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SUMMARY

In this paper, a new �nite-element formulation for the solution of electromechanical boundary value
problems is presented. As opposed to the standard formulation that uses scalar electric potential as
nodal variables, this new formulation implements a vector potential from which components of electric
displacement are derived. For linear piezoelectric materials with positive de�nite material moduli, the
resulting �nite-element sti�ness matrix from the vector potential formulation is also positive de�nite. If
the material is non-linear in a fashion characteristic of ferroelectric materials, it is demonstrated that a
straightforward iterative solution procedure is unstable for the standard scalar potential formulation, but
stable for the new vector potential formulation. Finally, the method is used to compute �elds around
a crack tip in an idealized non-linear ferroelectric material, and results are compared to an analytical
solution. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the original work of Allik and Hughes [1] in 1970, a rather large literature has developed
on �nite-element methods for linear piezoelectric materials and structures [2]. However, much
less attention has focused on problems involving non-linear electromechanical constitutive
response, with the exception of the work of Ghandi and Hagood [3]. It will be demonstrated in
Section 5 of this paper, that di�culties arise in the solution of electrically non-linear problems
when the standard, scalar potential, �nite-element formulation developed in Reference [1] is
used. In order to overcome these di�culties, Ghandi and Hagood [3] developed a hybrid
�nite-element formulation that employs the standard displacement and electric potential nodal
degrees of freedom along with additional electric displacement degrees of freedom within the
element. In this work, an alternative approach that implements a vector potential formulation
is developed.
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As opposed to the standard scalar potential formulation, where the electric potential is
interpolated from nodal quantities and the electric �eld derived from the electric potential;
the vector potential formulation derives the electric displacement from the components of the
vector potential which are the interpolated nodal quantities. Advantages of the vector potential
formulation include a positive de�nite sti�ness matrix and numerical stability for non-linear
electrical material behaviour characteristic of ferroelectric ceramics. The disadvantages of the
method include an increase in the number of nodal degrees of freedom for three-dimensional
problems and the inability of the method to account for a free charge density within the
material volume.
The body of the paper is concerned with comparing the scalar and vector potential formula-

tions. Section 2 is devoted to introducing the equations governing a dynamic electromechanical
boundary value problem. Section 3 develops the scalar and vector potential formulations, and
then compares features of the sti�ness matrices and system sizes. Section 4 compares the
scalar and vector potential formulations numerically by using each to solve a linear piezoelec-
tric problem and investigating the convergence with respect to mesh size. Section 5 presents
a simple numerical stability analysis of the two formulations for a one-dimensional elec-
trical system with non-linear material behaviour. Section 6 implements the vector potential
formulation to solve for the electrical �elds around a crack tip in an idealized ferroelec-
tric material, and compares the numerical results to a known analytical solution. Finally,
Section 7 summarizes the merits of the new vector potential formulation for the solution of
non-linear electromechanical boundary value problems.

2. GOVERNING EQUATIONS

In this section, the equations governing a small deformation, small electric �eld, mechanically
dynamic but electrically quasi-static, isothermal electromechanical boundary value problem
will be reviewed. Throughout this section, standard index notation is utilized with summation
implied over repeated indices and the subscript ; j representing di�erentiation with respect to
the xj co-ordinate direction.
Consider a volume of material, V , bounded by the surface, S. Newton’s second law is

given by

�ji; j + bi=� �ui in V (1)

and

�jinj= ti on S (2)

where �ij is the symmetric Cauchy stress tensor, bi is the body force per unit volume, � is
the mass density of the material, ui are the components of the material displacement, ni is
a unit vector normal to the surface directed outward from the volume, and ti is the traction
applied to the surface. The superposed double dot represents a second derivative with respect
to time.
The in�nitesimal strain-displacement compatibility conditions are

