighbors. As each response is 
received, the process sets its new interval to be the intersection of its 
current one with the interval received in response, after adjusting for 
further error that could be introduced by message delay. Since the 
algorithm’s performance is analyzed probabilistically, assuming various 
probability distributions for the clock rates over time, it is difficult to com- 
pare results with our analysis, which makes worst-case assumptions. 

The algorithm of Halpern, Simons, Strong, and Dolev [HSSD] can 
tolerate any number of process and link failures as long as the nonfaulty 
processes can still communicate. However, the price paid for this extra fault 
tolerance is that digital signatures are needed. When a process’ clock 
reaches the next in a series of values (decided on in advance), the process 
begins the next round by broadcasting that value. If the process receives a 
message containing the value not too long before its clock reaches the 
value, it updates its clock to the value and relays the message. The 
closeness of synchronization achievable is about 6 + E, which is either better 
or worse than our algorithm, depending on the relative sizes of 6 and E. 
The faulty processes, by sending messages too early, can cause the non- 
faulty ones to speed up their clocks, and the slope of the synchronized 
clocks can exceed 1 by an amount that increases as f increases. The size of 
the adjustment is about (f + 1)(6 + E), again depending on f: An algorithm 
to reintegrate a repaired process is mentioned; although it is complicated, it 
has the nice property of not forcing the process to wait possibly many 
hours until the next resynchronization , but instead starting as soon as the 
process requests it. No system initialization is discussed. 

The algorithm of Srikanth and Toueg [ST] is very similar to that of 
[HSSD], but only handles less than n/2 process failures and does not 
handle link failures. However, they can relax the necessity of digital 
signatures (if n > 3f ). Agreement, as in [HSSD] is about 6 + E. Validity is 
optimal, i.e., is that provided by the underlying hardware clocks. The size 
of the adjustment is about 3(6 + E). There are twice as many messages 
per round as those in [HSSD] when digital signatures are not used. 
Reintegration is based on our method. A simple modification to the 
algorithm gives an elegant algorithm for initially synchronizing the clocks. 
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APPENDIX 

This Appendix consists of definitions and lemmas concerning multisets 
needed for the proof of Lemma 9. These definitions and lemmas are 
analogous to some in [DLPSWl, DLPSW21. 

A multiset U is a finite collection of real numbers in which the same 
number may appear more than once. The largest value in U is denoted 
max( U), and the smallest value in U is denoted min( U). The diameter of U, 
diam(U), is max(U)-min(U). Let s(U) be the multiset obtained by 
deleting one occurrence of min(U), and Z(U) be the multiset obtained by 
deleting one occurrence of max( U). If ( U I 2 2f+ 1, we define reduce(U) to 
be l.r?( U), the result of removing theflargest andf smallest elements of U. 

Given two multisets U and V with 1 UI 6 1 VI, consider an injection c 
mapping U to I’. For any nonnegative real number x, define S,(c) to be 
{u E U: 1 u - c(u)1 > x}. We define the x-distance between U and V to be 
d,( U, V = min,. { I &(c)l >. W e say c witnesses d.,(U, V) if 1 S,(c)/ = 
d,(U, V). The x-distance between U and I/ is the number of elements of U 
that cannot be matched up with an element of V which is the same to 
within x. If I u - c(u)1 d x, then we say u and c(u) are x-paired by c. The 
midpoint of U, mid(U), is $[max(U) +min(U)]. 

For any multiset U and real number r, define U + r to be the multiset 
obtained by adding r to every element of U; that is, U + r = {u + r : u E U}. 

It is obvious that mid( U + r) = mid(U) + r and reduce( U + r) = 

reduce(U) + r. 
The first lemma bounds the diameter of a reduced multiset. 

LEMMA 21. Let U and W be multisets such that I U I = n, I WI > n -f, 

and d.,( W, U) = 0, where n > ilf + 1. Then 

max(reduce( U)) < max( W) +x and min(reduce( U)) > min( W) - x. 

Proof We show the result for max; a similar argument holds for min. 
Let c witness d,( W, U). Suppose none of the f elements deleted from the 
high end of U is x-paired with an element of W by c. Since d,( W, U) = 0, 
the remaining n-f elements of U are x-paired with elements of W 
by c, and thus every element of reduce(U) is x-paired with an element 
of W. Suppose max(reduce(U)) is x-paired with w  in W by c. Then 
max(reduce( U)) d w + x 6 max( W) + x. 

Now suppose one of the elements deleted from the high end of U is x- 
paired with an element of W by c. Let u be the largest such, and suppose 
it was paired with w  in W. Then max(reduce( U)) < u 6 w + x< 

max( W) + x. [ 

643/77/l-3 
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We show that the x-distance between two multisets is not increased by 
removing the largest (or smallest) element from each. 

