
INFORMATION AND COMPUTATION 77, 1-36 (1988)

A New Fault-Tolerant Algorithm

for Clock Synchronization

JENNIFER LUNDELIUS WELCH AND NANCY LYNCH

Laboratory for Computer Science,

Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139

We describe a new fault-tolerant algorithm for solving a variant of Lamport’s
clock synchronization problem. The algorithm is designed for a system of dis-
tributed processes that communicate by sending messages. Each process has its own
read-only physical clock whose drift rate from real time is very small. By adding a
value to its physical clock time, the process obtains its local time. The algorithm
solves the problem of maintaining closely synchronized local times, assuming that
processes’ local times are closely synchronized initially. The algorithm is able to
tolerate the failure of just under one-third of the participating processes. It main-
tains synchronization to within a small constant, whose magnitude depends upon
the rate of clock drift, the message delivery time and its uncertainty, and the initial
closeness of synchronization. We also give a characterization of how far the clocks
drift from real time. Reintegration of a repaired process can be accomplished using
a slight modification of the basic algorithm. A similar style algorithm can also be
used to achieve synchronization initially. 0 1988 Academic Press, Inc.

CONTENTS. 1. Introduction. 2. A Model for systems of processes with clocks.

2.1. Processes, clocks, and systems. 2.2. The message system. 2.3. Executions. 3. The

clock synchronization problem. 3.1. p-bounded clocks. 3.2. Problem statement. 4. The

algorithm. 4.1. General description. 4.2. Code for an arbitrary process.
5. Preliminaries to the analysis. 5.1. Notation. 5.2. Bounds on the parameters.
6. Inductiue analysis. 6.1. Bounding the adjustment. 6.2. Timers are set in the future.
6.3. Bounding the separation of clocks. 6.4. Bound on message arrival time.
I. Agreement. 8. Validity. 9. Extensions. 9.1. Reintegrating a failed process.
9.2. Establishing synchronization. 9.3. Implementation. 10. Comparison with other

w>ork. Appendix

1. INTRODUCTION

Keeping the local times of processes in a distributed system synchronized
in the presence of arbitrary faults is important in many applications and is
an interesting problem in its own right. In order to be practical, any
algorithm to synchronize clocks must be able to deal with process failures
and repairs, clock drift, and varying message delivery times, but these con-

1
089O-54O1/88 $3.00

Copyright 0 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

2 WELCH AND LYNCH

ditions complicate the design and analysis of algorithms. In this paper, we
describe an algorithm which meets these requirements, assuming that the
clocks are initially close together and that fewer than one-third of the
processes are faulty.

In our model, processes are assumed to have access to local read-only
physical clocks, which are subject to a very small rate of drift. A process’
local time is obtained by adding the value of the physical clock to the value
of a local “correction” variable. We assume that the communication
network is fully connected, so that every process can send a message
directly to every other process. Processes possess the capability of broad-
casting a message to all the processes at the same time. All messages are
delivered within a fixed amount of time plus or minus some uncertainty.
We do not require the existence of unforgeable signatures.

The problem of keeping clocks synchronized in the fault-free case was
first addressed by Lamport in [La]. Further work in association with
Melliar-Smith [LM] produced three fault-tolerant algorithms. Our work
is based on the interactioe convergence algorithm in [LM]. Their algorithm
also requires a reliable, completely connected communication network, and
handles arbitrary process faults. It runs in rounds, resynchronizing every so
often to correct for the clock drift. At every round, each process obtains a
value for each of the other processes’ clocks, and sets its clock to the
average of those values that are not too different from its own.

Our algorithm also runs in rounds. Clock values are collected at each
round, but they are averaged using a fault-tolerant averaging function
based on those in [DLPSWI] to calculate an adjustment. The function is
designed to be immune to some fixed maximum number, 5 of faults. It first
throws out the f highest and f lowest values, and then applies some
ordinary averaging function to the remaining values. We choose the mid-
point of the range of the remaining values, to be specific. The properties of
the fault-tolerant averaging function allow the distance between the clocks
to be roughly halved at each round. Consequently, the averaging function
can be considered the heart of the algorithm.

An important capability of a practical clock synchronization algorithm is
to allow a failed process that has been repaired to synchronize its clock
with the other nonfaulty processes. Our algorithm provides a very simple
method for this reintegration.

The problem addressed so far is only that of maintaining syn-
chronization of local times once it has been established. There is, of course,
the separate problem of establishing such synchronization in the first place.
The fact that the fault-tolerant averaging function used in our maintenance
algorithm halves the error at each round suggests that it could be used to
bring into synchronization clocks that begin with arbitrary values. In fact,
a variant of the algorithm in this paper can be used to establish the initial

FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 3

synchronization, in the face of clock drift, uncertainty in the message
delivery time, and arbitrary process faults. This variant is also presented.

We consider the main contributions of this paper to be the following.
The new algorithm itself is of interest because it has efficient b&avior, sup-
ports reintegration of repaired processes, and can be modified to establish
synchronization initially. In fact, the algorithm, with slight modifications,
has been implemented. Precise statements of the conditions to be achieved
by the algorithm are provided, including one for validity, and the
correctness of the main algorithm is carefully demonstrated. Finally, clock
synchronization is shown to be an interesting application for work on
approximate agreement.

The remainder of this paper is organized as follows: In Section 2 we
describe the underlying model upon which our work is based. In Section 3
the assumptions we make about clock behavior are given and the problem
to be solved is stated precisely, in terms of the model. Our basic algorithm
is presented in Section 4; it is described first in words, and then in a high-
level “programming language.” Sections 5 through 8 show with what
precision the algorithm solves the problem posed earlier. In Section 9 we
briefly discuss extensions to the basic algorithm in order to reintegrate a
repaired process and to establish synchronization initially, and discuss the
implementation. Finally, in Section 10 we compare our algorithm to several
others.

2. A MODEL FOR SYSTEMS OF PROCESSES WITH CLOCKS

This section is an informal description of the model used to describe a
system of processes which have physical clocks. A completely formal
development can be found in [Lull.

2.1. Processes, Clocks, and Systems

We model a distributed system consisting of a set of processes that com-
municate by sending messages to each other. Each process has a physical
clock that is not under its control. Processes are interrupt-driven. An
interrupt can be an ordinary message, consisting of text and the sending
process’ name, or initial system start-up, or the event that the process’
physical clock reaches a particular value. It is convenient to model the lat-
ter two events uniformly with the messages, as special START and TIMER
messages. START indicates that the recipient should begin the algorithm,
and TIMER is received when the recipient’s physical clock has reached a
designated time. By sending a TIMER message to itself, a process can
ensure that an interrupt will occur at a specified time in the future. We

4 WELCH AND LYNCH

neglect local processing time by assuming that the processing of an arriving
message is instantaneous.

In more detail, a process is an automaton with a set of states and a
transition function. The transition function describes the new state the
process enters, the messages it sends out, and the timers it sets for itself, all
as a function of the process’ current state, received message, and physical
clock time. At a process step, the process receives a message, changes state,
and sends out some messages. If the process is nonfaulty, the new state and
messages sent obey the transition function. Otherwise the process is faulty.
By not restricting the state changes or messages sent by faulty processes,
we model arbitrary, or Byzantine, process faults.

We define a clock to be a monotonically increasing, everywhere differen-
tiable function from R to R, interpreted as being a function from real times
to clock times, or vice versa. Throughout this paper, lower case letters will
represent real times, and upper case letters clock times. A clock from real
times to clock times will be denoted with upper case, and its inverse will be
denoted by the same name in lower case. A system consists of a set of
processes and a set of clocks, the physical clocks, from real times to clock
times, one clock for each process. The physical clock for process p will be
denoted Ph,.

2.2. The Message System

Every process can communicate directly with every process, including
itself. The message system is modelled by a global message buffer. When a
process sends a message at real time t to another process, the message is
placed in the message buffer together with a time t’ greater than t. At real
time t’, the message is received by the proper recipient and is deleted from
the buffer. The message delay is t’- t. In its initial state the message buffer
contains no messages except for START messages, exactly one for each
process, together with their scheduled delivery times.

When a process p sets a timer, say for time T, a TIMER message with
recipient p and delivery time Ph;‘(T) is placed in the message buffer,
provided Ph;‘(T) is greater than the current real time. If it is not, no
message is placed in the buffer.

2.3. Executions

There is only one type of event in this model, receive(m, p), the receipt of
message m by process p. In order to discuss how an event affects the system
as a whole, we define a configuration to consist of a state for each process
and a state for the message buffer. An event surrounded by two con-
figurations of the system, e.g., (J’, e, F), is an action.

FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 5

We define an execution of the system to be a mapping from real times to
finite sequences of actions with the following properties:

1. Only a finite number of actions occurs before any fixed real time
(so concatenating the sequences for real times in order of increasing times
produces a sequence of actions);

2. the first configuration of the first action consists of initial states for
the processes and the message buffer;

3. the configurations match up corectly; that is, the second con-
figuration of an action is the same as the first one of the following action;

4. all TIMER messages received by a particular process p that arrive
at real time t are ordered after any non-TIMER messages for p that arrive
at real time t (so messages that arrive at the same time as a timer is due to
go off get in “just under the wire”);

5. an action (F, receive(m,p), F) occurs at real time t if and only if
m, with delivery time t, is in the message buffer in configuration F;

6. if an action (F, receive(m,p), F) occurs at real time t, then the
only differences between F and F are that p’s state may change and that
the message buffer in F no longer contains m but may contain some
mesages and timers from p; furthermore, if p is nonfaulty, then its new state
and the additions to the message buffer are determined by p’s transition
function acting on p’s state in F, the message m, and the physical clock
time Ph,(t).