�ij= 1
2(ui; j + uj; i) (3)

where �ij is the in�nitesimal strain tensor.
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Gauss’ law is written as
Di; i= qv in V (4)

and
Dini=−qs on S (5)

where Di is the electric displacement, qv is the free charge per unit volume in V and qs is
the free charge per unit area (also accounting for the e�ective charge due to material outside
of V ) residing on S.
Under quasi-static conditions the electric �eld, Ei, can be written as the gradient of a

potential, �, such that
Ei=−�; i (6)

Finally, the four forms of the linear piezoelectric constitutive law about a �xed remanent
strain and polarization state are given by

�ij − �rij = sEijkl�kl + dkijEk ; Di − P ri =dikl�kl + ��
ijEj (7)

�ij = cE
ijkl(�kl − �rkl)− ekijEk ; Di − P ri = eikl(�kl − �rkl) + ��

ijEj (8)

�ij = cDijkl(�kl − �rkl)− hkij(Dk − P rk ); Ei=−hikl(�kl − �rkl) + ��
ij(Dj − P rj ) (9)

�ij − �rij = sDijkl�kl + gkij(Dk − P rk ); Ei=−gikl�kl + ��
ij(Dj − P rj ) (10)

where �rij and P ri are the remanent strain and polarization, sEijkl; sDijkl; cE
ijkl and cD

ijkl are fourth
rank tensors of elasticity, dkij; ekij; hkij and gkij are third rank tensors of piezoelectricity and
��
ij; ��

ij; ��
ij and ��

ij are second rank dielectric tensors. Note that any set of moduli can be
manipulated algebraically to yield any other set. The constitutive form of Equation (7) is
commonly used to report experimentally measured moduli, that of Equation (8) is required
for the standard scalar potential �nite-element formulation, and the form in Equation (9) will
be used in the vector potential �nite-element formulation.
Finally, Equations (1)–(6) can be written in the following two weak forms as:∫

V
� �ui�ui dV +

∫
V
�ij��ij −Di�Ei dV =

∫
V
bi�ui − qv�� dV +

∫
S
ti�ui − qs�� dS (11)

or ∫
V
� �ui�ui dV +

∫
V
�ij��ij + Ei�Di dV =

∫
V
bi�ui + ��qv dV +

∫
S
ti�ui + ��qs dS (12)

3. FINITE-ELEMENT FORMULATIONS

In the following formulations vector–matrix notation will be used where the �eld quantities
are given as

{u}= { ux uy uz }T; {E}= { Ex Ey Ez }T; {D}= {Dx Dy Dz }T

{U}= { �xx �yy �zz 2�yz 2�xz 2�xy }T; {�}= { �xx �yy �zz �yz �xz �xy }T
(13)
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etc., and the nodal quantities will be represented by {un} and {Mn}. Equations (8) and (9)
are then written in matrix form as

{�}=[cE]({U} − {Ur})− [e]{E}; {D}=[e]T({U} − {Ur}) + [ZU]{E}+ {Pr} (14)

and

{�}= [cD]({U} − {Ur})− [h]({D} − {Pr}); {E}=−[h]T({U} − {Ur}) + [RU]({D} − {Pr}) (15)

3.1. The standard scalar potential formulation

As noted by Allik and Hughes [1], the standard formulation exploits the similarities in the
mathematical structure governing the distributions of electrical and mechanical �elds, Equa-
tions (1)–(6). In the standard scalar potential formulation, the displacements and the electric
potential are interpolated from the associated nodal quantities as

{u}=[Nu]{un} and �=[NM]{Mn} (16)

The strains and electric �eld components can then be derived from the nodal variables as

{U}=[Bu]{un} and {E}=−[BM]{Mn} (17)

The matrices [Bu] and [BM] are given as

[Bu]=




@x 0 0

0 @y 0

0 0 @z

0 @z @y
@z 0 @x

@y @x 0



[Nu] and [BM]=




@x

@y
@z


 [NM] (18)

where @i represents partial di�erentiation with respect to the i co-ordinate direction. Equation
(11) then yields the �nite-element equations

