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In this new work, the free motion of a coupled oscillator is investigated. First, a

fully description of the system under study is formulated by considering its classical

Lagrangian, and as a result, the classical Euler–Lagrange equations of motion are

constructed. After this point, we extend the classical Lagrangian in fractional sense,

and thus, the fractional Euler–Lagrange equations of motion are derived. In this new

formulation, we consider a recently introduced fractional operator with Mittag–Leffler

non-singular kernel. We also present an efficient numerical method for solving the latter

equations in a proper manner. Due to this new powerful technique, we are able to

obtain remarkable physical thinks; indeed, we indicate that the complex behavior of many

physical systems is realistically demonstrated via the fractional calculus modeling. Finally,

we report our numerical findings to verify the theoretical analysis.

Keywords: coupled oscillator, Euler–Lagrange equations, fractional derivative, nonsingular kernel, numerical

method

1. INTRODUCTION

There are two main approaches in the classical mechanics to get the equations of motion for
a dynamical system: Newtonian and Lagrangian. However, in the first approach, which is a
force-based one, we encounter with some difficulties since all acting forces need to be set up while
sometimes they are not clear. The second approach was invented by Joseph Louis Lagrange, a
French Mathematician. This approach is considered as a useful technique to find the equations of
motion for many kinds of physical processes [1]. During the past decade, the Lagrangian method
has been used to solve some interesting systems such as Atwood’s machine, coupled and spring
pendulums, and many others.

The fractional calculus (FC) is a branch of mathematical analysis, which deals with the
non-integer integral and derivative operators. The application of the FC has been extensively
expanded in different fields of the basic and engineering sciences [2–9]. Over the past few decades,
the classical mechanics has been extended by using the new aspects of the FC. In Riewe [10], the
non-conservative Lagrangian systems were studied by Riewe using the concept of the FC. Indeed,
the author employed the fractional-order derivatives to define conjugate momenta and formulated
the fractional Hamilton equations. In Laskin [11], Laskin studied the path of Lévy flights by using a
fractional path integral scheme. In Laskin [12], he also developed the fractional quantummechanics
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and proved the hermiticity property of the Hamilton operator in
fractional sense. Afterwards, the works by Riewe and Laskin were
followed by many scientists and several interesting papers were
published in this area [13–19]. According to these studies, the
asymptotic behavior of many physical systems was explored by
using the fractional Lagrangian (or the fractional Hamiltonian),
which leads to the fractional Euler-Lagrange equations (FELEs)
[20–22]. However, an important issue here is to solve these
equations by an appropriate approximation method [23]. These
techniques include the Adams-Bashforth-Moulton scheme [24],
variational iteration method [25], Adomian decomposition
method [26], and the Grünwald–Letnikov approximation [27].

According to the recent studies in the literature, the complex
behavior of physical systems can be represented more precisely
by the FC approach. However, some natural phenomena with
nonlocal characteristic may not be described properly by the
classical fractional derivatives (FDs) due to the appearance
of singular kernel in the definition of these operators. Thus,
an alternative analytical approach is needed to model and
analyze the nonlocal dynamics in a proper manner. To solve
this difficulty, a new type of the fractional operator with
Mittag-Leffler (ML) kernel (ABC) was developed in Baleanu
and Atangana [28] and applied to some practical cases [29].
Indeed, due to the presence of nonsingular kernel, this new
definition shows a completely different property compared to
the classical FDs, and hence, it can describe the nonlocal
dynamics and capture different features of realistic systems more
appropriately than the standard FC. Nevertheless, more practical
cases should be examined via the ABC operator and some new
and efficient numerical methods need to be designed to solve
these fractional equations effectively. Motivated by the above
discussion, the aim of this paper is to investigate the free motion
of a coupled oscillator by using the newly introduced ABC
fractional operator withML kernel. We give a theoretical analysis
to formulate the corresponding FELEs. Also, we provide an
efficient numerical scheme to solve the aforementioned fractional
equations effectively. In accordance with the obtained results,
we conclude that a flexible model is provided by using the FC
as the fractional order can be varied between 0 and 1. Due to
this impressive feature, the new hidden aspects of the coupled
oscillator system can be explored, which are not visible in the
classic integer manner.