The sixth property implies that at each event receive(m,p), only the
message buffer and process p’s state are allowed to change. However, this
condition is not very restrictive, since faulty processes are not constrained
to obey their transition functions-they can change state arbitrarily and set
whatever timers they like for themselves. Therefore, they can choose when
they take steps and can do anything they want at a step.

The configuration at time t is the second configuration in the final action
of the sequence to which t is mapped. If t is mapped to the empty sequence,
then the configuration at time t is the configuration at time t’, where t’ is
the greatest time less than t such that t’ is not mapped to the empty
sequence. (If t is earlier than the first action of the execution, then the con-
figuration at time t is the first configuration of the first action of the
execution.) Thus the state of a process or the message buffer at time t is
determined by the configuration at time t.

3. THE CLOCK SYNCHRONIZATION PROBLEM

3.1. p-Bounded Clocks

The notion of a p-bounded clock is useful for defining a clock whose

6 WELCHANDLYNCH

drift is small, i.e., one that does not gain or lose time drastically. The
amount of clock time elapsed on a p-bounded clock during some real time
interval is close to the amount of real time that has elapsed.

For a very small constant p >O, we define a clock C to be p-bounded
provided that for all t

l/(1 +p)QdC(t)/dtd 1 +p.

A simple corollary is that 1 -p < dC(t)/dt d l/(1 -p). The two lower
bounds, l/(1 + p) and 1 -p, are very close for small p (similarly the upper
bounds), and we will use whichever formulation is more convenient.
Similarly, clock c is p-bounded provided that for all T

l/(l+p)<dc(T)/dTdl+p

We give several straightforward lemmas about the behavior of p-bounded
clocks. First we observe that the inverse of a p-bounded clock is itself a p-
bounded clock, by the definition. The next three lemmas quantify changes
in clock time values in terms of changes in real time values. They are all
stated in terms of upper case clocks, but the previous observation implies
that analogous results hold for lower case clocks (the inverses).

LEMMA 1. Let C be any clock. If t, < tZ, then

Prooj Straightforward by the mean value theorem. 1

LEMMA 2. Let C and D be clocks. Then for any tl and tZ,

G-9 I(c(t,)-t,)-(C(t,)-tt,)I~p It,-41.

(b) I(c(t,)-D(t2))-(C(f,)-D(t,))l~2~Itz-t,I.

Proof (a) Note that I(C(t,)-t,)-(C(tl)-ttl)l = j(C(t,)-C(t,))-
(t2-tl)l. We do one of the four cases. Suppose t,2t, and C(t,)-C(t,)>
t2- t,. Then

I(c(t,)-c(t,))-(t*--,)l =(C(t*)-C(t,))-(t2--t,)

~(l+P)(t2-fl)-(tZ-fl), by Lemma 1

= P I t2 - t1 I.

FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 7

(b) And

I(C(t,)-D(t,))-(C(t,)-D(t,))l

=I((C(t,)-t,)-(C(t,)-t,))-((D(t,)-t,)-(D(t,)-t,))l

~I(C(~,)-t,)-(C(t,)--t,)l+l(D(~z)--t,)-(D(t,)--t,)l

62pIt,-t,I,bypart(a). I

LEMMA 3. Let C and D be clocks, T, 6 T2, Assume 1 c(T) - d(T) I < c(for
all T, T, d T< Tz. Let t, =min{c(T,), d(T,)} and t2=max{c(T,), d(T,)}.

Then for all t, t, d t 6 t,,

Proof. There are four cases, which can easily be shown to be

exhaustive.

Case 1. c(T,)<t<c(Tz). Let T,=C(t), so that T,<T,dT,. Then

I C(r) - D(t)1 = I T, - D(f)1

6(1 +P)Id(T,)-tl, by Lemma 1

=(l +P)ld(T,)-c(T,)I

d(l+p)a, by hypothesis.

Case 2. d(T,) < t d d(T,). This case is analogous to the first.

Case 3. c(T2)<t<d(T1). Then c(T1)<t<d(T1). So C(t)>D(t), and
thus

IC(t)-D(t)l=C(t)-D(t)=(C(t)-T,)+(T,-D(t))

~(l+~)(t--c(T,))+(l+p)(d(T,)-t), by Lemma 1,

=(l+~)(d(T,)-c(T,))~(l+p)cr.

Case 4. d(T,) < t < c(T,). This case is analogous to the third. 1

3.2. Problem Statement

We assume that each process p has a local variable CORR, which
provides a correction to its physical clock to yield the local time. During an
execution, p’s local variable CORR takes on different values. Thus, for a
particular execution, it makes sense to define a function CORR,(t), giving
the value of p’s variable CORR at real time t.

8 WELCH AND LYNCH

For a particular execution, we define the local time for p to be function
L,, which is given by Ph, + CORR,.

A logical clock of p is Ph, plus the value of CORR, at some time. Let Ci
denote the initial logical clock of p, given by Ph, plus the value, in p’s
initial state, of CORR,. In keeping with our notational convention, we let
ci denote the inverse function of Co Each time p adjusts its CORR
variable, it can be thought of as changmg to a new logical clock. The local
time can be thought of as a piecewise continuous function, each of whose
pieces is part of a logical clock.

We make the following assumptions:

(Al) Fix a small constant p for the remainder of the paper. All clocks
are p-bounded, including those of faulty processes. (Since faulty processes
are permitted to take arbitrary steps, faulty clocks would not increase their
power to affect the behavior of nonfaulty processes.)

(A2) There are at mostf faulty processes, for a fixed constant f, and the
total number of processes in the system, n, is at least 3f+ 1. (Dolev,
Halpern, and Strong [DHS] show that it is impossible without authen-
tication to synchronize clocks unless more than two-thirds of the processes
are nonfaulty.)

(A3) Fix nonnegative constants 6 and E, with 6 > F, for the remainder of
the paper. The delay for every message is in the range [S -E, 6 + a].

(A4) Fix a constant b and a clock time To for the remainder of the
paper. We want to assume that the initial logical clocks are closely syn-
chronized, but for technical reasons, we instead give a condition on the
inverses of the initial logical clocks. More formally, I cg(7”) - ct(To)\ < fl,
for all nonfaulty p and q. Furthermore, a START message arives at each
process p at time To on its initial logical clock CF. These two conditions
say that all the nonfaulty processes wake up within an interval of length /?,
when their logical clocks reach To.

We denote the real time c$ To) by tj. We let tmax’ = maxp nonlau,ty{ tj}
and analogously for tmin’. These are respectively the latest and earliest real
times when START messages arrive at nonfaulty processes.

The object is to design an algorithm such that every execution satisfies
the following two properties:

(1) y-agreement: 1 L,(t) - L,(t)1 < y, for all t > tmin’ and all non-
faulty p, q.

(2) (a,, M2, @,)-validity: a,(t - tmax’) - a3 < L,(t) - To d a,(t
- tmin’) + q, for all t 2 t,” and all nonfaulty p.

The agreement property states that at any real time, all the nonfaulty

FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 9

processes’ clocks differ by at most y. We would, of course, like to minimize
y in order for the clock values to be close to each other. The validity
property implies that the local time of a nonfaulty process increases in
some linear relation to real time. This condition can be formulated in a
variety of ways; this particular one, with tmax’ and tmin’, fits in best with
our analysis. We would like L,(t) - To to be close to t - ti (i.e., the amount
of elapsed clock time to be close to the amount of elapsed real time); this is
the case when ~1, and CI~ are near 1 and CI~ is near 0.

4. THE ALGORITHM

4.1. General Description

The algorithm executes in a series of rounds, with a resynchronization
occurring in each round at a fixed local time. The ith round for process p is
triggered by its ith logical clock reaching some value T’. (It will be shown
that all the ith logical clocks of nonfaulty processes reach this value within
real time b of each other.) When p’s ith logical clock reaches T’, p broad-
casts a T’ message. Meanwhile, p collects T’ messages from as many
processes as it can, within a particular bounded amount of time, measured
on its logical clock. The bounded amount of time is of length
(1 + p)(/? + 6 + E), and is chosen to be just large enough to ensure that p
receives T’ messages from all the nonfaulty processes. After waiting this
amount of time, p averages the arrival times of all the T’ messages received,
using a particular fault-tolerant averaging function. The resulting average is
used to calculate an adjustment to p’s correction variable, thereby
switching p to its (i + 1)st logical clock.

The process p then waits until its (i + 1)st logical clock reaches time
T ‘+ ’ = T’+ P, by setting a timer, and repeats the procedure. P, then, is the
length of a round in local time. (Section 5.1 discusses constraints on the
size of P and p.)

The fault-tolerant averaging function is derived from those used in
[DLPSWl] for reaching approximate agreement. The function is designed
to be immune to some fixed maximum number, f, of faults. It first throws
out the f highest and f lowest values, and then applies some ordinary
averaging function to the remaining values. In this paper, we choose the
midpoint of the range of the remaining values, to be specific. It turns out
that using the midpoint causes the error to be halved at each round.

It is possible for the clock to be set backwards in this algorithm.
However, this is not a real problem, since there are known techniques for
stretching a negative adjustment out over the resynchronization interval.

10 WELCH AND LYNCH

4.2. Code for an Arbitrary Process

We use the following conventions to present algorithms for our
interrupt-driven model. Several clusters of pseudo-code are listed, each one
preceded by the condition under which it is to be executed. The condition,
must contain a receive statement, meaning that the receipt of a certain
message triggers the execution of the cluster. The cluster manipulates the
state of the process, represented by local variables, and may include the
sending of messages. Since we are only concerned with deterministic
algorithms, for each message received at any point in any execution, at
most one cluster can be applicable. (If no cluster is applicable, then nothing
happens.)

