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Abstract: Based on the mathematical model of a nonlinear finance chaotic system, the compli-
cated dynamical behavior and slow manifold of the model are further investigated. Firstly, the
complicated dynamical behaviors of the system are analyzed by studing dynamical behaviors of
the subsystem of the system. And then, global dynamical behaviors of the system are discussed,
such as symmetry, dissipation and equilibrium points etc. Thirdly, by using different methods,
the slow manifold equations of the system are obtained. Finally, the adaptive control of the
nonlinear finance chaotic system is presented. We settle the nonlinear finance chaotic system
to equilibrium point with only one controller. The results of theoretical analysis and simulation
are helpful for better understanding of other similar nonlinear finance chaotic systems.
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1 Introduction

Nonlinear chaotic dynamical system research is popular problem in the nonlinear science field. Nonlinear
chaotic systems have been extensively studied within scientific, engineering and mathematical communities[1-
4]. Since the chaotic phenomenon in economics was first found in 1985, great impact has been imposed on
the prominent economics at present, because the occurrence of the chaotic phenomenon in the economic
system means that the macro economic operation has in itself the inherent indefiniteness. Researches on the
complicated economic system by applying nonlinear method have been fruitful [5-7]. In the field of finance,
stocks and social economics, due to the interaction between nonlinear factors, with the evolution process
from low dimensions to high dimensions, the diversity and complexity have manifested themselves in the
internal structure of the system and there exists extremely complicated phenomenon and external character-
istics in such a kind of system. So it has become more and more important to make a systematic and deep
study in the internal structural characteristics in such a complicated economic system.

In this paper, we study the complicated dynamic behavior and slow manifold of a nonlinear finance
chaotic system which was offered by reference [5]. Its mathematical model was the differential equation
group model. In order to investigate the complicated dynamical behavior of the nonlinear finance chaotic
system further, we introduce a new practical method to distinguish the chaotic, periodic and quasi-periodic
orbits [8-9]. In this method, we first select two subsystems in a lower-dimension space, and finally analyze
the dynamical behaviors of the whole system based on two subsystems.

In the nonlinear chaotic dynamical systems research, one method is that some chaotic systems can be seen
as slow-fast systems to be qualitatively and quantitatively analyzed[9-11]. Firstly, the slow manifold equa-
tion of the nonlinear chaotic dynamics system is obtained by considering that the slow manifold is locally
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defined by a plane orthogonal to the tangent system’s left fast eigenvector. And secondly, another method
consists of defining the slow manifold as the surface generated by the two slow eigenvectors associated with
the two eigenvalues λ2(X) and λ3(X) ofJ(X). Another slow manifold equation of the nonlinear finance
chaotic system is obtained.

The controller is to be determined with the purpose of controlling the nonlinear finance chaotic systems
when the parameters are unknown[14-18]. We construct the positive Lyapunov function.According to the
Lyapunov stable theorem and BarBalat Lemma, we settle the nonlinear finance chaotic systems to the equi-
librium point.

This paper is organized as the follows. In Section 2, complicated dynamical behavior of the nonlinear
finance chaotic system is further investigated. In Section 3, slow manifold of the nonlinear finance chaotic
system is considered. In Section 4, the modified adaptive controlling is applied to control chaos behavior
for the finance chaotic system. A brief conclusion is presented in Section 5.

2 Complicated dynamical behavior analysis of the finance chaotic system

The nonlinear finance chaotic system can be described by the following differential equation:




Ẋ = Z + (Y − a)X
Ẏ = 1− bY −X2

Ż = −X − cZ

(1)

where variable X represents the interest rate in the model; variable Y represents the investment demand
and variableZ is the price exponent. Ẋ = dX

dt , Ẏ = dY
dt , Ż = dZ

dt . The parameter a is the saving. b is the
per-investment cost. c is the elasticity of demands of commercials. And they are positive constants.

When c − b-abc≤0, system (1) has only equilibrium point (0,1/b,0). When c − b − abc>0, system (1)
has another two equilibrium points (±m, (1+ac)/c, ∓m/c), wherem =

√
(c− b− abc)/c.

Using the linear transformation x(t) = X(t),y(t) = Y (t)− 1/b, z(t) = Z(t), then system (1) becomes
system (2) as follows:





dx
dt = (1/b− a) x + z + xy
dy
dt = −by − x2

dz
dt = −x− cz

(2)

System (1) and system (2) are topologically equivalent. We study the dynamical behaviors of system (1)
by studying the dynamical behaviors of system (2).

To study the long-term dynamical behavior of the finance chaotic system (2), the system is divided into
subsystems.