LEMMA 22. Let U and V he multisets, each with at least one element, 

Then 

d,(4 U), 4 VI) 6 d.A U, VI and d.Js( UL 4 J’)) 6 A( U, J’). 

Proof We give the proof in detail for 1; a symmetric argument holds for 
s. Let A4 = 1(U) and N= I( V). Let c witness d,( U, V). We construct an 
injection c’ from M to N and show that 1 S,(c’)l < 1 S,(c)l. Since 
d,(M, N) < 1 S,(c’)l and 1 S,(c)1 = d,(U, V), it follows that d,(M, N) < 

d,(U 0 

Case 1. c(u) = II. Define c’(m) = c(m) for all m in M. Obviously c’ is 
an injection. j S,(c’)l 6 I S,(c)1 since either S,(c’) = S,(c) or S,(c’) = 

S,(c) - bl. 

Case 2. c(u) # u and there is no 1.4’ in U such that c(u’) = u. This is the 
same as Case 1. 

Case 3. c(u) # u, and there is U’ in U such that c(u’) = u. Suppose 
c(u) = u’. Define c’(u’) = v’ and c’(m) = c(m) for all m in A4 besides u’. 
Obviously c’ is an injection. Now we show that I S,(c’)l 6 I S.,(c)l. 

If 1.4 or U’ or both are in S,(c) then whether or not U’ is in S,(c’) 
the inequality holds. The only trouble arises if u and U’ are both not in 
S,(c) but U’ is in S,X(c’). Suppose that is the case. Then 
I U’ - c’(u’)l = ( U’ - u’ I > x. There are two possibilities: 

(i) u’>u’+x. Since 24 is not in S,(c), Iu-c(u)1 =Iu-~‘16~. So 
u’ > u -x. Hence U’ > u’ + x 3 u -x + x, which implies that U’ > U. But this 
contradicts u being the largest element of U. 

(ii) o’>u’+x. Since U’ is not in S,(c), Iu’-c(u’)l= Iu’--uI 6x. So 
U’ 3 u -x. Hence u’ > U’ + x 2 u -x +x, which implies that u’ > u. But this 
contradicts u being the largest element of V. 1 

The next lemma shows that the results of reducing two multisets, each of 
whose x-distance from a third multiset is 0, cannot contain values that are 
too far apart. 

LEMMA 23. Let U, V, and W be multisets such that ) UI = ) VI = n and 
I WI > n -f, where n 2 3f+ 1. r d,( W, U) = 0 and d,( W, V) = 0, then 

min(reduce( U)) - max(reduce( V)) d 2x. 
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Proof: First we show that dzx( U, V) <J: Let cU witness d,( W, U) and 
cc’ witness d,( W, V). Define an injection c from U to V as follows: if there 
is w  in W such that cU(w) = U, then let c(u) = c,(w); otherwise, let c(u) be 
any unused element of V. For each of the least n --felements w  in W, there 
is u in U such that u=c,(w). Thus Iu-c(u)l<Iu-WI +Iw-c(u)/ = 
IcJw)-W( + Iw-cv(w)l <x+x=2x. Thus S,,(c)<f, so d2.JU, V)<f: 

Then by applying Lemma 22 f times, we know that d,,(reduce( U), 
reduce( V)) <f: Since I reduce(U) 1 = I reduce( V) 1 = n - 2f > f, there are 
u in reduce(U) and u in reduce(V) such that I U-U 1 <2x. Thus 
min(reduce( U)) - max(reduce(V)) 6 u - u 6 2x. 1 

Lemma 24 is the main multiset result. It bounds the difference between 
the midpoints of two reduced multisets in terms of a particular third 
multiset. 

LEMMA 24. Let U, V, and W be multisets such that I U 1 = 1 VI = n and 
I WI 2 n -f, where n > 3f: If d,( W, U) = 0 and d,( W, V) = 0, then 

I mid(reduce( U)) - mid(reduce( V))I < idiam( W) + 2x. 

Proof. 

I mid(reduce( U)) - mid(reduce( V)) I 

= i I max(reduce( U)) + min(reduce( U)) 

- max(reduce( V)) - min(reduce( V))l 

= f I max(reduce( U)) - min(reduce( V)) 

+ min(reduce( U)) - max(reduce( V))I. 

