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Abstract:Intrusion detection systems (IDSs) have become a necessary component of computers and information security

framework. IDSs commonly deal with a large amount of data traffic and these data may contain redundant and

unimportant features. Choosing the best quality of features that represent all of the data and exclude the redundant

features is a crucial topic in IDSs. In this paper, a new combination approach based on the ID3 algorithm and the bees

algorithm (BA) is proposed to select the optimal subset of features for an IDS. The BA is used to generate a subset of

features, and the ID3 algorithm is used as a classifier. The proposed model is applied on KDD Cup 99 dataset. The

obtained results show that the feature subset generated by the proposed ID3-BA gives a higher accuracy and detection

rate with a lower false alarm rate when compared to the results obtained by using all features.

Key words: Intrusion detection system, ID3 algorithm, bees algorithm, feature selection

1. Introduction

Recently, security threads have become a crucial problem to overcome for computer networks. For this reason,

intrusion detection systems (IDSs) are considered to be one of the most important issues in computer systems.

In the last decade, various IDSs [1,2] have been proposed. These systems can generally be classified into 2

categories as anomaly detection and misuse detection. In the misuse detection-based IDS, attacks are detected

by comparing them with a very large databases of attack signatures. It searches for a specific signature that

is already stored in the database. On the other hand, the anomaly detection-based IDS detects attacks by

observing deviations from the normal behavior of the system. It works by training the system with a set of

training data to establish some notion of normality and then use the established profile on real data to flag

deviations.

Most of the studies of IDSs use pattern recognition techniques to overcome some problems of IDS

development such as extraction of attacks and normal signatures from data and detection of unknown attacks

during training. Therefore, the IDS can be considered as a pattern discovery and recognition system. The

performance of a pattern recognition system can be affected by many parameters like feature extraction and

pattern representation. Feature extraction and selection is a part of the dimension reduction used in many fields

such as classification task, data mining, object recognition, etc. [3]. Feature extraction creates new features
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from functions of the original features, whereas feature selection (FS) is the process of selecting a subset of

relevant features to be used in model construction.

The use of FS is due to the data, which may contain many redundant or irrelevant features. Given a

feature set of size n , the FS problem is to find a minimal feature subset of size m (m < n) that enables the

construction of the best classifier with high accuracy [4]. The aim of FS is to reduce the dimension of the dataset

and to recognize the corresponding features while satisfying the predictive accuracy. With this specification, it

simplifies the dataset and also reduces redundancy in the selected features. In practical problems, FS should

be used to avoid irrelevant and/or noisy features.

In recent years, several methods have been proposed for FS. Basiri et al. [4] proposed ant colony

optimization based on the selected features for predicting postsynaptic activity in proteins. Wang et al. [5]

discussed the shortcomings of conventional hill-climbing rough set approaches to FS and proposed a new FS

approach that uses rough sets and particle swarm optimization (PSO). Zhang et al. [6] proposed a quantum

PSO and support vector machine (SVM) based on a network intrusion FS wrapper algorithm, considering the

relevance among features, which filter-based FS method fails to deal with. Alomari and Othman [7] proposed

a combination of the bees algorithm (BA) and SVM for FS. They used the BA for subset generating and

the SVM for the classification process in anomaly detection. Kloft et al. [8] proposed a generalization of the

support vector data description (SVDD) that can select the best feature combination. SVDD is described as

a semiinfinite linear program that can be solved with standard techniques. Fadaeieslam et al. [9] proposed FS

based on decision dependent correlation using the SVM classifier. Suebsing and Hiransakolwong [10] applied

Euclidean distance for selecting a subset of features to build a model for the detection of known and unknown

patterns. Ahmad et al. [11] presented a mechanism for optimal features subset selection that can overcome

the drawback of some techniques such as principal component analysis, genetic algorithms, and multilayer

perceptrons. Takkellapati and Prasad [12] proposed information gain and triangle area based on the k-nearest

neighbor that are used for selecting features by combining a greedy k-means clustering algorithm and SVM

classifier to detect network attacks.

In this paper, a new combinational model based on ID3 and BA, ID3-BA, is proposed to select appropriate

features for network intrusion detection system. The BA is used for FS while the ID3 algorithm is used as a

classifier. The proposed model is tested on KDD Cup 1999 datasets and the obtained results show that the

model is capable of minimizing the number of selected features and maximizing the accuracy and the detection

rate with a lower false alarm rate (FAR).

The remainder of this paper is organized as follows: in Section 2, a brief description of the ID3 and

BA algorithms is given. Section 3 describes the proposed feature selection approach. Section 4 presents the

experimental setup and the obtained results. Finally, Section 5 provides the conclusion and future work.

2. ID3 and BA

2.1. The interactive dichotomizer 3 (ID3) algorithm

ID3 is a basic algorithm developed by Quinlan in 1983 [13] that is used to build the classification rules in the

form of a decision tree (DT). The resulting tree is constructed top-down from a fixed set of examples. The leaf

nodes contain the class name whereas a nonleaf node is a decision node. At each decision node, each attribute

is tested to decide how good it classifies the examples. The appropriate attribute is then chosen, while the

remaining examples are partitioned by it [14]. Metric information gain is introduced to select the appropriate
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attributes for the classification process. By partitioning the examples related to this attribute, entropy reduction

is assured, which is also known as the information gain.