The rest of this paper is organized as follows. In section 2,
some preliminary results regarding the fractional operators
are given. Section 3 introduces the classical and fractional
descriptions of the coupled oscillator. In section 4, an efficient
numerical technique is proposed to solve the derived FELEs. In
section 5, numerical simulations are presented, and finally, the
paper is closed by some conclusions in the last section.

2. PRELIMINARIES

This section gives some definitions and preliminaries regarding
the fractional operator with ML kernel (ABC) [28]. For ϕ ∈

H
1(0, b), the (left) ABC fractional operator of order q ∈ (0, 1)

is defined by

ABC
0D

q
t ϕ(t) =

S(q)

1− q

∫ t

0
Eq[−

q

1− q
(t − τ )q]ϕ̇(τ )dτ , (1)

where S(q) denotes a normalization function with S(0) =

S(1) = 1 and Eq(t) is the one–parameter ML function. The
corresponding right fractional operator of order q ∈ (0, 1) is also
expressed as

ABC
tD

q

b
ϕ(t) = −

S(q)

1− q

∫ b

t
Eq[−

q

1− q
(τ − t)q]ϕ̇(τ )dτ . (2)

The integral operators associated with the definitions (1) and (2)
are, respectively, described by

ABC
0I
q
t ϕ(t) =

1− q

S(q)
ϕ(t)+

q

S(q)Ŵ(q)

∫ t

0
(t − τ )q−1ϕ(τ )dτ , (3)

ABC
t I
q

b
ϕ(t) =

1− q

S(q)
ϕ(t)+

q

S(q)Ŵ(q)

∫ b

t
(τ − t)q−1ϕ(τ )dτ . (4)

The following useful relations hold between the above–
mentioned differential and integral operators

ABC
0I

q
t

[

ABC
0D

q
t ϕ(t)

]

= ϕ(t)− ϕ(0), (5)

ABC
t I

q

b

[

ABC
tD

q

b
ϕ(t)

]

= ϕ(t)− ϕ(b). (6)

For more details and discussions, we refer the interested readers
to Baleanu and Atangana [28] and Abdeljawad and Baleanu [30].

3. THE CLASSICAL AND FRACTIONAL
DESCRIPTION

In this section, we consider a coupled oscillator system and
provide a fully description of its dynamical equations both in the
classical and fractional manner. For this purpose, we consider
the physical system shown in Figure 1, which consists of two
coupled carts with massesm1 andm2 attached to their respective
walls by two identical springs (with force constant k) and to
each other by another spring (with force constant k2). It is of
interest to mention that in some books this system is known as
the diatomic molecules.

FIGURE 1 | Two coupled carts with different masses.
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Assuming that all springs are massless, we aim to obtain
the classical Euler–Lagrange equations (CELEs) for the physical
system under consideration. To this end, first we write the
instantaneous kinetic and potential energies of the system,
respectively, by the formulas

Tc(t) =
1

2
m1ẋ

2
1(t)+

1

2
m2ẋ

2
2(t), (7)

Uc(t) =
1

2
(k+ k2)x

2
1(t)− k2x1(t)x2(t)+

1

2
(k2 + k)x22(t). (8)

Then the classical Lagrangian Lc(t) is given in the form

Lc(t) = Tc(t)− Uc(t) =
1

2
m1ẋ

2
1(t)+

1

2
m2ẋ

2
2(t)

−
1

2
(k+ k2)x

2
1(t)+ k2x1(t)x2(t)−

1

2
(k2 + k)x22(t). (9)

Substituting the Lagrangian (9) into the CELEs (
∂Lc(t)

∂xi(t)
−

d

dt

∂Lc(t)

