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Abstract

A mixed Lagrange finite element technique is used to solve the Maxwell equations in the magneto-hydrodynamic (MHD)
limit in an hybrid domain composed of vacuum and conducting regions. The originality of the approach is that no artificial
boundary condition is enforced at the interface between the conducting and the insulating regions and the non-conducting
medium is not approximated by a weakly conducting medium as is frequently done in the literature. As a first evaluation of the
performance of the method, we study two-dimensional (2D) configurations, where the flow streamlines of the conducting fluid
are planar, i.e., invariant in one direction, and either the magnetic field (“magnetic scalar” case) or the electric field (“electric
scalar” case) is parallel to the invariant direction. Induction heating, eddy current generation, and magnetic field stretching are
investigated showing the usefulness of finite element methods to solve magneto-dynamical problems with complex insulating
boundaries.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

1.1. Introductory comments

Magneto-hydrodynamic (MHD) flows are usually involved in two well separated contexts: industrial applications (e.g.,
metallurgy, electromechanics) and astrophysical problems. The difference stems from the magnitude of the magnetic Reynolds
number, Rm, which compares the magnetic diffusion typical time to the advection characteristic time. In industrial applications,
Rm is well below unity so that the induced magnetic fields may be neglected, while, in astrophysics, Rm is much larger than
unity and conversion of kinetic energy into magnetic energy through the so-called dynamo action takes place. We refer to
Moffatt [1] for a survey on the physical aspects of the dynamo action.

The equations that model the dynamo action are the incompressible Navier–Stokes equations and the Maxwell equations
with the displacement-currents neglected, the two sets of equations being coupled via the Lorentz force and the Ohm’s law.

The Maxwell equations involve four vector fields, E, H, D, and B, the electric field, the magnetic field, the electric induction,
and the magnetic induction, respectively. These four vector fields are related by two constitutive equations depending on the
polarization properties of the material. Henceforth we assume linearity: the magnetic permeability µ = µ(x), the electric
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permittivity ε = ε(x), and the conductivity σ = σ(x) are positive functions of the space position x but do not depend on
the electromagnetic field. Then, the electromagnetic field can be represented by two vector fields only: the electric field E and
the magnetic field H.

The conducting fluid is assumed to be of unit density and the flow to be incompressible. We denote by u the velocity, p the
pressure and ν the kinematic viscosity.

Being given source terms, f, j, and initial data, u0, and H0, the set of equations is as follows:














∂tu+ (u · ∇)u− ν
u+∇p = (∇×H)× µH+ f in Ωc,

∇·u= 0 in Ωc,

u|∂Ωc
= 0,

u|t=0 = u0,

(1)







































∂t (µH)=−∇×E in Ω,

∇×H= σ
(

E+ u× (µH)
)

+ js in Ωc,

∇×H= 0 in Ωv,

∇·(εE)= 0 in Ωv,

H× n|Γ = 0,
E · n|Γv

= 0,
H|t=0 =H0,

(2)

where Ωc denotes the domain occupied by the conducting fluid, Ωv is the domain of the non-conducting medium, and
Ω =Ωc ∪Ωv is the total domain. The subscripts c and v stand for conductor and vacuum respectively. To refer to boundary
conditions easily, we introduce

Γc = ∂Ω ∩ ∂Ωc, Γv = ∂Ω ∩ ∂Ωv, Σ = ∂Ωc ∩ ∂Ωv, Γ = ∂Ω = Γv ∪ Γc. (3)

Γ is the boundary of Ω , n the outward normal to Γ , Σ the interface between Ωc and Ωv . Three possible partitions of Ω

considered henceforth are shown on Fig. 1.
The boundary data are taken homogeneous for the sake of simplicity, but general inhomogeneous data can be accounted for

in the present framework by using appropriate liftings of the boundary data.
Although a coupled set of Partial Differential Equations is to be solved, the main numerical difficulty encountered in

the astrophysical context does not come from the coupling but from the presence of the non-conducting medium where the
conductivity is zero. In this region the magnetic field H must be curl-free (it derives from a scalar potential) and the electric
induction divergence-free (it derives from a vector potential). If it were not for this condition (in other words, if Ω =Ωc), then
the electric field could be eliminated from the system of equations as is done in most industrial applications and the resulting
equations would be parabolic, thus posing no particular difficulty to be approximated numerically (see, e.g., [2–4]).