[m]{ �un}+ [Kuu]{un}+ [KuM]{Mn} =
∫
V
[Bu]T{�r} dV +

∫
V
[Nu]T{b} dV +

∫
S
[Nu]T{t} dS

[KMu]{un}+ [KMM]{Mn} = −
∫
V
[BM]T{Dr} dV −

∫
V
[NM]Tqv dV −

∫
S
[NM]Tqs dS

(19)

where

[Kuu] =
∫
V
[Bu]T[cE][Bu] dV ; [KuM]=

∫
V
[Bu]T[e][BM] dV

[KMu] =
∫
V
[BM]T[e]T[Bu] dV ; [KMM]=−

∫
V
[BM]T[ZU][BM] dV

[m] =
∫
V
[Nu]T�[Nu] dV

(20)
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and

{�r}= [cE]{Ur}
{Dr}=−[e]T{Ur}+ {Pr}

(21)

Equation (19) represents the standard �nite-element formulation for piezoelectric solids.
Note that in most calculations the �rst terms associated with the remanent state on the right-
hand sides of Equation (19) are taken to be zero. It is physically reasonable to assume that the
remanent strain is equal to zero as long as it does not change. However, a similar treatment of
the remanent polarization is not suitable unless the electrical boundary conditions are adjusted
appropriately.

3.2. Vector potential formulation

As opposed to the scalar potential formulation, the vector potential formulation exploits
the similarities in the constitutive (i.e. thermodynamic) structure between the electrical and
mechanical variables, Equation (9). The vector potential formulation is restricted to problems
where the free charge density in the volume is equal to zero. In other words, Equation (4) is
re-written as

Di; i=0 in V (22)

Then Equation (22) can automatically be satis�ed by the vector potential,  i, if

Di= ∈ijk  j; k (23)

where ∈ijk is the permutation tensor. Now, the nodal degrees of freedom consist of the three
displacements and the three components of the vector potential. The vector potential �eld will
be represented by {�} and the associated nodal quantities by {�n}. Along with the weak
form of Equation (12), the following interpolations are the foundation of the formulation:

{u}=[Nu]{un} and {�}=[N�]{�n} (24)

Then the strains and electric displacement components are derived from the displacements
and the vector potential as

{U}=[Bu]{un} and {D}=[B�]{�n} (25)

The matrix [Bu] was de�ned in Equation (18) and [B�] is given as

[B�]=



0 @z −@y

−@z 0 @x

@y −@x 0


 [N�] (26)

Equation (12) then yields the �nite-element equations

[m]{ �un}+ [Kuu]{un}+ [Ku�]{�n}=
∫
V
[Bu]T{�r} dV +

∫
V
[Nu]T{b} dV +

∫
S
[Nu]T{t} dS

[K�u]{un}+ [K��]{�n}=
∫
V
[B�]T{Er} dV −

∫
S
[B�]T�{n} dS (27)
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where

[Kuu] =
∫
V
[Bu]T[cD][Bu] dV ; [Ku�]=−

∫
V
[Bu]T[h][B�] dV

[K�u] =−
∫
V
[B�]T[h]T[Bu] dV ; [K��]=

∫
V
[B�]T[RU][B�] dV

[m] =
∫
V
[Nu]T�[Nu] dV

(28)

and

{�r}= [cD]{Ur} − [h]{Pr}
{Er}=−[h]T{Ur}+ [RU]{Pr}

(29)

Note that {n} represents the unit vector normal to the surface S. Also note that [Kuu] and
{�r} de�ned in Equations (28) and (29) are di�erent from those de�ned in Equations (20)
and (21). Any possible confusion can be avoided by noting the other matrices and vectors
that [Kuu] and {�r} are grouped with.