∂ ẋi(t)
= 0, i = 1, 2), we obtain

m1ẍ1(t) = −(k+ k2)x1(t)+ k2x2(t), (10)

m2ẍ2(t) = k2x1(t)− (k2 + k)x2(t). (11)

Now, we aim to derive the classical Hamiltonian equations
(CHEs) of motion. For this purpose, first we introduce the
following generalized momenta

P1(t) =
∂Lc

∂ ẋ1(t)
= m1ẋ1(t), P2(t) =

∂Lc

∂ ẋ2(t)
= m2ẋ2(t). (12)

Substituting Equations (9) and (12) into the Hamilton function
H(t) = ẋ1(t)P1(t)+ ẋ2(t)P2(t)− Lc(t), we provide

H(t) =
P21(t)

2m1
+

P22(t)

2m2
+

1

2
(k+ k2)x

2
1(t)− k2x1(t)x2(t)

+
1

2
(k2 + k)x22(t). (13)

Then the CHEs of motion for the coupled oscillator are obtained
from

ẋ1(t) =
∂H(t)

∂P1(t)
, Ṗ1(t) = −

∂H(t)

∂x1(t)
, (14)

ẋ2(t) =
∂H(t)

∂P2(t)
, Ṗ2(t) = −

∂H(t)

∂x2(t)
, (15)

which lead to the same results as the CELEs (10)–(11).
Nevertheless, as it was pointed out in Agrawal [31], the theory of
the calculus of variations cannot capture many laws of the natural
phenomena; for example, the behavior of nonconservative
systems cannot be described properly by the dynamical equations
achieved in accordance with the traditional energy approach.

On the other hand, the FC has overcome this limitation as it
can characterize the behavior of many complex physical systems
including hereditary properties. Accordingly, in the following, we
investigate the fractional Lagrangian for the coupled oscillator
in order to expose its new features. To this end, we modify the
classical Lagrangian (9) according to the ABC operator defined
by Equation (1)

Lf (t) =
1

2
m1(

ABC
0D

q
t x1(t))

2 +
1

2
m2(

ABC
0D

q
t x2(t))

2

−
1

2
(k+ k2)x

2
1(t)+ k2x1(t)x2(t)−

1

2
(k2 + k)x22(t).

(16)

Substituting Lf (t) from Equation (16) into the formula
∂Lf (t)

∂xi(t)
+

ABC
tD

q

b

∂Lf (t)

∂ABC0D
q
t xi(t)

+ ABC
0D

q
t

∂Lf (t)

∂ABC tD
q

b
xi(t)

= 0, i = 1, 2, yields the

following FELEs

ABC
t D

q

b
ABC

0D
q
t x1(t)− (ω2

1 + rω2
2)x1(t)+ rω2

2x2(t) = 0, (17)

ABC
tD

q

b
ABC

0D
q
t x2(t)− (ω2

2 +
1

r
ω2
1)x2(t)+ ω2

2x1(t) = 0, (18)

where ω1 =

√

k
m1

, ω2 =

√

k2
m2

, and r =
m2
m1

. As can be seen,

the FELEs (17)–(18) are reduced to the CELEs (10)–(11) when q
goes to 1.

Now, we are going to attain the fractional Hamiltonian
equations (FHEs) of motion. To do so, we consider the fractional
Hamilton function as follows

Hf (t) = P1,1(t)
ABC

0D
q
t x1(t)+ P1,2(t)

ABC
t D

q

b
x1(t)

+P2,1(t)
ABC

0D
q
t x2(t)+ P2,2(t)

ABC
t D

q

b
x2(t)− Lf (t), (19)

where P1,1(t), P1,2(t), P2,1(t), and P2,2(t) are the following
generalized momenta

P1,1(t) =
∂Lf (t)

∂ABC0D
q
t x1(t)

= m1
ABC

0D
q
t x1(t),

P1,2(t) =
∂Lf (t)

∂ABCt D
q

b
x1(t)

= 0,

P2,1(t) =
∂Lf (t)

∂ABC0D
q
t x2(t)

= m2
ABC

0D
q
t x2(t),

P2,2(t) =
∂Lf (t)

∂ABCt D
q

b
x2(t)

= 0.