We now present our clock synchronization algorithm.
Global constants: n, 5 p, fl, 6, E, and P, as defined above.
Local variables:

l ADJ, AV: initially arbitrary; scalars used in calculating the
correction.

l ARR[l . . . n] : initially arbitrary; array containing the arrival
times, measured in local time, of the most recent messages, one entry for
each process.

l CORR: initially whatever value is needed to attain required
degree of synchronization with other processes’ clocks; scalar holding
correction value for physical clock.

l FLAG: initially BCAST; flag that toggles between the values
BCAST and UPDATE, used to alternate between broadcasting clock value
and updating clock, upon receipt of a timer.

l T: initially To; scalar taking on the values To, To + P, To + 2P,
etc., the beginnings of the rounds.

Subroutines called:

l broadcast(m): send the message m to every process.

l mid(M): applied to a multiset M of real numbers, returns the
midpoint of the set of values in the multiset. (The midpoint is the
arithmetic mean of the smallest and largest elements in the multiset.)

l local-time(): returns the local time (current value of the physical
clock + CORR).

l reduce(A): applied to an array A, returns the multiset consisting
of the elements of the array, with the f largest and f smallest elements
removed.

l set-timer(T): given a time value T, sets a timer for when the
physical clock reaches the value T- CORR, for the current value of
CORR. (Equivalent to setting a timer for when the current logical clock
reaches T.)

FAULT-TOLERANTALGORITHMFOR CLOCKSYNCHRONIZATION 11

Code:

receive(m) from q:

ARR[q] := local-time()

(receive(START) or receive(TIMER)) and (FLAG = BCAST):
broadcast(T)
set-timer(T+(l +p)(/?+6+~))
FLAG := UPDATE

receive(TIMER) and (FLAG = UPDATE):
AV := mid(reduce(ARR))
ADJ:= T+G--AV
CORR := CORR + ADJ
T:=T+P
set-timer(T)
FLAG : = BCAST

If an ordinary message arrives, its arrival time is stored in the array. If a
timer (or start) arrives and it is time to broadcast, then the time T,
marking the beginning of the current round, is broadcast, a timer is set to
update the clock later on, and the flag is toggled. If a timer arrives and it is
time to update the clock, then the fault-tolerant averaging function is com-
puted, T is updated to be the beginning of the next round, and a timer is
set for that time (on the new logical clock). Again, the flag is toggled.

5. PRELIMINARIES TO THE ANALYSIS

Although the algorithm is fairly simple, its analysis is surprisingly com-
plicated and requires a long series of lemmas. Our final goal is to provide
values for y, tll, 01~, and t13 in the y-agreement and (tli, Q, a,)-validity
properties defined in Section 3.2. In this section, the notation used to
analyze the algorithm is described, and bounds are given on some of the
parameters. Several important facts are proved inductively for every round
in Section 6. Section 7 consists of the proof of agreement, and validity is
demonstrated in Section 8.

5.1. Notation

Let T’= T’+iP and U’= T’+(l +p)(j?+6+~), for all i>O.
For each i, every process p broadcasts T’ when its ith logical clock Ci

reaches time T’ (recall this is real time ti). Then it sets a timer to go off
when its ith logical clock reaches u’. Define ui to be the real time when this
occurs. When the ith logical clock reaches U’ (at real time $), the process
resets its CORR variable, thereby switching to a new logical clock, denoted

12 WELCH AND LYNCH

C’ + I. Also at real time ui
cl&k C+ i P’

the process sets a timer for when its new logical

that C:’
reaches T’+ . We will require that P be big enough to ensure

has not already passed T’+ ‘, and therefore this new timer is
being set for a time in the future. The process moves through an infinite
sequence of clocks Ci, CA, etc, where C: is in force in the interval of real
time (- CO, u:), and each CL, i > 1, is in force in the interval of real time
[ui-‘, ui).

%he inPerva1 of real time [CL, t’ + ’
Let tmin’ denote min, nonfau,ty{ tY }

) constitutes round i for process p.
p , an analogously for tmax’, umin’, and d

umax’.
For p and q nonfaulty, let ARRb(q) denote the time of arrival of a T’

message from q to p, sent when q’s ith logical clock reaches time T’, where
the arrival time is measured on p’s logical clock Ck. (We will prove that CL
is actually in force by the time this message arrives.) ARR; will denote the
multiset of values ARR$q) for all q. Let AVL denote the value of AV
calculated by p using the ARRI, values, i.e., the “average” arrival time of T’
messages calculated by throwing out the f earliest and f latest ones and
taking the midpoint of the rest. Let ADJ; denote the corresponding value
of ADJ calculated by p, i.e., the “adjustment” calculated by subtracting the
average from the ideal arrival time. Thus, Cb’ ’ = CL + ADJb.

5.2. Bounds on the Parameters

In a real system, the parameters p (drift rate), 6 (median message delay),
and E (uncertainty in the delay) would be fixed by the hardware and low-
level communication protocols employed, whereas the algorithm designer
would have some freedom in the choice of P (round length) and /? (how
closely in real time processes reach the same round), subject to the
reasonableness of the assumption that the clocks initially begin the
algorithm within 8. To keep the clocks as closely synchronized as possible,
/? must be as small as possible. However, the smaller /J is, the smaller P
must be (i.e., the more frequently we must synchronize).

However, P cannot be arbitrarily small. In order for the algorithm to
work correctly, P must be sufficiently large to ensure the following.

(1) After a nonfaulty process p resets its clock, the local time at
which p schedules its next broadcast is greater than the local time on the
new clock, at the moment of reset.

(2) A message sent by a nonfaulty process p at round i, which will be
used to set the (i + 1)st logical clock, arrives at a nonfaulty process q after q
has already set its ith logical clock.

Although it is not obvious at this point, the analysis to be presented
demonstrates that sufficient conditions relating the parameters are

FAULT-TOLERANTALGORITHMFORCLOCK SYNCHRONIZATION 13

and

P d /?/(4p) - E/p - p(p + 6 + E) - 2p - 6 - 28.

It follows that

/?~4.5+4p(4/?+6+4.s+max{f&/?+s})

+ 4p2(3fi + 26 + 3~ + max(6, fl+ 8)).

Any combination of P and fl which satisfies these inequalities will work in
our algorithm. If P is regarded as fixed, then /?, the closeness of syn-
chronization along the real time axis, is roughly 4s + 4pP. This value is
obtained by solving the upper bound on P for p and neglecting terms of
order p.

6. INDUCTIVE ANALYSIS

This section is devoted to proving the following theorem.

THEOREM 4. Let p and q be nonfaulty processes, and i >, 0.

(a) Zfi> 1, then IADJL-‘I ~(1 +p)(fi+s)+p&

(b) Ifi>l, then W1+ADJiP’<T’.

(cl I$-t;I 6B.

(d) Zfi>l, then tf+8-e>uip1.

This theorem states that for each i and each nonfaulty process p, (a) the
adjustment that created p’s ith logical clock, ADJL-‘, is bounded in size;
(b) the time to broadcast round i messages is still in the future when p’s ith
logical clock is started; (c) p begins round i within fl real time of any other
nonfaulty process; and (d) p’s round i message arrives at q after q has
already set its ith logical clock. (Note that (b) and (d) are the same as the
conditions that necessitate a lower bound on the size of P, the round
length.)

The proof of the base case of the theorem, when i = 0, is easy: (a), (b),
and (d) are vacuously true, and (c) is true by assumption A4. For the
remainder of this section, we assume the theorem is true for i, for any two
nonfaulty processes p and q, and prove it for i+ 1. (Thus, integer i is fixed
for the rest of this section.)

6.1. Bounding the Adjustment

In this subsection, we prove several lemmas leading up to a proof of part
(a) of Theorem 4 for i+ 1. The first lemma gives an upper bound on the

14 WELCH AND LYNCH

error in a process’ estimate of the difference in real time between its own
clock and any other nonfaulty process’ clock reaching T’.

LEMMA 5. Let p and q be nonfaulty processes. Then

Proof The intuition behind this result is as follows: p assumes that q’s
message took exactly 6 time to arrive at p, and that its own clock has no
drift. If these assumptions were true, then 6 time before the message arrived
would be when q reached T’, and so ARRL(q)- (T’+ 6) would indeed be
the diffeence in real time between the two processes’ clocks reaching T’.

However, the message could have taken as much as E more or less time,
and the drift of p’s clock could have introduced error the entire time
between p reaching T’ and p receiving q’s message, which could be as long
as /I + 6 + E. A careful proof follows.

Let a be the real time of arrival of q’s message at process p.

\(ARR;(q)-(T’+6))-(c;(T’)-c;(T’))j

< I(ARRk(q) - T’) - (a - cb(T’))I + 1 a - ct(T’) - 6 1.

The second term is at most E, by the bound on the message delay.
By applying Lemma 2 to the first term with t, = a, t, = c;(T’), and

C= CL, we obtain an upper bound of p 1 a - c;(T’)]. By part (c) of
Theorem 4 for i, and the bounds on the message delay, I a - ci(T’)I <

j? + 6 + E. The result follows. 1

LEMMA 6. Let p be a nonfaulty process. Then there exist nonfaulty
processes q and r with

ARRL(q) < AV6 < ARRL(r).

Proof. By throwing out the f highest and f lowest values, the process
ensures that the remaining values are in the range of the nonfaulty
processes’ values. i

The following lemma proves part (a) of Theorem 4 for i + 1.

LEMMA 7. For any nonfaulty process p, I ADJL I < (1 + p)(p + a) + ~6.