3.3. Sti�ness matrix characteristics

For the solution of Equations (19) or (28) it is useful to know if the sti�ness matrix is
symmetric and if it is positive de�nite or non-de�nite. First note that the total sti�ness matrices,[

[Kuu] [KuM]

[KMu] [KMM]

]

from the standard formulation and [
[Kuu] [Ku�]

[K�u] [K��]

]

from the vector potential formulation, are both symmetric. Note that the symmetry of the
sti�ness matrix for the scalar potential formulation is dependent upon the minus sign appearing
in front of the Di�Ei term in the weak form of Equation (11).
Now let us de�ne a stable piezoelectric material as one in which the material sti�ness

matrix [
[cD] −[h]
−[h]T [RU]

]

is positive de�nite. A material with positive de�nite sti�ness requires a positive amount of
work to be done on it in order to change the strain or electric displacement from the stress
and electric �eld free state. In other words, the stored internal energy density of the material

U = 1
2({U}T − {Ur}T)[cD]({U} − {Ur})− ({U}T − {Ur}T)[h]({D} − {Pr})
+ 1

2({D}T − {Pr}T)[RU]({D} − {Pr}) (30)
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is greater than zero for any strain and electric displacement combination not equal to the
remanent state. Hence, when the material sti�ness is positive de�nite, it can be readily shown
that the sti�ness matrix for the vector potential formulation

[
[Kuu] [Ku�]

[K�u] [K��]

]

is also positive de�nite. However,
[
[Kuu] [KuM]

[KMu] [KMM]

]
;

the sti�ness matrix for the scalar potential formulation, is non-de�nite. Therefore, solutions
to boundary value problems using the vector potential formulation exist at a global minimum
in nodal degree of freedom space, while solutions for the scalar potential formulation lie on
a saddle point. Furthermore, the positive de�niteness of the sti�ness matrix for the vector
potential formulation lends itself to e�cient iterative solution techniques like the conjugate
gradient method [4].

3.4. System size

It is of interest to note that for the full three-dimensional case, the standard scalar potential
formulation requires four degrees of freedom per node, three displacements and the electric
potential. Unfortunately, the vector potential formulation requires six degrees of freedom per
node, three displacements and three components of the vector potential. Hence, an increase
in the size of the matrix system to be solved, by twice the number of nodes, is required for
three-dimensional problems with the vector potential formulation.
Fortunately, the increase in system size from the scalar to the vector potential formulations

in three dimensions does not exist in two dimensions. The nodal degrees of freedom re-
quired for in-plane, two-dimensional problems with the scalar and vector potential formulations
are {ux uy �} and {ux uy  z}, respectively. Hence, the system sizes for two-dimensional
problems are the same for both formulations.

4. COMPARISON OF THE METHODS FOR A COUPLED
LINEAR PIEZOELECTRIC PROBLEM

In this section, numerical tests are presented to illustrate and compare the convergence
rates of the scalar and vector potential formulations with respect to mesh size. The two
numerical methods will be compared to an exact, two-dimensional solution of Equations (1)
–(10) with no body forces, no volume charge density, zero remanent state and no inertia, i.e.
bi=0; qv=0; �rij=0; P ri =0 and �=0. A solution for the scalar potential, vector potential
and displacements is,

�=�0 sinh �x cos 	y (31)
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 z =  0 cosh �x sin 	y (32)

ux = u0 sinh �x cos	y (33)

uy = v0 cosh �x sin 	y (34)

where
� = 3:9432 m−1;  0 = 1:0551× 10−8 C=Vm �0

u0 = 5:1001× 10−10 m=V �0; v0 =−1:2175× 10−9 m=V �0

and �0 is an arbitrary electrical loading variable with dimensions of voltage. For this study �0
is taken to be equal to one. This solution is valid for a material with piezoelectric properties
characteristic of PZT aligned in the x-direction, such that the simpli�ed two-dimensional
constitutive behaviour of the material can be written as

�xx = s33�xx + s31�yy + d33Ex (35)

�yy = s31�xx + s33�yy + d31Ex (36)

2�xy =2(s33 − s31)�xy + d15Ey (37)

Dx = d33�xx + d31�yy + �Ex (38)