{ dx
dt = (1/b− a)x + xy
dy
dt = −by − x2 (3)

Let x be a known function of the time t, and the second subsystem is obtained:
{ dy

dt = −by − x2

dz
dt = −x− cz

(4)

When t = t0, xis a constant number, then the system (4) is a two dimensional linear system with constant
coefficients. Therefore its dynamical behavior is very simple and global.

2.1 Dynamical analysis of the subsystem (3)

Let {
(1/b− a)x + xy = 0,
−by − x2 = 0.

When ab≥1, subsystem (3) has only one equilibrium point O (0,0). When ab¡1, subsystem (3) has three
equilibrium points O (0, 0), S (±x0, y0), where x2

0=1-ab, y0= -x2
0/b.
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Proposition 1 The equilibrium point O (0, 0) of subsystem (3) is a Hopf bifurcation point.

Proof: The Jacobian matrix of subsystem (3) atO (0, 0) is:

J0 =
[

1/b− a 0
0 −b

]

The eigenvalues of J0 are: λ1 = −b<0, λ2=1/b − a. If ab >1, then λ2<0, so the equilibrium point O
(0, 0) is a stable point. If ab<1, then λ2>0, so the equilibrium point O (0, 0) is an unstable focus point. If
ab=1, thenλ2=0. So the equilibrium point O (0, 0) is a Hopf bifurcation point. ¤

The dynamical behaviors of system (3) at S (±x0, y0) are similar to discussion of the equilibrium point
O (0, 0). We have

Proposition 2 The equilibrium points S (±x0, y0) of subsystem (3) are Hopf bifurcation points.

2.2 Dynamical analysis of the subsystem (4)

Let { −by − x2 = 0,
−x− cz = 0.

When x= 0, the subsystem (4) has only one equilibrium point O(0, 0). When x 6= 0, subsystem (3) has
an equilibrium point S (-x2/b, -x/c).

Proposition 3 The equilibrium points O(0, 0) andS (-x2/b, -x/c) of subsystem (4) are both stable points.

2.3 Complicated dynamical behavior analysis of the finance chaotic system

We analyze the global complicated dynamical behavior of the nonlinear finance chaotic system (2) in this
section.

Firstly, we discuss the symmetry of the nonlinear finance chaotic system. For any arbitrary parameters
a, b, c, system (2) is invariant under the transformation (x, y, z) → (-x, y, -z), which indicates that the
nonlinear finance chaotic system is symmetric with respect to the y-axis.

Secondly, we discuss the dissipation of the nonlinear finance chaotic system. Letf = (f1, f2, f3)T =
(ẋ, ẏ, ż)T , then we have

div f = ∂f1

∂x + ∂f2

∂y + ∂f3

∂z = ∂ẋ
∂x + ∂ẏ

∂y + ∂ż
∂z = 1/b− a− b− c

If 1/b− a− b− c< 0, i.e. a + b + c > 1/b, then we have div f < 0. This shows that the finance chaotic
system is a dissipative system. The volume of any attractor of the system must absolutely contract to zero.

Thirdly, we discuss the equilibrium points of the nonlinear finance chaotic system.
When c− b - abc ≤0, system (2) has the only equilibrium point O (0,0,0). When c− b- abc >0, system

(1) has other equilibrium points S (±m, - m2/b, ∓m/c), where m =
√

(c− b− abc)/c.
The dynamical behaviors of system (2) at S (±m, - m2/b, ∓m/c) are similar to discussion of the equilib-

rium point O (0,0,0). They are Hopf bifurcation points.

2.4 A new chaotic attractor of the nonlinear finance chaotic system

When a= 0.00001, b= 0.1, c= 1, we discover a new chaotic attractor of the nonlinear finance chaotic
system.

The chaotic attractor is a strange attractor like butterfly wings, and also one similar to Lorenz attractor.
The chaotic attractor is shown in Fig.1 when a= 0.00001, b= 0.1, c= 1 . The initial states of system (2) are
x(0)=0.1, y(0)=0.23, z(0)=0.31. Using the computer symbolic system Matlab Software, the value of Lya-
punov exponents of this system is obtained as (0.1735, 0.0015, -0.8030). Because the maximum Lyapunov
exponent of this system is positive, it shows that the system is a nonlinear finance chaotic system in theory.
On the other hand, because of the parameter a is the saving, when a= 0.00001 become little, the inflation
happen, the chaos appear. So this shows that the nonlinear finance system is a chaotic system, no matter in
theory, practice or numeral simulation.
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We fix parameters a=0.00001, b= 0.1, c= 1, and the time series of x(t), y(t), z(t) are generated by
the Matlab Software as shown in Fig.2. Also may obviously see from the time series Fig. 2, the nonlinear
finance system (2) is a nonlinear finance chaotic system.