Proof Since ADJ; = T’+ 6 - AVd, Lemma 6 implies that for some
nonfaulty q and r,

T i + 6 - ARRi(q) < ADJ; < T’ + b - ARRi(r).

FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 15

Now Lemma 5 implies

1 T’+&ARR;(r)l < Ic;(T’)-c;(T’)I+s+p(p+~+@

<p+E+p(P+E+&, by part (c) of Theorem 4 for i.

This simplifies to the required expression. 1

6.2. Timers Are Set in the Future

In this subsection, we prove part (b) of Theorem 4 for i+ 1, that when a
process sets its (i + 1)st logical clock, the scheduled time for the next
broadcast is still in the future. We simply assume that P, the round length,
is sufficiently large.

LEMMA 8. For any nonfaulty process p, u’ + ADJ; < T’+ ‘.

Proof. By part (a) of Theorem 4 for i + 1, which has already been
proved,

U’ + ADJ;

< V+(l +p)(P+s)+pd

< V+P-(l+p)(P+J+E), by the assumed lower bound on P

= if 1
T > by definition of u’ and T’+ ‘. i

6.3. Bounding the Separation of Clocks

In this subsection, we prove part (c) of Theorem 4 for i+ 1, i.e., that
nonfaulty processes’ clocks reach Tifl within /I of each other. Several
lemmas lead up to this result.

This lemma is the key to why the algorithm works. It states that the
adjustments of processes p and q compensate for the difference in their
clocks’ reaching T’ with an error of approximately o/2. Since the clocks
reached T’ within /? real time, the difference between the clocks has been
cut roughly in half. The halving is due to the properties of the fault-tolerant
averaging function used in the algorithm. Consequently, the averaging
function can be considered the heart of the algorithm. The averaging
function is defined on multisets of values, and the proof of the lemma
requires some definitions and results about multisets, which are presented
in the Appendix.

LEMMA 9. Let p and q be nonfaulty processes. Then

I&;(Ti) - c:(T’)) - (ADJ; - ADJ;)[< /I/2 + 2~ + 2p(/? + 6 + E).

643177 I-2

16 WELCH AND LYNCH

Proof We define multisets U, V, and W, and show that they satisfy the
hypotheses of Lemma 24. Let

U=c;(T’)-(T’+@+ARR;,

V=c;(T’)-(T’+@+ARR;,

and

W= (ci(T’): r is nonfaulty}.

U and V have size n and W has size at least n -f: Let x = E + p(/J + 6 + E).
Define an injection from W to U as follows: For all r, cf(T’) in W is
mapped to cb(Ti) - (T’+ 6) + ARRi(r) in U. Since Lemma 5 implies
that I(ARRb(r) - (T’+ 6)) - (ci(T’)- cb(T’))I GE +&/I+ 6 +E) for all the
elements of W, d,(W, U) = 0. Similarly, d,(W, V) = 0. Since any two non-
faulty processes reach T’ within ,Q real time of each other, diam(W) = /3. By
Lemma 24, I mid(reduce(U)) - mid(reduce(V))I d b/2 + 2~ + 2p(/3 + 6 + E).
Since mid(reduce(U)) = mid(reduce(cL(Ti) - (T’ + 6) + ARRL)) = cs(T’) -
ADJL, and mid(reduce(V)) = c:(Ti) - ADJ:, the result follows. fl

Next we bound the distance in real time between when the new clocks of
processes p and q reach T, for any T.

LEMMA 10. Let p and q be nonfadty processes, T any clock time. Then

IcF’(T)-c:+‘(T)1

d 2p I T- T’I + B/2 + 2~ + 2p(2j + 6 + 2~) + 2p2(p + 6 + E).

ProoJ Note that cy l(T) = ci(T - ADJL), and cS+ l(T) = cb(T - ADJL).
Now

[c;+‘(T)-c:+‘(T)1 < Ic;(T-ADJ;)-c;(T’)-(T-ADJ;- T’)l

+ I cf(T- ADJ;) - c;(T’) - (T- ADJ; - T’)I

+ I c;(T’) - c;(T’) - (ADJ; - ADJ;)J .

We bound the three terms separately. By Lemma 2,

Ic;(T-ADJ;)-c;(T’)-(T-ADJ;- T’)l

<p(I T- T’-ADJ;l)

~P(IT-T’I+(~+~)(B+E)+~~), by Lemma 7.

FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 17

The second term is bounded in the same way. Lemma 9 bounds the third
term:

I($(ri) - c;(T’)) - (ADJ; - ADJ;)I < /I/2 + 2.5 + 2p(/I + 6 + E).

Adding these three bounds and simplifying gives the result. 1

The next lemma proves part (c) of Theorem 4 for i+ 1, bounding the dis-
tance between times when clocks reach T’+ ‘. This result uses the fact that
we have assumed an upper bound on the round length P to ensure that the
clocks cannot drift too far apart.

LEMMA 11. For any two nonfaulty processes p and q, 1 t2 l- t; lI < /?.

Proof Since $+I = c: ‘(T’+ ‘), we can apply Lemma 10, so

p+$+1 I <2p I PI + b/2 + 2E + 2p(2B + 6 + 2.5) + 2p2(P + 6 + E).

The assumed upper bound on P implies that this expression is at most

P* I

6.4. Bound on Message Arrival Time

In this subsection, we prove part (d) of Theorem 4 for i+ 1, i.e., that
messages arrive after the appropriate clocks have been set. This property is
true because the round length P is assumed to be sufficiently large.

LEMMA 12. For any two nonfaulty processes p and q, t:’ ’ + 6 - E > ui.

Proof: Since t~1+6-E>t~1 -/-I + 6 - E by part (c) of Theorem 4 for
i+ 1 (which was Just proved), it suffices to show that

t’+‘-uu:,>fl-6+&.
P

By Lemma 1,

ti+l-u;,(C~‘(tb+‘)-C~‘(#;))/(l+p)
P

=(Ti+l -(Ui+ADJ;))/(l +p)

>(P-(1 +p)(/?+6++ADJ;)/(l +p).

But the lower bound on P implies that P > 3(1 + p)(j3 + E) + pd. Also, part
(a) of Theorem 4 for i+ 1 shows that ADJL < (1 + p)(/? + E) + PC!?.
Therefore,

18 WLCHANDLYNCH

t’+‘-u;>(3(1+p)(j3+&)+~6-(1+p)(p+6+&) P

-tl+P)tP+~)-Pw(1 +p)

=/l--6+&,

as needed. a

7. AGREEMENT

This section culminates in the main result, bounding how far apart
clocks of nonfaulty processes are at any given real time.

First, we bound how closely in real time the various clocks reach
corresponding values. If one is only concerned with the closeness of syn-
chronization along the real time axis, then no further analysis is required
beyond this lemma.

LEMMA 13. Let p and q be nonfaulty, i 2 0. Then

It;(T)-c;(T)1 </3+2p(l+p)(fi+h+~

for Ti-‘--P-(1+p)(p+6+~)<T<U’, if ial, and
(/?+c?+E)< T< U’, ifi=O.

Proof:

)

for To-(1 +p)

Case 1. i=O. Choose T with To-(l+p)@+6+~)<T< U”. Thus
I T- To I 6 (1 + p)@ + 6 + E).

I c;(T) - c;(T)1

d I (c;(T) - c;(T)) - (c;(To) - c;(To))1 + I c;(T’) - c;(To)1

< 2p I T- To 1 + j?, by Lemma 2 (for inverse clocks) and assumption A4

</3+2p(l+p)(fl+6+&), bytheboundon(T-ToI.

Case 2. i>O. Choose T with Tie’--P-(l+p)(B+&+6)6T<U’.
Thus IT-T’-‘I<P+(l+p)(fl+~+6). By LemmalO,

I c;(T) - c;(T)I

<2p IT-T’-‘1 +P/2+2~+2p(2fl+6+2~)+2p’(fi+6+&)

< 2pP + p/2 + 2.5 + 2p(3JI + 26 + 3~) + 4p2@’ + 6 + E),

bytheboundon)T-T’-‘I.

The upper bound on P implies the result. 1

FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 19

The main effort in the next three results is to take the bound proved in
Lemma 10, concerning the closeness in real times when clocks reach the
same value, and to restate it in terms of the closeness of clock values at the
same real time. First, we prove a bound for a nonfaulty process’ (i + 1)st
clock, in terms of nonfaulty processes’ ith clocks.

LEMMA 14. Let p be nonfaulty, i> 0. Then there exist nonfaulty
processes, q and r, such that for uf < t < umax’,

where CI = E + p(4/? + 6 + 5~) + 4p2(p + 6 + E) + 2p3(j? + 6 + E).

Proof CF l(t) = Ci(t) + T’+ 6 - AVj,. Therefore, by Lemma 6 there
are nonfaulty processes q and r for which

CL(t) + T’+ 6 -ARR$q)< CF l(t) < C;(t)+ T’+ 6 -ARRi(r).

We show the right-hand inequality first. Let a = ch(ARRi(r)), the real time
at which the message arrives at p from r. Thus, C;(a) = ARR$r). Note that
Ci(a)>T’+(l-p)(6--E).

CF’(t)<Ck(t)+T’+6-ARRh(r), from above

= C:(t) + CL(a) - Cl(a) + T’+ 6 - ARRL(r)

+(CL(t)-Cl(t))-(C;(a)-Cf.(a))

d Cl(t) + CL(a) - Cl(a) + T’ + 6 - ARRi(r) + 2p(t - a),

by Lemma 2 since t > a

< C:(t) + ARRj,(r) - T’- (1 - p)(6 -E)

+ T’ + 6 - ARRj,(r) + 2p(t - a)

= Cj(t) + E + p6 - p-2 + 2p(t - a).