(20)

Thus, the fractional Hamilton function is obtained by
substituting Equation (16) and (20) into Equation (19)

Hf (t) =
1

2
m1(

ABC
0D

q
t x1(t))

2 +
1

2
m2(

ABC
0D

q
t x2(t))

2 +

1

2
(k1 + k2)x

2
1(t)− k2x1(t)x2(t)+

1

2
(k1 + k2)x

2
2(t). (21)

Accordingly, the FHEs of motion are concluded as follows

∂Hf (t)

∂x1(t)
= ABC

t D
q

b
P1,1(t)+

ABC
0D

q
t P1,2(t) ⇒
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(ω2
1 + rω2

2)x1(t)− rω2
2x2(t) =

ABC
t D

q

b
ABC

0D
q
t x1(t), (22)

∂Hf (t)

∂x2(t)
= ABC

t D
q

b
P2,1(t)+

ABC
0D

q
t P2,2(t) ⇒

(ω2
2 +

1

r
ω2
1)x2(t)− ω2

2x1(t) =
ABC

t D
q

b
ABC

0D
q
t x2(t). (23)

Here, it is notable that the FHEs (22)–(23) are the same as
the previously derived FELEs (17)–(18) and reduced to the
CELEs (10)–(11) as q → 1.

4. NUMERICAL METHOD

In this section, we propose an efficient numerical technique to
solve the FELEs (17)–(18) [or the FHEs (22)–(23)]. In order to
this, we first define the new state variables x̃1(t) = ABC

0D
q
t x1(t)

and x̃2(t) = ABC
0D

q
t x2(t). Thus, the Equations (17)–(18) are

rewritten as























ABC
0D

q
t x1(t) = x̃1(t),

ABC
tD

α
b
x̃1 = (ω2

1 + rω2
2)x1(t)− rω2

2x2(t),
ABC

0D
q
t x2(t) = x̃2(t),

ABC
tD

α
b
x̃2 = (ω2

2 +
1

r
ω2
1)x2(t)− ω2

2x1(t).

(24)

Applying the definition of the left and right integral operators
(3) and (4), we derive the following system of fractional integral
equations







































































x1(t) = x1(0)+
1− q

S(q)
x̃1(t)+

q

S(q)Ŵ(q)

∫ t
0 (t − τ )q−1x̃1(τ )dτ ,

x̃1(t) = x̃1(b)+
1− q

S(q)
((ω2

1 + rω2
2)x1(t)− rω2

2x2(t))

+
q

S(q)Ŵ(q)

∫ b
t (τ − t)q−1((ω2

1 + rω2
2)x1(τ )− rω2

2x2(τ ))dτ ,

x2(t) = x2(0)+
1− q

S(q)
x̃2(t)+

q

S(q)Ŵ(q)

∫ b
t (τ − t)q−1x̃2(τ )dτ ,

x̃2(t) = x̃2(b)+
1− q

S(q)
((ω2

2 +
1

r
ω2
1)x2(t)− ω2

2x1(t))

+
q

S(q)Ŵ(q)

∫ b
t (τ − t)q−1((ω2

2 +
1

r
ω2
1)x2(τ )− ω2

2x1(τ ))dτ .