(a) (b)

(c) (d)

Figure 1: The finance chaotic attractor of system (a) x-y-z; (b) x-y; (c) x-z; (d) y-z.

3 Slow manifold analysis of the nonlinear finance chaotic system

3.1 The first slow manifold equation of the nonlinear finance chaotic system

Theorem 1 In the attractive parts of the phase space of the nonlinear finance chaotic system, the first slow
manifold equation of the nonlinear finance chaotic system (2) is:

(9.99999x + z + xy)[(λ1(x, y, z) + 1)(λ1(x, y, z) + 0.1)]+

x(λ1(x, y, z) + 0.1)(−0.y − x2)− (x + z)(λ1(x, y, z) + 0.1) = 0
(5)

where λ1(x, y, z) is the left fast eigenvalue of J(X).

Proof: When parameter a = 0.00001, b= 0.1, c= 1, the nonlinear finance chaotic system can be written as




ẋ = 9.99999x + y + xy
ẏ = −0.1y − x2

ż = −x− z
(6)

For a point X = (x, y, z)T in the attractive parts of the phase space, the Jacobian matrix of the nonlinear
finance chaotic system at the point X = (x, y, z)T ,

J(X) = J(x, y, z) =




9.99999 + y x 1
−2x −0.1 0
1 0 −1
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(a) (b)

(c)

Figure 2: The chaotic time series of trajectory: (a) x-t; (b) y-t; (c) z-t.

Let λ1(X) = λ1(x, y, z) be the fast eigenvalue and λ2 (X), λ3(X) the two slow ones. The left fast
eigenvector, i.e. the eigenvector of J t (X) (the superscript “t” denote “transpose”) is given by

zλ1(x, y, z) =




(λ1(x, y, z) + 1)(λ1(x, y, z) + 0.1)
x(λ1(x, y, z) + 1)
λ1(x, y, z) + 0.1


 (7)

In the attractive parts of the phase space (i.e. where J(X) have a fast eigenvalue), the equation of the
slow manifold is given by

zT
λ1

(x, y, z) ·



ẋ
ẏ
ż


 = 0

If we replace zλ1(x, y, z) by its expression given by (7) and the velocities by the equation (6), we can
obtain the slow manifold equation of the nonlinear finance chaotic system as (5). ¤

3.2 The second slow manifold equation of the nonlinear finance chaotic system

Theorem 2 In the attractive parts of the phase space of the nonlinear finance chaotic system, the second
slow manifold equation of the nonlinear finance chaotic system (2) is:

F1(x, y, z)x + F2(x, y, z)y + F3(x, y, z)z + 10F2(x, y, z)x2 + F4(x, y, z)xy = 0, (8)

where
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F1(x, y, z) = 9.99999[Re[u2(x, y, z)](Re[v3(x, y, z)]−Im[v2(x, y, z)])−Re[v2(x, y, z)](Re[u3(x, y, z)]−
Im[u2(x, y, z)])] + Re[u2(x, y, z)]− (Re[u3(x, y, z)]− Im[u2(x, y, z)]);

F2(x, y, z) = 0.1((Re[v3(x, y, z)]− Im[v2(x, y, z)])−Re[v2(x, y, z)]);
F3(x, y, z) = [Re[u2(x, y, z)](Re[v3(x, y, z)] − Im[v2(x, y, z)]) − Re[v2(x, y, z)](Re[u3(x, y, z)] −

Im[u2(x, y, z)]) + Re[u2(x, y, z)]− (Re[u3(x, y, z)]− Im[u2(x, y, z)]);
F4(x, y, z) = Re[u2(x, y, z)](Re[v3(x, y, z)] − Im[v2(x, y, z)]) − Re[v2(x, y, z)](Re[u3(x, y, z)] −

Im[u2(x, y, z)]);

Proof: For a point X = (x, y, z)T in the attractive parts of the phase space. Let λ2 (X), λ3(X) be the two
slow eigenvalues of the nonlinear finance chaotic system at the point X = (x, y, z)T . It is easy to show that
for k ∈{2, 3}, it is possible to write

zλr (x, y, z) =




1
uk(x, y, z)
vk(x, y, z)




The equation of the slow manifold can be derived from
∣∣∣∣∣∣

ẋ ẏ ż
1 u2(x, y, z) v2(x, y, z)
1 u3(x, y, z) v3(x, y, z)

∣∣∣∣∣∣
= 0

It is known that for some points X = (x, y, z)t, the two eigenvalues λ2(X) and λ3(X) are complex
conjugate numbers and so are zλ2(x, y, z) and zλ3(x, y, z) (in fact they are the second and third components).
So we haveu3(x, y, z) = (u2(x, y, z)*, v3(x, y, z) = (v2(x, y, z)*, where “*” denotes complex conjugate
operation.