It remains to bound t - a. The largest t can be is umax’, and the smallest a
can be is tmin’ + 6 -E. So t-a < urnax’- tmin’- 6 + E. In the worst case,
one process reaches T’, then /? later (by Theorem 4, part (c)), another
process reaches Ti, and finally (1 + p)’ (j? + 6 + E) later, the second process
reaches U’. Thus, umaxi - tmin’ < /? + (1 + ~)~(/3 + 6 + E). Therefore,
t-a</?+(1 +p)’ @+&+a)-86~. Thus,

C~‘(t)<Cf(t)+E+p6-~&+2p(/?+(l+p)2(~+6+&)-6+&)

=c;(t)+E+p(4fl+6+3&)+4p*(p+6+&)+2p3(fi+6+&)

< Cf(t) + a.

20 WELCHAND LYNCH

For the left-hand inequality, we see that CL(t) - E - pS - PE - 2p(t - a) d
CF l(t), where a = c;(ARRk(q)). The factor t-a is bounded exactly as
before, so that we obtain

The next lemma states a bound on the difference of processes’ logical
clocks with the same index, at a time when one of the processes is using
that logical clock for its local time. This implies that the local times of two
nonfaulty processes are close in those intervals where both use a clock with
the same index.

LEMMA 15. Let p and q be nonfaulty, i > 0. Then

I qo - C$)l 6 (1 + PM + Ml + PNB + 6 + &))

for min{uh-‘, US-‘} 6 t < max{uj,, ui}, if i 3 1, and for tmin’ < t <
max{$, ui}, ifi=O.

ProoJ Lemma 13 implies that

k;(T)-c;(T)1 <B+2p(l +p)(P+d+~)

for all T, T’-‘--P-(l+p)(/?+~+6)6TdU’, if ial, and for all T,
To-(l+p)(p+6+&)<Td@, ifi=O.

Case 1. i = 0. Lemma 3 implies the result for all t such that

min{c,O(T’-(1+p)(/?+6+s)),c~(T”-(l+p)(B+6+s))}

dt<max{$, u:}.

It remains to show that

tmino3min(c~(To-(l+p)(~+6+~)),~~(To-(1+p)(~+6+~))}.

By Lemma 1,

c;(T’)-c;(T’-(1 +p)(/?+6+~))

dp+b+E

=-B

> c,“(To) - tmin’, by assumption A4 and definition of tmin’.

The result follows.

Case 2. i>l. Let S=T’-‘--P-(l+p)(j?+d+~). Lemma3 implies
the result for all t with min{c;(S), c:(S)} < t < max (~6, u;}. It remains to

FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 21

show that min { u;- l, u:- l
c#P’+ADJ;-‘I). B

} >min{ci(S), c:(S)}. Now u;-* = cb-‘(u’-‘) =
y part (a) of Theorem 4 for i, u’- ’ + ADJk- ’ >

U’- ’ - (1 + p)(jJ + E) - p6 > T’- ’ > S. Since ci is monotonic, u;- l> c;(S).
Similarly, one can show that u:- l> c:(S), and the result follows. i

Here is the main result, bounding the error in the synchronization at any
time.

THEOREM 16. The algorithm guarantees y-agreement, where

Y = P + E + p(7P + 36 + 7s) + 8p2(p + 6 + E) + 4p3(p + 6 + E).

Proof: We must show that 1 L,(t) - L,(t)1 < y, for all nonfaulty p and q,
and all t >, tmin’.

Case 1. L,(t) = C;(t) and L,(t) = C:(t), so p and q are using clocks
with the same index. Thus t is such that

and

max{z$ ‘, z4dP’} <t<min{u~,uf},ifi~l,

tmin”dt<min(uj,u~},ifi=O.

This case is covered by Lemma 15. The expression in the statement of that
lemma simplifies to

/I + p(3j + 26 + 2E) + 4p2(j + 6 + E) + 2p3(j? + 6 + E),

which is less than y.

Case 2. L.,(t) = CFI and L,(t) = C:(t) for some i 2 0. This is the case
where one of the processes has changed to a new clock, while the other still
retains the old clock. We must bound 1 C: l(t) - C;(t)1 for all t with ~6 <
t < u:. Lemma 14 implies that there exist nonfaulty processes r and s such
that

where

a=~+p(48+6+5~)+4p*(/?+6+~)+2p~(/I+6+~).

[q+‘(t)-CQ(t)l

<cr+max{ICj(t)-Ci(t)l, lpi(t)-Cf(t)l}

~a+(l+P)(B+2P(l+P)(B+6+&)), by Lemma 15.

22 WELCHANDLYNCH

Lemma 15 is applicable since ub d t Q U; implies u;- ’ < t < u;, which implies

min{ul-‘, u;-’ }~t~max{24~,24~},

and similarly for s. The result follows. i

Now we can sketch why it is reasonable for /I to be approximately
4s + 4pP, as mentioned at the end of Section 5.2. Assume P is fixed. The ith
clocks reach T’ within b of each other. After the processes reset their clocks,
the new clocks reach u’ within b/2 + 2~ (ignoring p terms) by Lemma 10.
By the end of the round, the clocks reach T’+ ’ within about p/2 + 2~ + 2pP
of each other, because of drift. This quantity must be at most /?. The
ineqUality p/2 i- 2E + 2pP < /? yields p 2 4E + 4pP.

Suppose we alter the algorithm so that during each round, the processes
exchange clock values k times instead of just once. Then we get fl/2k +
(4 - 22pk)~ + 2pP < /I, which simplifies to /I 3 4~ + 2~P(2~/(2~ - 1)). It
appears that /? > 4s + 2pP is approachable.

If n increases whilefremains fixed, a greater closeness of synchronization
can be achieved by using the mean instead of the midpoint in the
algorithm. Similarly to [DLPSWl 1, we can show that the convergence
rate if the mean is used is roughly f/(n--2f), and that an error of
approximately 2~ is approachable.

8. VALIDITY

The next major result is the validity condition, which states that clock
time increases as a linear function of real time. Such a condition rules out
trivial solutions to the clock synchronization problem such as periodically
resetting all the clocks to 0.

The first lemma bounds the values of the zero-index clocks.

LEMMA 17. (l-p)(t-$!)dC;(t)-T’d(l+p)(t-$)for t&t:.

Proof By Lemma 1. 1

The next lemma is the main one.

LEMMA 18. Let p be nonfaulty, ia 0. Then

(l-p)(t-tmax’)-is<Cj(t)-T’<(l+p)(t--tmin’)+is

for all t>ub-’ ifi>,I, andfor all tati ifi=O.

ProojI We proceed by induction on i. We argue the right-hand
inequality. The left-hand inequality is entirely analogous.

FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 23

Basis: i = 0. This case follows immediately by Lemma 17, since
t,” 2 tmin’.

Induction: Assume the result has been shown for i>O and show it for
i+ 1.

Choose t > ~6. Note that C;+ l (t)=Ch(t)+ADJL. By Lemma6 and the
definition of ADJL, there exists a nonfaulty process r such that ADJL 6
T’+ 6-- ARRL(r). Let a= cL(ARRL(r)), the real time when p receives r’s
round i message. By the lower bound on the message delay, a 2 tl+ 6 - E.

C;‘(t) 6 C;(t) + T’+ 6 -ARR;(r)

= C;(t) + T’+ 6 - C;(a)

~(1 +p)(t-a)+T’+& byLemma 1

6 (1 + p)(t - t; - 6 + E) + T’ + 6, by lower bound on message delay

= (1 + p)(t - tmin’) - (1 + p)(tf - tmin’) + T’+ E - p6 + PE.

By induction, C’l(tf) - To < (1 + p)(t: - tmin’) + i&, since ti 2 u:- I, if i> 1,
and t: > tP if i= 0. Thus, - (1 + p)(t: - tmin’) 6 - Cl(t:) + To + ie. Thus,

C;+ ‘(t) < (1 + p)(t - tmin’) - C:(t;) + To + i& + T’+ E - p6 + PE

<(l+p)(t-tmin0)+To+(i+1)~,sinceCf(tt)=T’and6>~.

The result follows. 1

Now, we can state the validity condition. Let ,I = (P - (1 + p)(fi + E) -
p6)/(1 + p). This is the length of the shortest round in real time, because the
amount of clock time elapsed during a round is at least P minus the
maximum adjustment.

THEOREM 19. The algorithm preserves (a,, az, a,)-validity, where

a, = 1 -p-&/l, a2 = 1 + p + E/I”, a3 = E.

Proof: We must show for all t > tj and all nonfaulty p that

a,(t--max’)-aa,<&(T’<a,(t-tmin’)+a,.

We know from the preceding lemma that for i 2 0, t > uh-’ (or ti), and
nonfaulty p

(1 - p)(t - tmax’) - i.z < CL(t) - To < (1 + p)(t - tmin’) + it.

Since L,(t) is equal to C;(t) for some i, we just need to convert i into an

24 WELCHANDLYNCH

expression in terms of t, etc. An upper bound on i is 1 + (t - r.$‘)/& since $’
is when C’i is first used. Since U: > tmax’, i < 1 + (t - tmax”)/;l. Then

(1 +p)(t-tminO)+ic<(l +p)(t-tmin’)+(l +(t-tmax’)/l)s

6(1 +p+e/A)(t-tminO)+e, since tmin’ < tmax’,

and

(1-p)(t-tmax0)-i~~(1-~)(t-tmax0)-(l+(t-tmax0)/~)~

3(1 ---sE/%)(t-tmax’)-.5.