Dy = d15�xy + �Ey (39)

s33 = 1:6667× 10−11 N=m2; s31 =−6:1667× 10−12 N=m2; �=2:0011× 10−8 C=Vm

d33 = 4:5× 10−10 m=V; d31 = ­ 2:1× 10−10 m=V    d15 = 5:8× 10−10 m=V

Note that the stresses, strains, tractions, electric �elds, electric displacements and surface
charge densities can be readily determined from the solution given in Equations (31)–(34).
Two sets of boundary value problems have been solved with the �nite-element methods

described in Section 3. The region considered is a square, 8m long on each side, as illustrated
in Figure 1. The region is divided into square, fully integrated, 9-noded Lagrange elements.
The length of a side of one element is given as h. The two sets of boundary value problems
solved will be called the Dirichlet BC problems and the Neumann BC problems. For the scalar
potential formulation, the scalar electric potential and the displacements given by Equations
(31), (33) and (34) are speci�ed at the nodes on the external boundary for the Dirichlet
BC problem. For the Neumann BC problem, the tractions and surface charge density are
speci�ed on the outer boundary. For the vector potential formulation, the vector potential and
the displacements given by Equations (32)–(34) are speci�ed at the nodes for the Dirichlet
BC problem. Finally, for the vector potential formulation Neumann BC problem, the tractions
and the electric potential � associated with the solution given by Equations (31)–(34) are
speci�ed on the outer boundary.
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8 m

8 m

h

Figure 1. The �nite-element mesh used for the study of convergence with respect to mesh size.

In order to determine the convergence characteristics of each method with respect to mesh
re�nement, the following energy norm is considered.

e=

∫
V
�errij �errij + Eerri Derr

i dV∫
V
�exij �

ex
ij + Eexi Dex

i dV
(40)

The numerator in Equation (40) represents twice the stored energy associated with the error in
the numerical solution, and the denominator is twice the stored energy in the solid computed
from the exact solution (superscript ex). The quantities �errij ; �errij ; E erri and Derr

i are computed
from the errors in the �nite-element quantities (superscript FE), e.g. for the scalar potential
formulation �err =�ex − �FE and uerri = uexi − uFEi , then E erri =−�err; i ; �errij =(u

err
i; j + uerrj; i )=2;

�errij = cE
ijkl �errkl − ekijEerrk , and Derr

i = eikl�errkl + ��
ijE

err
j . These quantities are evaluated at the inte-

gration stations of the elements and the appropriate products are integrated over the volume
of the region.
Figure 2 plots the energy norm, e, as a function of the mesh size, h, on a logarithmic scale

for each type of problem. Note that e must go to zero as h goes to zero if the method is
convergent. On this plot, h ranges from 0.25 to 8 corresponding to 1024 elements and one
element in the mesh, respectively. Note the following observations from Figure 2. First, the
wavelength of the loading for this problem corresponds to a mesh size of h=2. Therefore,
mesh sizes greater than 2 cannot be expected to yield accurate results. Furthermore, as seen on
Figure 2, the energy norm is erratic for h¿2. For mesh sizes less than 2, both the scalar and
vector potential formulations appear to have essentially identical rates of convergence with
respect to mesh size. For both formulations, the magnitude of the energy norm is smaller for
the Dirichlet BC problems than for the Neumann BC problems by approximately a factor of 2.
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Figure 2. Plots of the energy norm, e, de�ned in Equation (40) as a function of the mesh size, h.

Finally, for both types of boundary conditions, the magnitude of the energy norm is smaller
for the scalar potential formulation than the vector potential formulation by approximately a
factor of 2.