The general case for both real and complex eigenvalues can be combined with a unique equation of the
slow manifold as follows

∣∣∣∣∣∣

9.99999x + z + xy −0.1y − x2 −z − x
1 Re[u2(x, y, z)] Re[v2(x, y, z)]
1 Re[u3(x, y, z)]− Im[u2(x, y, z)] Re[v3(x, y, z)]− Im[v2(x, y, z)]

∣∣∣∣∣∣
= 0 (9)

If we expand equation (9), in terms of these last notations, we would obtain the second slow manifold
equation of the nonlinear finance chaotic system as (8). ¤

It is easy to verify that coordinates of balance points of O (0,0,0) and S (± m, - m2/b, ∓ m/c) satisfy
slow manifold equation, so they are in slow manifold. The slow manifold equation present a formula among
x(rate of interest), y(investment coefficient), z(resilience coffficient), so we can further research the internal
and interdependent relation among them with the aid of slow manifold equation.

4 Adaptive control of the nonlinear finance chaotic system

In this section we will control the nonlinear finance chaotic system(2) to equilibrium point (0,0,0). When
parameter a= 0.00001, b= 0.1, c= 1, the nonlinear finance chaotic system (2) has a new chaotic attractor that
is a strange attractor like butterfly wings, and also one similar to Lorenz attractor.

Lemma 1 Barbalat Lemma. If f(t) ∈ L2 ∪ L∞ and ḟ(t) ∈ L∞,then lim
t→∞ f(t) = 0.

Theorem 3 Consider the controlled system as follows:




ẋ = (1/b− a) x + z + xy − k̂x
ẏ = −by − x2

ż = −x− cz

(10)

where k̂ = βx2,β > 0, then system(10) will converge to the equilibrium point (0,0,0).
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Proof: the Jacobi matrix of system (10) is:

J =




1/b− a− k̂ 0 1
0 −b 0
−1 0 −c




Construct the Lyapunov function :

V (x, y, z) =
1
2
(x2 + y2 + z2) +

1
2β

(k̂ − k∗)2

The time derivative of V along trajectories (10) is

V̇ = xẋ + yẏ + zż + (k̂ − k∗)x2 = −(k∗ − (1/b− a))x2 − by2 − cz2

When k∗ > 1/b − a, V̇ ≤ 0, x, y, z, k̇ − k∗ ∈ L∞,
∫ t
0 V̇ ≤ 0 and x, y, z ∈ L2,ẋ, ẏ, ż ∈ L∞.According

to BarBalat Lemma, x,y,zwill gradually converge to zero which is negative definite. According to the
Lyapunov stable theorem, the trajector of the controlled system is asmptotically stabilized to the equilibrium
point (0,0,0). The proof is thus completed. ¤

Numerical experiment is carried out to inegrate the controlled system (10) by using fourth-order Runge-
Kutta method with time step 0.001. It has been proved that nonlinear finance chaotic system (2) has chaos
behavior whena= 0.00001, b= 0.1, c= 1. The initial states of the controlled system (10) are x(0)=0.1,
y(0)=0.23, z(0)=0.31. Feedback gain β=10, Fig .3 (a)-(c) shows that the nonlinear finance chaotic system
is controlled to equilibrium point (0,0,0).

(a) (b)

(c)

Figure 3: The states of controlled system (10): (a) x-t; (b) y-t; (c) z-t.

Chaotic control idea in the section indicates that it is an effective way to adjust and control x (interest rate)
when inflation occurs and chaotic phenomenon appears in nonlinear finance chaotic system. It has been
proved to be an effective measure of reviving economy and it is frequently used in a lot of countries.
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5 Conclusion

This paper investigates the dynamical behavior and slow manifold of the nonlinear finance chaotic sys-
tem. the complicated dynamical behaviors of the system are analyzed by studied dynamical behaviors of the
subsystem of the system, the slow manifold equations of the system are obtained with different methods.
We stable the nonlinear finance chaotic system to equilibrium point with the adaptive control method. The-
oretical analysis and numerical simulations are given to validate the control approach. The results of and
simulation are helpful for better understanding of other similar nonlinear finance chaotic systems.
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