The result follows. 1

9. EXTENSIONS

This section indicates how the basic algorithm presented above can be
modified to allow a repaired process to synchronize its clock with the rest
of the system, and how a variant of the algorithm can be used to establish
synchronization initially. It also includes a brief discussion of an implemen-
tation of the basic algorithm.

9.1. Reintegrating a Failed Process

Our algorithm can be modified to allow a faulty process which has been
repaired to synchronize its clock with the other nonfaulty processes. In this
subsection, we give an overview; details may be found in [Lull. Let p be
the process to be reintegrated into the system. During some round i, p will
gather messages from the other processes and perform the same averaging
procedure as that described previously to obtain a value for its correction
variable such that its clock becomes synchronized. Since p’s clock is now
synchronized, it will reach Tit1 within p of every other nonfaulty process.
At that point, p is no longer faulty and rejoins the main algorithm, sending
out T’+’ messages.

We assume that p can awaken at an arbitrary time during an execution,
perhaps during the middle of a round. As soon as it awakens, it begins
collecting T’ messages for all plausible values of T’. It is necessary that p
identify an appropriate round i at which it is able to obtain all the T’
messages from nonfaulty processes. Since p might awaken during the
middle of a round, p will first orient itself by observing the arriving
messages, allowing part of a round to pass before it begins to collect
messages.

After p has determined that it should use T’ messages to update its clock,
it continues to collect T’ messages. It must wait a certain length of time, as

FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 25

measured on its clock, in order to guarantee that it has received T’
messages from all nonfaulty processes. Immediately after p determines it
has waited long enough, it carries out the averaging procedure and deter-
mines a value for its correction variable.

We claim that p reaches T’+’ on its new clock within /3 of every other
nonfaulty process. First, observe that it does not matter that p’s clock
begins initially unsynchronized with all the other clocks; the arbitrary clock
will be compensated for in the subtraction of the average arrival time.
Second, observe that it does not matter that p is not sending out a T’

message; p is being counted as one of the faulty processes, which could
always fail to send a message. (Processes do not treat themselves specially
in our algorithm, so it does not matter that p fails to receive a message
from itself.) Finally, observe that it does not matter that p adjusts its
correction variable whenever it is ready (rather than at the time specified
for correct processes in the ordinary algorithm). The adjustment is only the
addition of a constant, so the (additive) effect of the change is the same in
either case.

9.2. Establishing Synchronization

In this subsection we present an algorithm to establish synchronization
of clocks in a distributed system of processes, assuming the clocks initially
have arbitrary values. The algorithm handles Byzantine failures of the
processes, uncertainty in the message delivery time, and clock drift. The
novel aspect of this approach is in not using the local times to trigger
resynchronizations (as in the basic structure of our maintenance algorithm
and those of [LM, HSSD]), but instead using a combination of elapsed
physical time and number of special messages received.

The structure of the algorithm is similar to that of the algorithm which
maintains synchronization. It runs in rounds. During each round, the
processes exchange clock values and use the same fault-tolerant averaging
function as before to calculate the corrections to their clocks. However,
rounds cannot be initiated when certain local times are reached, since
processes’ local times might be wildly far apart. Instead, each round con-
tains an additional phase, in which the processes exchange messages to
decide that they are ready to begin the next round. A more detailed
description follows.

The algorithm guarantees that nonfaulty processes begin each round
within real time 6 + 3s of each other. At the beginning of each round, each
nonfaulty process p broadcasts its local time. Then p waits for an interval
of length (1 + p)(26 + 4e), which is long enough for the process to receive a
similar message from each nonfaulty process. At the end of this waiting
interval, p calculates the adjustment it will make to its clock at the current
round, but does not make the adjustment yet.

26 WELCH AND LYNCH

Then p waits a second interval of time, of length (1 +p)(4.s +
4p(6 + 2~) + 2p’(6 + 4~)) before sending out additional messages, to make
sure that these new messages are not received before the other nonfaulty
processes have reached the end of their first waiting intervals, At the end of
its second waiting interval, p broadcasts a READY message indicating that
it is ready to begin the next round. However, if p receives f+ 1 READY
messages during its second waiting interval, it terminates its second interval’
early, and goes ahead and broadcasts READY. As soon as p receives n -f
READY messages, it updates the clock according to the adjustment
calculated earlier, and begins its next round by broadcasting its new clock
value. (The idea to use two criteria for ending the second interval came
from [DLS].)

The code for the algorithm follows.
Local variables:

l A: initially arbitrary; adjustment to correction for current round.
l ASLEEP: initially true; boolean telling if process has been woken

up yet or not.
l CORR : initially arbitrary (clocks are not synchronized); correc-

tion to physical clock.
l DIFF : initially arbitrary; array of estimated differences between

this process’ clock and the other processes’ clocks, one entry per process.
l EARLY-END : initially arbitrary; boolean telling if second

waiting interval was terminated early or not.
l RCVD-READY: initially empty; set of process ids of processes

from whom this process has received a READY message during the current
round.

l T: initially arbitrary; time at beginning of current round.
l U: initially - 1; time in current round to cease collecting time

messages and to compute the adjustment.
l V: initially - 1; time in current round to broadcast READY.

Subroutines and global variables are the same as those for the previous
algorithm. begin-round is a macro; its expansion is given first.

begin-round = = /*macro*/
T := local-time()
broadcast(T)
U:=T+(l+p)(26+4&)
set-timer(U)
EARLY -END : = false
RCVD-READY := $3

receive(START) and ASLEEP:
ASLEEP := false
begin-round

FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 27

receive(T) from q:
DIFF[q] := T + 6 - local-time()
if (ASLEEP) then

ASLEEP := false
begin-round

endif
receive(TIMER) and (local-time() = Ii):

A := mid(reduce(DIFF))
v:= cJ+(1 +p)(4&+4p(X+2&)+2pz(6+2&))
set-timer(V)

receive(TIMER) and (local-time() = V) and (not EARLY-END):
broadcast(READY)

receive(READY, q) :
RCVD-READY := RCVD-READY u {q}
if (() RCVD-READY 1 =f+ 1) and

(local-time() < V)) then
broadcast(READY)
EARLY-END := true

endif
if (1 RCVD-READY I= n -f) then

DIFF := DIFF - A
CORR := CORR + A
begin-round

endif

A complete analysis of the closeness of synchronization attainable by this
algorithm may be found in [Lull; here we merely state the main results.

Let B’ be the maximum difference between nonfaulty clock values at the
latest real time when a nonfaulty process begins round i (i.e., when it
broadcasts its clock value). As before, the fault-tolerant averaging function
used in the algorithm causes the difference to be approximately halved at
each round. More precisely (ignoring terms of order p2),

LEMMA 20. For i>O, Bit’<Bi/2+2.s+2p(116+39s).

Since the limit of B’ as the round number increases without bound
is 4s + 4p(116 + 39s), we see that the algorithm achieves a closeness of
synchronization of about 4.5.

Two modes of operation are possible. One is for the processes to run the
start-up algorithm indefinitely. The other is to run the start-up algorithm
just until the desired closeness of synchronization is achieved and then to
switch the maintenance algorithm. A protocol to perform the switch
between the algorithms may be found in [Lull.

28 WELCH AND LYNCH

9.3. Implementation

A slightly modified version of the maintenance algorithm was implemen-
ted by the first author at AT&T Bell Laboratories during the summer of
1986. The program was written in the C language and was designed to
synchronize the clocks of Suns ,running Berkeley Unix on an Ethernet. For
a more complete description of the project, see [LUG].

This project provided an interesting example of practice influencing
theory-the algorithm had to be modified because of real-world
constraints. Implementing the computational part of the algorithm was
very easy. The challenging part was interacting with the operating system
and the network, and trying to satisfy the assumptions of the model.

The major discrepancy between the model used in this paper and the
reality of the Ethernet is the assumption of the existence of reliable,
bounded delay communication, as well as a broadcast primitive. These
appear to be mutually exclusive. Virtual circuits provide reliability, but the
sending machine must connect to each recipient individually, and since the
time to make each connection is nonzero, sending the same time in each
message, as the algorithm requires, would not be correct. Another draw-
back of virtual circuits is that it is infeasible to keep nz virtual circuits open
when n is big, due to limitations imposed by the size of certain data
structures in the kernel.

On the other hand, broadcast is available using datagrams, but it is not
reliable. Once datagrams arrive at a machine, they are stored in a buffer,
and if too many arrive at once, the old ones are overwritten. In the
algorithm of this paper, every process broadcasts as soon as its logical
clock reaches a certain time. If the logical clocks are closely synchronized,
all the processes will reach this value at about the same real time, and
datagrams will get lost in the traffic jam, leading to the unfortunate
situation that when the system behaves well, it is punished.

The solution to the problem is to use datagrams and to stagger the
broadcast times. A spacing interval (T is chosen, and process p, for p

between 0 and n - 1, broadcasts at logical clock time T’ +po. The spacing
interval should be big enough so that collisions are sufficiently infrequent
that they can be attributed to faulty processes. Worst-case analysis shows
that the modified algorithm behaves very similarly to the original one.

10. COMPARISON WITH OTHER WORK

This section is a brief, and high-level, comparison of the maintenance
algorithm presented in this paper with the interactive convergence
algorithm of [LM] and the algorithms in [HSSD, M, MS, ST]. The

FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 29

different assumptions made by the authors are pointed out, and various
performance measures are discussed.

All the algorithms handle arbitrary (or “Byzantine”) process faults, as
long as n > 3f (except where noted). They also all require known bounds
on the message delays and clock drift, and that the processes be initially
synchronized. For the rest of this section, we divide the algorihthms into
two groups, those that need a fully connected network, and those that do
not.