(25)
Now, we consider a uniformmesh on [0, b] with the time step size
h = b−0

N in whichN is an arbitrary positive integer. Moreover, we
represent the numerical approximation of xi(tj) and x̃i(tj) by xi,j
and x̃i,j, respectively, where tj = 0+ jh (0 ≤ j ≤ N) is the time at
node j. Applying the Euler method to discretize the convolution
integrals in (25), we derive







x1,1
...

x1,N






=







x1(0)
...

x1(0)






+
1− q

S(q)







x̃1,1
...

x̃1,N






+

q

S(q)
hqHN,q







x̃1,0
...

x̃1,N−1






,

(26)







x̃1,0
...

x̃1,N−1






=







x̃1(b)
...

x̃1(b)






+

1− q

S(q)






(ω2

1 + rω2
2)







x1,0
...

x1,N−1







−rω2
2







x2,0
...

x2,N−1













+
q

S(q)
hqHT

N,q






(ω2

1 + rω2
2)







x1,1
...

x1,N






− rω2

2







x2,1
...

x2,N












,

(27)







x2,1
...

x2,N






=







x2(0)
...

x2(0)






+
1− q

S(q)







x̃2,1
...

x̃2,N






+

q

S(q)
hqHN,q







x̃2,0
...

x̃2,N−1






,

(28)







x̃2,0
...

x̃2,N−1






=







x̃2(b)
...

x̃2(b)






+

1− q

S(q)






(ω2

2 +
1

r
ω2
1)







x2,0
...

x2,N−1







−ω2
2







x1,0
...

x1,N−1













+
q

S(q)
hqHT

N,q






(ω2

2 +
1

r
ω2
1)







x2,1
...

x2,N






− ω2

2







x1,1
...

x1,N












,

(29)

where

HN,q =













ω0,q 0 . . . 0

ω1,q
. . .

. . .
...

...
. . .

. . . 0
ωN−1,q . . . ω1,q ω0,q













, ω0,q = 1,

ωj,q = (1+
q− 1

j
)ωj−1,q, j = 1, 2, . . . ,N − 1. (30)

By defining the augmented matrices AN,q and BN,q such as

AN,q =











−
1− q

qhq
0 · · · 0

...
HN,q 0











,BN,q =











0 HT
N,q

...

0 · · · 0 −
1− q

qhq











,

(31)
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the system of Equations (26)–(29) is combined in a compact form
as follows







































































X1 −
1− q

S(q)
X̃1 −

q

S(q)
hqAN,qX̃1 = X1,0,

X̃1 −
1− q

S(q)
((ω2

1 + rω2
2)X1 − rω2

2X2)

−
q

S(q)
hqBN,q((ω2

1 + rω2
2)X1 − rω2

2X2) = X̃1,b,

X2 −
1− q

S(q)
X̃2 −

q

S(q)
hqAN,qX̃2 = X2,0,

X̃2 −
1− q

S(q)
((ω2

2 +
1

r
ω2
1)X2 − ω2

2X1)

−
q

S(q)
hqBN,q((ω2

2 +
1

r
ω2
1)X2 − ω2

2X1) = X̃2,b,

(32)

where

Xi =







xi,0
...

xi,N






, X̃i =







x̃i,0
...

x̃i,N






, Xi,0 =







xi,0
...

xi,0






, (33)

X̃i,0 =







x̃i(0)
...

x̃i(0)






, Xi,b =







xi(b)
...

xi(b)






, X̃i,b =







x̃i(b)
...

x̃i(b)






. (34)

Rearranging Equation (32), we provide























X1 − CN,qX̃1 = X1,0,

X̃1 − DN,q((ω2
1 + rω2

2)X1 − rω2
2X2) = X̃1,b,

X2 − CN,qX̃2 = X2,0,

X̃2 − DN,q((ω2
2 +

1

r
ω2
1)X2 − ω2

2X1) = X̃2,b,

(35)

where I is the (N + 1)× (N + 1) identity matrix and

CN,q =
1− q

S(q)
I +

q

S(q)
hqAN,q, DN,q =

1− q

S(q)
I +

q

S(q)
hqBN,q.