5. NUMERICAL STABILITY FOR NON-LINEAR ELECTRICAL PROBLEMS

To this point it has been assumed that the remanent strain and polarization states remain �xed,
and the problem is linear. However, the primary reason for introducing the vector potential
formulation is due to its stability for solving non-linear problems. Speci�cally, the vector
potential formulation is most useful when the electric �eld versus electric displacement rela-
tionship is characteristic of ferroelectric ceramics. To investigate the e�ectiveness of the scalar
and vector potential formulations for solving non-linear electrical problems, the stability of a
simple, �xed-point, iterative solution scheme for a single-degree-of-freedom electrical system
will be determined. The non-linear constitutive law used for this problem is highly simpli�ed,
but it does contain the essential feature of ferroelectric behaviour required to understand the
stability of the two numerical methods.
Consider the non-linear electrical constitutive relationship given by

D = �E; P r = 0 if E6E0

D = �E + P r ; P r = (H − �)(E − E0) if E¿E0
(41)

where E0 is the coercive �eld, and the hardening modulus, H , is greater than the initial
dielectric permittivity � for ferroelectric materials. For the scalar potential formulation, the
single-degree-of-freedom system considered is a one-dimensional capacitor with the electric
displacement �xed across it. The proposed iterative solution procedure is given by

Ei+1 =
1
�
(D − P r; i) (42)
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where D is the �xed electric displacement, Ei+1 is the electric �eld computed at the i + 1th
iteration, and P r; i is the remanent polarization computed from Equation (41) after the ith
solution step. Then, for levels of electric �eld greater than the coercive �eld, Equation (41)
can be used in (42) to yield

Ei+1 =
(
1− H

�

)
Ei +

1
�
D −

(
1− H

�

)
E0 (43)

From Equation (43) it can be readily seen that this iterative method is unstable if H=�¿2,
and the solution for E oscillates if H=� ¿ 1. For most ferroelectric materials of technological
interest H=�¿2, and this solution method will be unstable.
The analogous single-degree-of-freedom system for the vector potential formulation has

the applied electric �eld �xed across the one-dimensional capacitor. The iterative scheme
analogous to Equation (42) is

Di+1 =�E + P r; i (44)

implying that

Di+1 =�E0 +H (E − E0) (45)

Notice that Equation (45) will converge to the exact solution after two iterations, i.e. the �rst
iteration will predict that D1 =�E and then the second will reach the exact solution given by
Equation (45).
It is true that a more sophisticated iterative solution scheme, such as a Newton–Raphson

method, could provide a solution for the scalar potential formulation. However, for certain
problems involving the integration of constitutive response along streamlines, the procedure
represented by Equation (43) is the only one available. For example, many authors have relied
on this procedure to solve for the �elds around a steadily growing crack in a material with
a path dependent constitutive behaviour, see for example Reference [5]. Furthermore, this
simple iterative solution procedure requires only one inversion of the system sti�ness matrix,
while Newton–Raphson methods require an inversion at each step. Hence, for some problems
this solution method is the only scheme available, and for some problems this method can
provide savings in computational time.

6. COMPARISON OF A CALCULATED CRACK TIP FIELD
TO AN ANALYTICAL SOLUTION

In this section, the vector potential formulation is implemented to solve an uncoupled,
non-linear electrical problem and compared with a known analytical solution. The physical
problem is to determine the distributions of electric �eld and electric displacement very close
to a crack tip in an electrically non-linear material with an electrically conducting medium
in the space between the crack faces. All mechanical coupling is ignored and the speci�c
form of the electrical constitutive law is given in Equation (48). From a fracture mechanics
perspective, this problem is analogous to analysing the plastic zone around a crack tip under
small scale yielding conditions. A simple semi-circular radial mesh is used for this problem.
The mesh contains 1926 nodes and 625 8-noded isoparametric elements with four integration
stations each. Every node has one degree of freedom,  z, associated with it. The mesh and

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:613–628



624 C. M. LANDIS

0

1

2

3

-3 -2 -1 0 1 2 3

Dirichlet to Neumann Map
Boundary Conditions

Crack Tip
Symmetry Conditions

Dy = 0 → �z = 0
Conducting Boundary Conditions

Ex = 0 → � = 0

Figure 3. The �nite-element mesh used for the solution of the electrical �elds around a crack tip. The
mesh consists of 1926 nodes and 625 8-noded isoparametric elements. Conducting boundary conditions
are applied to the crack surface and symmetry conditions are applied ahead of the crack tip. A so-called
Dirichlet to Neumann map is applied to the outer circular boundary to account for material outside of
the mesh and the far �eld loading conditions. The co-ordinate axes are normalized by the size of the

non-linear switching region Rs.