2.2. Bees algorithm (BA)

The BA is a swarm-based optimization algorithm developed in 2005 [15]. It mimics the behavior of honeybees

to find the best food location. In its basic version, the scout bees look for food locations where they can produce

favorable honey. They then carry out localized and organized searches until they find the most efficient possible

location for food recovery process. The algorithm can be used for both combinatorial optimization [16,17] and

functional optimization [18]. Figure 1 illustrates the pseudocode for a simple BA.

 

1. Initialize population with random solutions. 

2. Evaluate fitness of the population. 

3. While (stopping criterion not met) //Forming new population. 

4. Select elite bees. 

5. Select sites for neighborhood search. 

6. Recruit bees for selected sites (more bees for best e sites) and 

evaluate fitness. 

7. Select the fittest bee from each patch. 

8. Assign remaining bees to search randomly and evaluate their 

fitness. 

9. End While. 

Figure 1. Pseudocode of the BA.

3. The proposed feature selection approach

In this paper, we propose a combination of the BA and ID3 algorithms as a FS approach for a network intrusion

detection system. The general principle of the proposed model is shown in Figure 2. The BA is used for

generating a subset of features, while the ID3 algorithm is used as a classifier. In order to classify the normal

data and the attacked data by using the proposed approach, the following issues must be considered.

3.1. Data representation

The training and the testing data contain both discrete and continuous attributes, and because the standard

ID3 algorithm deals only with discrete sets of values, the continuous attributes must be converted to discrete

values. This can be done by partitioning the continuous attribute values into a discrete set of intervals.

We used the classical partition method [19] to partition continuous values into 2 intervals as follows:

first, the maximum and minimum values for each continuous attribute are determined. The attribute domain

is then partitioned into 2 parts, depending on the maximum and minimum values such as part 1 ≤ (min +

(max -min)/2) and part 2 > (min + (max -min)/2). In this way, all continuous values will be converted to

discrete values.

3.2. Neighborhood search

The KDD data connection records contain 41 features. We ranked these features based on their locations, so

we get ranked array = {1, 2, 3, . . . 41} . Each bee in the population will select a subset of features randomly,

and then we get 2 subsets of features as selected features and unselected features where selected features ⊂
ranked array, unselected features ⊂ ranked array, and selected features ∩ unselected features = Ø. A single
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Figure 2. The general principle of the proposed ID3-BA.

random exchange operator is considered for the purpose of neighborhood search. To illustrate, consider a bee

with selected features = {1, 2, 3, 4, 5} and unselected features = {6, 7, 8, . . . , 41} . A single feature will

be chosen randomly from both selected features and unselected features and then a exchange operator will be

applied between them. Figure 3 describes the functioning of this operator.

 

 

1 2 3 4 5 

 

6 7 8 9 10 11 12 13 ...  41 

 

 

1 2 12 4 5 

 

6 7 8 9 10 11 3 13 ...  41 

 

selected_features =  

unselected_features =  

selected_features =  

unselected_features =  

Crossover operator  

Figure 3. Crossover operator.

618



EESA et al./Turk J Elec Eng & Comp Sci

4. Experiments and results

4.1. Data source

As mentioned previously, KDD Cup 99 [19,20] is used to evaluate the proposed FS model for intrusion detection.

This dataset is a common standard for evaluation of intrusion detection techniques. Ten percent of the KDD

Cup 99 training dataset and testing dataset contain about 494,020 and 311,028 connection records, respectively.

This amount of data is too large to use in such studies. For this reason, a subset of 10% of the KDD Cup

99 training and testing datasets is extracted, and to keep the proportion of attacks in both the train and test

datasets, each attack is divided by 100. For example, the number of IP sweep attacks in the original training

and testing data is (1247, 306), while the number of these attacks in the extracted data is equal to (12, 3).

Table 1 describes different attack types and their corresponding occurrence number in the training and test

data. The number of training data is 4947 and the number of test data is 3117, which are selected randomly.

Table 2 describes the number of attacks in the original 10% KDD Cup 99. From Table 1, ‘Probing’ (41, 42)

means that the number of records in the training dataset of probe attacks is equal to 41 connection records,

while the number of records in the testing dataset for this attack is equal to 42 connection records.

Table 1. Different attack types and their corresponding occurrence number respectively in the extracted train and test

dataset.