Our maintenance algorithm, and the algorithms in [LM, MS], assume a
fully connected network. Since each process broadcasts at each round, n2
messages are sent in every round. Our algorithm has already been
described. Clocks stay synchronized to within about 4s (E is the uncertainty
in the message delay, in our model). The synchronized clock’s rate of drift
does not exceed by very much the drift of the underlying hardware clocks.
The size of the adjustment at each round is about 5s. Rejoining is easy and
a variant of the algorithm works when clocks are not initially
synchronized.

The algorithm of Lamport and Melliar-Smith [LM] was described in
the introduction. Let E’ be the uncertainty in the message delay in their
model. The closeness of synchronization achieved is about 2nd. Validity is
close to that of the underlying hardware clocks (although it is not explicitly
discussed). The size of the adjustment is about (2n + 1) E’. Superficially this
performance looks worse than our algorithm’s; however, in converting
between the different models, it may be the case that E = ns’, because of
the necessity of polling n queues for incoming messages [La2, LM]. This
is an example of the many pitfalls encountered in comparing clock syn-
chronization algorithms. Reintegration and initialization are not discussed
in [LM]. -

The algorithms of Mahaney and Schneider [MS] are also based on the
algorithm of [LM], and the model is the same. At each round, clock
values are exchanged. All values that are not close enough to n -f other
values (thus are clearly faulty) are discarded, and the remaining values are
averaged. However, the performance is analyzed in different terms, with
more emphasis on how the clock values are related before and after a single
round, so agreement, validity, and adjustment size values are not readily
available for comparison. Reintegration and initialization are not discussed.
A pleasing and novel aspect of this algorithm is that it degrades gracefully
if more than one-third of the processes fail.

The next set of algorithms (those in [M, HSSD, ST]) does not require a
fully connected network. Again, every process communicates with all its
neighbors at each round, but since the network is not necessarily fully
connected, the message complexity per round could be less than O(d). The
estimates of agreement, validity, and adjustment size presented in the rest

30 WELCH AND LYNCH

of this subsection for these algorithms are made assuming n = 3f+ 1, and a
fully connected network with no link failures, in order to facilitate
comparison (although, as mentioned above, the algorithms do not require
that these conditions hold).

The key idea of Marzullo’s algorithm [M] is for each process to main-
tain an upper bound on the error of its clock. This bound allows an inter-
val that includes the correct real time to be constructed. Periodically each
process requests the time from each of its neighbors. As each response is
received, the process sets its new interval to be the intersection of its
current one with the interval received in response, after adjusting for
further error that could be introduced by message delay. Since the
algorithm’s performance is analyzed probabilistically, assuming various
probability distributions for the clock rates over time, it is difficult to com-
pare results with our analysis, which makes worst-case assumptions.

The algorithm of Halpern, Simons, Strong, and Dolev [HSSD] can
tolerate any number of process and link failures as long as the nonfaulty
processes can still communicate. However, the price paid for this extra fault
tolerance is that digital signatures are needed. When a process’ clock
reaches the next in a series of values (decided on in advance), the process
begins the next round by broadcasting that value. If the process receives a
message containing the value not too long before its clock reaches the
value, it updates its clock to the value and relays the message. The
closeness of synchronization achievable is about 6 + E, which is either better
or worse than our algorithm, depending on the relative sizes of 6 and E.
The faulty processes, by sending messages too early, can cause the non-
faulty ones to speed up their clocks, and the slope of the synchronized
clocks can exceed 1 by an amount that increases as f increases. The size of
the adjustment is about (f + 1)(6 + E), again depending on f: An algorithm
to reintegrate a repaired process is mentioned; although it is complicated, it
has the nice property of not forcing the process to wait possibly many
hours until the next resynchronization , but instead starting as soon as the
process requests it. No system initialization is discussed.

The algorithm of Srikanth and Toueg [ST] is very similar to that of
[HSSD], but only handles less than n/2 process failures and does not
handle link failures. However, they can relax the necessity of digital
signatures (if n > 3f). Agreement, as in [HSSD] is about 6 + E. Validity is
optimal, i.e., is that provided by the underlying hardware clocks. The size
of the adjustment is about 3(6 + E). There are twice as many messages
per round as those in [HSSD] when digital signatures are not used.
Reintegration is based on our method. A simple modification to the
algorithm gives an elegant algorithm for initially synchronizing the clocks.

FAULT-TOLERANTALGORITHMFORCLOCKSYNCHRONIZATION 31

APPENDIX

This Appendix consists of definitions and lemmas concerning multisets
needed for the proof of Lemma 9. These definitions and lemmas are
analogous to some in [DLPSWl, DLPSW21.

A multiset U is a finite collection of real numbers in which the same
number may appear more than once. The largest value in U is denoted
max(U), and the smallest value in U is denoted min(U). The diameter of U,
diam(U), is max(U)-min(U). Let s(U) be the multiset obtained by
deleting one occurrence of min(U), and Z(U) be the multiset obtained by
deleting one occurrence of max(U). If (U I 2 2f+ 1, we define reduce(U) to
be l.r?(U), the result of removing theflargest andf smallest elements of U.

Given two multisets U and V with 1 UI 6 1 VI, consider an injection c
mapping U to I’. For any nonnegative real number x, define S,(c) to be
{u E U: 1 u - c(u)1 > x}. We define the x-distance between U and V to be
d,(U, V = min,. { I &(c)l >. W e say c witnesses d.,(U, V) if 1 S,(c)/ =
d,(U, V). The x-distance between U and I/ is the number of elements of U
that cannot be matched up with an element of V which is the same to
within x. If I u - c(u)1 d x, then we say u and c(u) are x-paired by c. The
midpoint of U, mid(U), is $[max(U) +min(U)].

For any multiset U and real number r, define U + r to be the multiset
obtained by adding r to every element of U; that is, U + r = {u + r : u E U}.

It is obvious that mid(U + r) = mid(U) + r and reduce(U + r) =

reduce(U) + r.
The first lemma bounds the diameter of a reduced multiset.

LEMMA 21. Let U and W be multisets such that I U I = n, I WI > n -f,

and d.,(W, U) = 0, where n > ilf + 1. Then

max(reduce(U)) < max(W) +x and min(reduce(U)) > min(W) - x.

Proof We show the result for max; a similar argument holds for min.
Let c witness d,(W, U). Suppose none of the f elements deleted from the
high end of U is x-paired with an element of W by c. Since d,(W, U) = 0,
the remaining n-f elements of U are x-paired with elements of W
by c, and thus every element of reduce(U) is x-paired with an element
of W. Suppose max(reduce(U)) is x-paired with w in W by c. Then
max(reduce(U)) d w + x 6 max(W) + x.

Now suppose one of the elements deleted from the high end of U is x-
paired with an element of W by c. Let u be the largest such, and suppose
it was paired with w in W. Then max(reduce(U)) < u 6 w + x<

max(W) + x. [

643/77/l-3

32 WELCHANDLYNCH

We show that the x-distance between two multisets is not increased by
removing the largest (or smallest) element from each.

LEMMA 22. Let U and V he multisets, each with at least one element,

Then

d,(4 U), 4 VI) 6 d.A U, VI and d.Js(UL 4 J’)) 6 A(U, J’).

Proof We give the proof in detail for 1; a symmetric argument holds for
s. Let A4 = 1(U) and N= I(V). Let c witness d,(U, V). We construct an
injection c’ from M to N and show that 1 S,(c’)l < 1 S,(c)l. Since
d,(M, N) < 1 S,(c’)l and 1 S,(c)1 = d,(U, V), it follows that d,(M, N) <

d,(U 0

Case 1. c(u) = II. Define c’(m) = c(m) for all m in M. Obviously c’ is
an injection. j S,(c’)l 6 I S,(c)1 since either S,(c’) = S,(c) or S,(c’) =

S,(c) - bl.

Case 2. c(u) # u and there is no 1.4’ in U such that c(u’) = u. This is the
same as Case 1.

Case 3. c(u) # u, and there is U’ in U such that c(u’) = u. Suppose
c(u) = u’. Define c’(u’) = v’ and c’(m) = c(m) for all m in A4 besides u’.
Obviously c’ is an injection. Now we show that I S,(c’)l 6 I S.,(c)l.

If 1.4 or U’ or both are in S,(c) then whether or not U’ is in S,(c’)
the inequality holds. The only trouble arises if u and U’ are both not in
S,(c) but U’ is in S,X(c’). Suppose that is the case. Then
I U’ - c’(u’)l = (U’ - u’ I > x. There are two possibilities:

(i) u’>u’+x. Since 24 is not in S,(c), Iu-c(u)1 =Iu-~‘16~. So
u’ > u -x. Hence U’ > u’ + x 3 u -x + x, which implies that U’ > U. But this
contradicts u being the largest element of U.

(ii) o’>u’+x. Since U’ is not in S,(c), Iu’-c(u’)l= Iu’--uI 6x. So
U’ 3 u -x. Hence u’ > U’ + x 2 u -x +x, which implies that u’ > u. But this
contradicts u being the largest element of V. 1

The next lemma shows that the results of reducing two multisets, each of
whose x-distance from a third multiset is 0, cannot contain values that are
too far apart.

LEMMA 23. Let U, V, and W be multisets such that) UI =) VI = n and
I WI > n -f, where n 2 3f+ 1. r d,(W, U) = 0 and d,(W, V) = 0, then

min(reduce(U)) - max(reduce(V)) d 2x.