the boundary conditions are shown in Figure 3. The co-ordinate axes are normalized by the
size of the non-linear switching zone, Rs. Note that a Dirichlet to Neumann map [6; 7] is
applied to the outer circular boundary in order to simulate the appropriate asymptotic crack
tip conditions and the response of the material outside of the mesh. The far �eld solution and
the size of the switching zone are given by

 z → �KE

√
2
	
Im[(x + iy)1=2] as |x + iy| → ∞ (46)

and

Rs =
1
2	

(
KE

E0

)2
(47)

where � is the linear dielectric permittivity, KE is an electric �eld intensity factor, and E0 is
the coercive �eld.
A simple constitutive law is assumed where the electric displacement is always aligned

with the electric �eld. The relationship between the magnitude of the electric �eld, E, and
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the magnitude of the electric displacement, D, is speci�ed by

E=




D=� if D¡D0

E0 if D06D6DL

E0 + (D −DL)=� if D¿DL

(48)

where D0 =�E0. This constitutive law is shown schematically on the inset in Figure 4.
The variational form of the procedure used to solve this non-linear problem, analogous to
Equation (27), is given by∫

V

1
�
Di�Di dV =

∫
V

1
�
P ri �Di dV −

∫
S
�ni�Di dS (49)

The left-hand side yields the sti�ness matrix dotted with the vector of unknown nodal degrees
of freedom. The second term on the right-hand side produces a nodal driving potential vector
along with contributions to the sti�ness arising from the Dirichlet to Neumann map. Finally,
the �rst term on the right-hand side accounts for the material non-linearity, with the remanent
polarization evaluated from the solution to the previous iteration. Note that the remanent
polarization is in the direction of the applied electric �eld, and its magnitude can be derived
from Equation (48) as

P r =



0 if D¡D0

D −D0 if D06D6DL

DL −D0 if D¿DL

(50)

The analytical solution for this problem and the associated details are reported in Reference
[8]. Outside of the switching region the solution is given as

Ey + iEx=
iKE

[2	(x − Xs + iy)]1=2
for |x − Xs + iy|¿Rs (51)

where the centre of the zone of non-linear behaviour is located on the x-axis at

Xs =Rs

[
1− 2 DL=D0 − 1 + ln(D0=DL)

(DL=D0 − 1)2
]

(52)

Within the switching zone the solution is given by

E �r = E0; E �
=D �
=0; D �r =
2RsD0
�r

cos �
 for 2RL cos �
6 �r62Rs cos �


�r =
√
(x − Xs + Rs)2 + y2; �
=arctan

y
x − Xs + Rs

(53)

where the ( �r; �
) co-ordinate system originates behind the crack tip where the switching zone
intersects the x-axis, and the radius of the lock-up region is given as

RL=
D0
DL

Rs (54)

The solution within the lock-up zone cannot be written in simple closed form with electric
�elds as functions of co-ordinates as in Equations (51)–(53). Instead the solution is given for
the co-ordinates as a function of the electric �eld components. Contours of constant electric
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Figure 4. Contours of constant electric displacement magnitude near the crack tip. The dots represent
the numerical �nite-element results and the curves are the analytical solution from Reference [8]. The
inset is a schematic of the non-linear material constitutive law used for the calculation. Notice that very
large gradients of electric displacement occur at the left edge of the switching zone. Also note that
only every �fth numerical point was plotted on the contour for D=�E0 = 6 in order to reveal the

agreement with the analytical result.