Normal (973; 606)
Probing (41; 42) DoS (3915; 2299) U2R (5; 10) R2L (13; 160)
ipsweep(12;3), apache2(0;8), buffer overflow(3;1), ftp write(0;0),
Mscan(0;11), back(22;11), httptunnel( 0;3), imap(0;0),
Nmap(2;1) land(0; 0), loadmodule(0;0), guesspasswd(2;44),
Portsweep(11;4 ) mailbomb(0;50), perl(0;0), named(0;0),
Saint(0;7), Neptune(1072;580), rootkit(2;2), multihop(0;0),
Satan(16;16). processtable(0;8), xterm(0;2), phf(0;0),

Pod(3;1), Ps(0;2), sendmail(0;0),
udpstorm(0;0), Sqlattack(0;0). snmpgetattack(0;77),
Smurf(2808;1641), snmpguess(0;24),
Teardrop(10;0). spy(0;0,)

warezclient(10;0),
worm(0;0),
warezmaster(1;15),
xsnoop(0;0),
xlock(0;0).

4.2. Evaluation criteria

Three performance measures [7] are used to evaluate the proposed approach: detection rate (DR), false alarm

rate (FAR), and accuracy rate (AR). These performance measures are defined with the following equations.

DR =
No.of attacks correctly classified as attack

Total no. of attacks in the dataset

FAR =
No. of normal events classified as attack

Total no. of normal events in the dataset

AR=
No. of correctly classified instances

Total no. of instances in the dataset

Higher values of DR and AR and lower values of FAR show better classification for the IDS.
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Table 2. Different attack types and their corresponding occurrence numbers respectively in the original 10% KDD Cup

99 train and test datasets.

Normal (97,277; 60,593)
Probing (4107; 4166) DoS (391,458; 229,853)
ipsweep(1, 247; 306),
mscan(0; 1, 053),
nmap(231; 84),
portsweep(1, 040; 364),
saint(0; 736),
satan(1, 589; 1, 633).

apache2(0; 794), back(2, 203; 1.098),
land(21; 9), mailbomb(0; 5, 000),
neptune(107, 201; 58, 001),
pod(264; 87), processtable(0; 759),
smurf(280, 790; 164, 091),
teardrop(979; 12), udpstorm(0; 2).

U2R(52; 228) R2L(1126; 16,189)
buffer overflow(30, 22),
httptunnel(0; 158),
guess passwd(53; 4, 367),
loadmodule(9; 2), perl(3; 2),
perl(3; 2), ps(0; 16),
rootkit(10; 13), sqlattack(0; 2),
xterm(0; 13).

ftp write(8; 3), imap(12; 1),
multihop(7; 18), named(0; 17), phf(4; 2),
sendmail(0; 17), snmpgetattack(0; 7, 741),
snmpguess(0; 2, 406), spy(2; 0),
warezclient(1, 020; 0),
warezmaster(20; 1, 602), worm(0; 2),
xlock(0; 9), xsnoop(0; 4).

Total train dataset = 494,020
Total test dataset = 311,028

4.3. Fitness function

The ID3 algorithm is used as a classifier for validating the feature subsets as we mentioned before. Each bee

holds a subset of features and it is supported by the ID3 classifier to decide the quality of its features subset.

The gauged quality is based on the fitness value, which is defined in Eq. (4):

Fitness = α ∗DR+ β ∗ (1− FAR) ,

where α ∈ [0, 1] and β = 1 – α are 2 parameters that show the importance of DR quality and FAR, respectively.

Eq. (4) clearly indicates that DR and FAR qualities have different significance. In our experiment we

propose that DR quality is more important than FAR and we set α = 0.7 and β = 0.3.

4.4. Results

The parameters of BA are assumed as follows through the experiments: n = 40, m = 3, e = 1, nsp = 5, and

nep = 10. The simulations have been carried out using C# on a Pentium Dual-Core CPU 2.20 GHz laptop, 2

GB RAM.

Figures 4 and 5 and Table 3 show the results of the ID3-BA approach in terms of DR, FAR, and AR for

10 independent runs. The obtained results show that when the number of features is less than 30, the proposed

model gives a higher performance of DR and AR. In all cases, the model gives a lower FAR when compared

with the results obtained using all 41 features. Figure 6 describes the ROC curve in terms of the DR and FAR

of the intrusion detection based on the proposed ID3-BA.
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Table 3. Results of the proposed ID3-BA.

No. of features FAR DR Accuracy rate Fitness
41 17.685% 71.087% 73.267% 74.455%
35 1.52% 69.183% 74.872% 77.972%
30 1.157% 69.454% 75.16% 78.27%
25 7.421% 84.392% 85.982% 86.848%
20 6.363% 90.987% 91.5% 91.782%
15 3.157% 91.565% 92.59% 93.148%
10 3.702% 91.792% 92.666% 93.143%
5 3.917% 91.02% 92.002% 92.538%
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Figure 6. ROC curve of the intrusion detection-based proposed feature selection model.

5. Conclusion and future work

In this paper a novel combination method based on ID3 and BA for subset feature selection is presented. The

BA is used for FS while the ID3 algorithm is used as a classifier. Based on the KDD Cup 99 dataset used for

the experiments, the obtained results demonstrate that the feature subset produced by the proposed ID3-BA is

superior in terms of classification of DR and AR and has a lower FAR when compared with the results obtained

using all features. As future work, we will investigate a new approach for the neighborhood search by controlling

the number of bees that are responsible for searching the most efficient possible location for food recovery.
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