(36)
Finally, we attain the following system of linear
algebraic equations











I −CN,q 0 0
−(ω2

1 + rω2
2)DN,q I rω2

2DN,q 0
0 0 I −CN,q

ω2
2DN,q 0 −(ω2

2 +
1

r
ω2
1)DN,q I



















X1

X̃1

X2

X̃2









=









X1,0

X̃1,b

X2,0

X̃2,b









, (37)

which can be implemented easily by any linear solver.
Note that the convergence of the fractional Euler method
in the ABC sense was studied by Baleanu et al. [32]

FIGURE 2 | The plots of x1(t) in the fractional sense (blue) and classical sense (red): a symmetric initial position x1(0) = −x2(0) = 1.
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and the error bound was also reported. This verifies
the validity of all numerical results provided in this
paper. For more details on the stability and convergence
analysis in this case, the interested reader can refer to
Baleanu et al. [32].

5. SIMULATION RESULTS AND
DISCUSSION

In this section, we investigate the dynamical behavior of
the FELEs of motion for the coupled oscillator expressed

FIGURE 3 | The plots of x2(t) in the fractional sense (blue) and classical sense (red): a symmetric initial position x1(0) = −x2(0) = 1.

FIGURE 4 | The plots of x1(t) in the fractional sense (blue) and classical sense (red): an anti–symmetric initial position x1(0) = x2(0) = 1.
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by Equations (17)–(18) considering different values
of the fractional order q. To this aim, we take into
account the following three cases for the physical system
under study:

Case 1: A symmetric initial position. In this case,
we consider the initial and terminal conditions as
x1(0) = −x2(0) = 1 and x̃1(40) = x̃2(40) = 0,
respectively. The other parameters are also assumed

FIGURE 5 | The plots of x2(t) in the fractional sense (blue) and classical sense (red): an anti–symmetric initial position x1(0) = x2(0) = 1.

FIGURE 6 | The plots of x1(t) in the fractional sense (blue) and classical sense (red): a weak coupled oscillator (k≫ k2).
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FIGURE 7 | The plots of x2(t) in the fractional sense (blue) and classical sense (red): a weak coupled oscillator (k≫ k2).

to be k = 2, k2 = 4, m1 = 3, m2 = 7, and
q = 0.96, 0.965, 0.97, 0.975, 0.98, 0.985, 0.99, 0.995, 0.999.
Simulation results for this case are shown in Figures 2, 3 as
compared to the solution of the CELEs (10)–(11).
Case 2: An anti–symmetric initial position. In this case, we take
into account the initial condition as x1(0) = x2(0) = 1 while the
terminal condition and other parameters take the same values as
in the previous case. Simulation and comparative results for this
case are depicted in Figures 4, 5.
Case 3: A weak coupled oscillator. Finally, we take into
consideration a weak coupled oscillator in which k = 10 and
k2 = 0.1 (k ≫ k2). The initial condition is also assumed to
be x1(0) = 1, x2(0) = 0, and the other parameters remain
unchanged as in the previous cases. Simulation results of the
Euler–Lagrange equations for both fractional and classical cases
are plotted in Figures 6, 7.

As can be seen from Figures 2–7, the numerical solution of
the FELEs not only represents different asymptotic behaviors for
different values of q but also tends to the solution of the CELEs as
q goes to 1. This confirms that the FC provides a flexible model,
which is able to extract hidden aspects of the physical system
under study while this feature is unavailable when we use the
ordinary time–derivatives.

6. CONCLUSIONS

This paper studied the concept of the FC to evaluate the
equations of motion for a coupled oscillator. In this study,
the classical and fractional Lagrangian were established, and

then, the FELEs of motion were formulated including the
recently introduced ABC operator with ML kernel. In order
to solve the aforementioned equations numerically, an efficient
approximation method was also suggested, which employed the
Euler formula to discretize the convolution integral. Applying
this powerful new technique, the FELEs for the considered
problem were converted into a system of linear algebraic
equations. Simulation results reported in Figures 2–7 indicated
that the behavior of the FELEs varied with the fractional order q,
and recovered the solution of the CELEs as q → 1. This verifies
the advantage of the FC to provide a flexible model capable
of extracting hidden aspects of the coupled oscillator system
while this property is not available in the presence of ordinary
time–derivatives.
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