FAULT-TOLERANT ALGORITHM FOR CLOCK SYNCHRONIZATION 33

Proof: First we show that dzx(U, V) <J: Let cU witness d,(W, U) and
cc’ witness d,(W, V). Define an injection c from U to V as follows: if there
is w in W such that cU(w) = U, then let c(u) = c,(w); otherwise, let c(u) be
any unused element of V. For each of the least n --felements w in W, there
is u in U such that u=c,(w). Thus Iu-c(u)l<Iu-WI +Iw-c(u)/ =
IcJw)-W(+ Iw-cv(w)l <x+x=2x. Thus S,,(c)<f, so d2.JU, V)<f:

Then by applying Lemma 22 f times, we know that d,,(reduce(U),
reduce(V)) <f: Since I reduce(U) 1 = I reduce(V) 1 = n - 2f > f, there are
u in reduce(U) and u in reduce(V) such that I U-U 1 <2x. Thus
min(reduce(U)) - max(reduce(V)) 6 u - u 6 2x. 1

Lemma 24 is the main multiset result. It bounds the difference between
the midpoints of two reduced multisets in terms of a particular third
multiset.

LEMMA 24. Let U, V, and W be multisets such that I U 1 = 1 VI = n and
I WI 2 n -f, where n > 3f: If d,(W, U) = 0 and d,(W, V) = 0, then

I mid(reduce(U)) - mid(reduce(V))I < idiam(W) + 2x.

Proof.

I mid(reduce(U)) - mid(reduce(V)) I

= i I max(reduce(U)) + min(reduce(U))

- max(reduce(V)) - min(reduce(V))l

= f I max(reduce(U)) - min(reduce(V))

+ min(reduce(U)) - max(reduce(V))I.

If the quantity inside the absolute value signs is nonnegative, this
expression is equal to

$[max(reduce(U)) - min(reduce(V)) + min(reduce(U)) - max(reduce(V))]

< i(max(W) + x - (min(W) -x) + min(reduce(U))

- max(reduce(V))), by applying Lemma 21 twice

= f(diam(W) + 2x + min(reduce(U)) - max(reduce(V)))

< t(diam(W) + 2x + 2x), by Lemma 23

= tdiam(W) + 2x.

If the quantity inside the absolute value is nonpositive, then symmetric
reasoning gives the result. 1

34 WELCH AND LYNCH

Nomenclature

ADJ

ADJ;

ARR[l . ..n]

ARR;(d

ARR;
AV

AV;

C, D
cz

clock

CORR

CORR,(t)

4

diam

f
L,(t)

local time

logical clock
mid

variable holding the current adjustment to the current
correction of the physical clock. (4.2)
value of ADJ calculated by p at round i, and used to
create the (i + 1)st logical clock, i 2 0. (5.2)

array holding arrival times at a process of most recent
messages, one entry for each process. (4.2)
arrival time, measured on p’s logical clock CL, of T’
message from q, i > 0. (5.2)

multiset of values ARRh(q) for all q, i 3 0. (5.2)

variable equal to mid(reduce(ARR)), “average” arrival
time of 7” messages, for current i. (4.2)

value of AV calculated by process p at round i, i> 0.

(5.2)
clocks.
process p’s initial (or 0th) logical clock, Ph, + initial
value of CORR. (3.2)
process p’s ith logical clock, equal to Ci- l + ADJb- ’ for
i>O. (5.2)
monotonically increasing, everywhere differentiable
function from II8 to iw. (2.1)
variable holding the current software correction to the
physical clock. (3.2 and 4.2)
value of process p’s CORR variable at real time t in some
execution. (3.2)
the minimum, over all correspondences between two
multisets, of the number of elements u of one multiset
that are mapped to elements v of the other such that
1 u - v I> x. (Appendix)
difference between the largest and the smallest elements
of a multiset. (Appendix)
upper bound on number of faulty processes. (3.2)
process p’s local time at real time t, Ph,(t) + CORR,(t).

(3.2)
synchronized time for a process, physical clock time plus
current correction. (3.2)
the physical clock plus a correction value. (3.2)
midpoint of the interval spanned by a multiset. (4.2 and
Appendix)
total number of processes, n > 3f: (3.2)
length of a round in local time. (4.1)
processes.

FAULT-TOLERANT ALGORITHM ‘FOR CLOCK SYNCHRONIZATION 35

Ph,W physical clock of process p. (2.1)
physical clock process’ hardware clock, not under its control. (2.1)
reduce multiset resulting after removing the f largest and f

smallest elements in a multiset. (4.2 and Appendix)
round for a given process, the interval between its ith logical

clock reaching T’ and its (i + 1)st logical clock reaching
T ’ + i is its round i, i > 0. (4.1)

START message “message” sent by the environment to wake up a process
initially. (2.1)

t, t,, t, real times

T , T, : T2 clock times.
T’ clock time at which each process begins round i and

broadcasts the value T’; T’= To + iP, i > 0. (3.2 and 5.2)
t; real time at which process p begins round i, i >, 0. (5.2)
tmax’ max over all nonfaulty p of tb, latest real time when a

tmin’
nonfaulty process begins round i, i > 0. (3.2 and 5.2)
min over all nonfaulty p of t;, earliest real time when a
nonfaulty process begins round i, i 2 0. (3.2 and 5.2)

TIMER message “message” indicating an interrupt received by the process
because a certain amount of physical clock time elapsed.

(2.1)
u’ clock time T’ + (1 + p)(/? + 6 + E), i > 0, at which round i

u;
update to clock is done, producing C.F ‘. (5.2)
real time at which process p updates its clock in round i,
ia0. (5.2)

umax’ max over nonfaulty p of ~6, latest real time when a non-
faulty process updates its clock in round i, i > 0. (5.2)

umin’ min over nonfaulty p of ~6, earliest real time when a non-
faulty process updates its clock in round i, i > 0. (5.2)

u variable used locally in several proofs to simplify
expressions.

al> a29 a3 parameters in validity condition. (3.2)

P maximum difference in real time between nonfaulty
processes beginning the algorithm. (3.2)

Y agreement parameter, upper bound on closeness of local
times. (3.2)

6 midpoint of range of possible message delays. (3.2)
& uncertainty in message delay (all delays are between 6 - E

and 6 + E). (3.2)
2 lower bound on length of a round in real time. (8)

P rate of drift of the physical clock, in clock seconds per
real seconds. (3.1)

36 WELCH AND LYNCH

ACKNOWLEDGMENTS

We thank Gene Stark and Bill Weihl for their comments on an earlier version of part of this
paper, and Mark Tuttle for a careful proofreading. Alan Fekete contributed many ideas for
simplifying the proofs and presentation. The referees’ comments helped improve the presen-
tation as well. A preliminary version of this paper appears in the “Proceedings of the 3rd

Annual ACM Symposium on Principles of Distributed Computing, August 27-29, 1984,
Vancouver, B. C.,” pp. 75-88. (c) ACM. Any portions of this paper that appeared in the
original version are reprinted with permission. This work was supported in part by the NSF
under Grant DCR-8302391, U.S. Army Research ORice Contracts DAAG-79-C-0155 and

DAAG29-84-K-0058, Advanced Research Projects Agency of the Department of Defense
Contract NOOO14-83-K-0125, and Office of Naval Research Contract NOOO14-85-K-0168.

RECEIVED July 25, 1985; ACCEPTED May 19, 1987

REFERENCES

CDHSI DOLEV, D., HALPERN, J.. AND STRONG, R. (April 1986), On the possibility and
impossibility of achieving clock synchronization, J. Comput. System Sci. 22 (2).

23&250.
[DLPSWl] DOLEV, D., LYNCH, N., PINTER. S., STARK, E.. AND WEIHL, W. (1983), Reaching

approximate agreement in the presence of faults, in “Proceedings of the Third
Annual IEEE Symposium on Distributed Software and Database Systems.”

[DLPSW2] DOLEV, D., LYNCH, N., PINTER. S., STARK, E., AND WEIHL, W. (July 1986),

CDLSI

[HSSD]

Pal 1

[La21
PM1

[Lull

CLu21

INSI

CM1

WI

Reaching approximate agreement in the presence of faults, J. Assoc. Comput.

Mach. 33 (3), 499416.

DWORK, C.. LYNCH, N., AND STOCKMEYER, L. (1984). Consensus in the presence
of partial synchrony, in “Proceedings of the Third Annual ACM Symposium on
Principles of Distributed Computing,” pp. 103-l 18.
HALPERN, J.. SIMONS, B., STRONG, R., AND DOLEV, D. (1984). Fault-tolerant
clock synchronization, in “Proceedings of the Third Annual ACM Symposium
on Principles of Distributed Computing,” pp. 89-102.
LAMPORT, L. (July 1978), Time, clocks, and the ordering of events in a dis-
tributed system, Comm. ACM 21 (7), 558-565.

LAMPORT. L., personal communication.
LAMPORT, L., AND MELLIAR-SMITH. P. M. (January 1985), Synchronizing clocks
in the presence of faults, J. Assoc. Comput. Mach. 32 (1), 52-78.

LUNDELIUS, J. (1984). “Synchronizing Clocks in a Distributed System,” S. M.
thesis, MIT, MIT/LCS/TR-335.
LUNDELIUS, J. (1986), Software clock synchronization in a distributed system,
manuscript.
MAHANEY, S., AND SCHNEIDER, F. (1985) Inexact agreement: Accuracy,
precision, and graceful degradation, in “Proceedings of the Fourth Annual ACM
Symposium on Principles of Distributed Computing,” pp. 237-249.
MARZULLO, K. (1983), “Loosely-Coupled Distributed Services: A Distributed
Time Service,” Ph. D. dissertation, Stanford University.
SRIKANTH, T. K., AND TOUEG, S. (1985) Optimal clock synchronization, in
“Proceedings of the Fourth Annual ACM Symposium on Principles of Dis-
tributed Computing,” pp. 71-86.