If the quantity inside the absolute value signs is nonnegative, this 
expression is equal to 

$[max(reduce( U)) - min(reduce( V)) + min(reduce( U)) - max(reduce( V))] 

< i(max( W) + x - (min( W) -x) + min(reduce( U)) 

- max(reduce( V))), by applying Lemma 21 twice 

= f( diam( W) + 2x + min( reduce( U)) - max( reduce( V))) 

< t(diam( W) + 2x + 2x), by Lemma 23 

= tdiam( W) + 2x. 

If the quantity inside the absolute value is nonpositive, then symmetric 
reasoning gives the result. 1 
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Nomenclature 

ADJ 

ADJ; 

ARR[l . ..n] 

ARR;(d 

ARR; 
AV 

AV; 

C, D 
cz 

clock 

CORR 

CORR,( t) 

4 

diam 

f 
L,(t) 

local time 

logical clock 
mid 

variable holding the current adjustment to the current 
correction of the physical clock. (4.2) 
value of ADJ calculated by p at round i, and used to 
create the (i + 1 )st logical clock, i 2 0. (5.2) 

array holding arrival times at a process of most recent 
messages, one entry for each process. (4.2) 
arrival time, measured on p’s logical clock CL, of T’ 
message from q, i > 0. (5.2) 

multiset of values ARRh(q) for all q, i 3 0. (5.2) 

variable equal to mid(reduce(ARR)), “average” arrival 
time of 7” messages, for current i. (4.2) 

value of AV calculated by process p at round i, i> 0. 

(5.2) 
clocks. 
process p’s initial (or 0th) logical clock, Ph, + initial 
value of CORR. (3.2) 
process p’s ith logical clock, equal to Ci- l + ADJb- ’ for 
i>O. (5.2) 
monotonically increasing, everywhere differentiable 
function from II8 to iw. (2.1) 
variable holding the current software correction to the 
physical clock. (3.2 and 4.2) 
value of process p’s CORR variable at real time t in some 
execution. (3.2) 
the minimum, over all correspondences between two 
multisets, of the number of elements u of one multiset 
that are mapped to elements v of the other such that 
1 u - v I> x. (Appendix) 
difference between the largest and the smallest elements 
of a multiset. (Appendix) 
upper bound on number of faulty processes. (3.2) 
process p’s local time at real time t, Ph,(t) + CORR,(t). 

(3.2) 
synchronized time for a process, physical clock time plus 
current correction. (3.2) 
the physical clock plus a correction value. (3.2) 
midpoint of the interval spanned by a multiset. (4.2 and 
Appendix) 
total number of processes, n > 3f: (3.2) 
length of a round in local time. (4.1) 
processes. 
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Ph,W physical clock of process p. (2.1) 
physical clock process’ hardware clock, not under its control. (2.1) 
reduce multiset resulting after removing the f largest and f 

smallest elements in a multiset. (4.2 and Appendix) 
round for a given process, the interval between its ith logical 

clock reaching T’ and its (i + 1)st logical clock reaching 
T ’ + i is its round i, i > 0. (4.1) 

START message “message” sent by the environment to wake up a process 
initially. (2.1) 

t, t,, t, real times 

T ,  T, :  T2 clock times. 
T’ clock time at which each process begins round i and 

broadcasts the value T’; T’= To + iP, i > 0. (3.2 and 5.2) 
t; real time at which process p begins round i, i >, 0. (5.2) 
tmax’ max over all nonfaulty p of tb, latest real time when a 

tmin’ 
nonfaulty process begins round i, i > 0. (3.2 and 5.2) 
min over all nonfaulty p of t;, earliest real time when a 
nonfaulty process begins round i, i 2 0. (3.2 and 5.2) 

TIMER message “message” indicating an interrupt received by the process 
because a certain amount of physical clock time elapsed. 

(2.1) 
u’ clock time T’ + (1 + p)(/? + 6 + E), i > 0, at which round i 

u; 
update to clock is done, producing C.F ‘. (5.2) 
real time at which process p updates its clock in round i, 
ia0. (5.2) 

umax’ max over nonfaulty p of ~6, latest real time when a non- 
faulty process updates its clock in round i, i > 0. (5.2) 

umin’ min over nonfaulty p of ~6, earliest real time when a non- 
faulty process updates its clock in round i, i > 0. (5.2) 

u variable used locally in several proofs to simplify 
expressions. 

al> a29 a3 parameters in validity condition. (3.2) 

P maximum difference in real time between nonfaulty 
processes beginning the algorithm. (3.2) 

Y agreement parameter, upper bound on closeness of local 
times. (3.2) 

6 midpoint of range of possible message delays. (3.2) 
& uncertainty in message delay (all delays are between 6 - E 

and 6 + E). (3.2) 
2 lower bound on length of a round in real time. (8) 

P rate of drift of the physical clock, in clock seconds per 
real seconds. (3.1) 
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