�eld magnitude, E, are circles of radius R(E) centred on the x-axis at position X (E). The
formulas for R(E) and X (E) are

R(E) = Rs
1

E=E0(E=E0+DL=D0−1 for E¿E0 (55)

X (E) = 2Rs

[
1−DL=D0+(E=E0+DL=D0−1) ln((E=E0+DL=D0−1)=E=E0)

(E=E0+DL=D0−1)(DL=D0−1)2
]
−R(E) for E¿E0

(56)

A description of how the �eld direction is determined is given in Reference [8], but for
the sake of brevity it will not be given here. Equations (55) and (56) will su�ce for the
comparison to the numerical results given in Figure 4. The associated contours of constant
electric displacement can then be determined with the aid of the constitutive law given by
Equation (48).
For the example shown in Figure 4 the ratio of DL=D0 was taken to be equal to 5. The

iterative procedure was allowed to proceed for 2864 steps, with the entire calculation taking
approximately 7 minutes on a Silicon Graphics O2000 workstation. Figure 4 plots contours
of constant electric displacement magnitude from the results of the numerical calculation

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:613–628



ELECTROMECHANICAL BOUNDARY VALUE PROBLEMS 627

C
on

ve
rg

en
ce

 M
ea

su
re

100

10−3

10−6

10 −9

10−12

10−15

10−18

100 101 102 103 104

D

DL

0

0 0

0 2

0 4

0 6

0 8

=

.

.

.

.

.

Number of Iterations

{

Figure 5. Plots of a measure of convergence (the sum over all nodes of the square of the di�erence
of the nodal quantity between iterations) versus the number of iterations required to reach that level of

convergence as a function of the constitutive parameter D0=DL.

(dots interpolated from the nearest integration stations) against the analytical solution (lines)
described by Equations (51)–(56). To monitor the convergence of the solution scheme, the
sum over all nodes of the square of the di�erence between  z at the current step and  z at the
previous iteration was computed. This quantity obtained values of 10−3; 10−6; 10−9; 10−12,
and 10−15 after 13, 50, 168, 654 and 2864 iterations, respectively. Note that a similar solu-
tion procedure was attempted for this problem with a scalar potential formulation; however,
convergence was not achieved as predicted by the analysis of Section 5.
For this problem the rate of convergence with respect to the number of numerical iterations

depends on the ratio D0=DL, which can range from 0 to 1. Of course for D0=DL=1, the
problem is entirely linear and the method converges after only one iteration. Figure 5 plots
the previously described measure of convergence versus the number of iterations required to
reach that level of convergence. The measure of convergence is simply the sum over all nodes
of the square of the di�erence between  z at the current step and  z at the previous iteration.
Note that in general, as D0=DL decreases the number of iterations required to attain a given
level convergence increases. Furthermore, recall that Figure 4 illustrates the accuracy of the
solution when the convergence measure reaches the level of 10−15.

7. CONCLUDING REMARKS

A new �nite-element formulation for the solution of electromechanical boundary value
problems based on an electrical vector potential has been developed. The method requires two
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extra degrees of freedom per node over the standard formulation for three-dimensional prob-
lems, and it cannot be used for problems where a volumetric free charge density must be
considered. However, the method yields a positive de�nite sti�ness matrix for stable electrome-
chanical materials, and it exhibits superior numerical stability over the standard formulation
for problems with electrically non-linear material behaviour characteristic of ferroelectric ce-
ramics. Furthermore, for two-dimensional problems, the vector potential formulation yields
the same number of degrees of freedom per node as the scalar potential formulation.
The formulations presented in Section 3 are su�ciently general. Speci�c forms for the

interpolation functions in Equations (16) and (24) and for the non-linear description of the
remanent state of the material were not given. Appropriate forms of the interpolation func-
tions required to ensure spatial convergence of the solution can be found in many texts, e.g.
Reference [9], and forms for the constitutive law describing the evolution of the remanent
state are given in Reference [10]. Lastly, the new vector potential formulation provides a nu-
merical tool for the investigation of electromechanical �elds in structures like the piezoelectric
stack actuator, and around structural features like electrodes and crack tips.
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