Most of the existing numerical works dedicated to the dynamo problem either assume that the conducting region has perfectly
conducting walls (“ideal” boundary), or enforce an ad hoc boundary condition on H at the interface Σ , so that the problem can
be restricted to the conducting region only. Few studies consider the MHD equations with “non-ideal” boundaries and most of
them are either restricted to steady situations (see, for example, [5] and the references therein), or consider simple geometries
for the conducting region, like infinite cylinders or spheres, so that the exterior problem can be solved analytically [6–8]. In
the stationary case with “non-ideal” boundary, the magnetic field is usually eliminated by means of the Biot–Savart law as
suggested in [5].

Industrial applications, usually characterized by Rm ≪ 1, generally involve complex boundaries. This has led to the brisk
development of Finite Element codes in this field. In astrophysical situations with Rm ≫ 1, the boundaries generally have a
much simpler geometry than in the industrial cases, i.e., spherical symmetry or periodicity, so that the treatment of the magnetic
boundary/interface conditions remains analytically and numerically tractable. However, this trend is now changing. Recently,
two experimental demonstrations of the dynamo effect have been performed in cylindrical containers using sodium flows [9,10]

Fig. 1. Three possible settings for the domain.
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at magnetic Reynolds numbers close to 60. Related computations have correctly predicted dynamo thresholds [11,12] using
approximations of both the geometry and the experimental boundary conditions, and based on a schematic representation of the
flow field. Another experimental set-up at similar magnetic Reynolds numbers is currently operated in a turbulent swirling flow
of liquid sodium [13]. Numerical computations based on axially periodic flow have predicted the dynamo threshold at Rm ≈ 70
[14], which is not reached in the present facility. The optimization of experiments of this type requires a proper treatment of the
boundary conditions and a better account of the non-conducting medium surrounding the containers. This is one of the physical
motivations of the present work.

Although the Finite Element Method (FEM) has proven its ability to solve the hydrodynamic equations in a large variety
of industrial configurations, it is only recently that it has been considered for solving the dynamo problem. For instance, finite
elements have been applied to the spherical dynamo problem by Chan et al. [15]. However, like most of the early attempts at
solving the dynamo problem by using FEM, the method used in [15] is not completely satisfactory, since the insulating region
is modeled by a weakly conducting one. The aim of the present paper is to solve dynamo-like problems by accounting exactly
for the insulating region without any sort of penalization.

1.2. Goals of the paper

In the present paper, we intend to use a recently proposed algorithm designed for solving confined MHD flows at large
magnetic Reynolds numbers. The mathematical properties of the algorithm in question have been analyzed in detail in [16] in 2D
and in [17] in 3D. Our objective is to assess the performance of this new algorithm and to apply it effectively to some physically
relevant 2D flows, including the few for which analytical results are available, postponing all 3D applications (including dynamo
action) to a further work.

The outline of the paper is as follows. We introduce the electric scalar and the magnetic scalar formulations in Section 2. We
also give in this section details for building the corresponding finite element approximations. In Section 3, we study the electric
scalar case. Three configurations are investigated. We first evaluate the Ohmic decay in a circular cylinder. Then we analyze
the time evolution of the patterns made by the magnetic lines in the case of impulsively started solid rotors embedded either in
insulating or conducting media. We finally study the shearing effects of eddies on the magnetic field. In Section 4, we study the
magnetic scalar case. We consider four test cases: Ohmic decay; forced heating; eddy currents induced by magnetic braking;
currents flowing in a compound domain. In each case, numerical results are compared to analytic solutions when available.
Concluding remarks are reported in Section 5.

1.3. Notations

We denote the Cartesian coordinates in R
3 by (x, y, z) and the cylindrical coordinates by (r,ϕ, z). In the numerical

simulations presented hereafter we assume that z is an invariant direction. We assume also that the velocity of the field flow, u, is
known and is everywhere normal to the invariant direction z, i.e., u= (ux (x, y, t), uy (x, y, t),0). Using the Maxwell equations,
the boundary conditions, and the initial data, it can be inferred that two classes of 2D solutions exist. Either H= (0,0,H) and
Ez = 0, or E= (0,0,E) and Hz = 0. The first case is henceforth referred to as the magnetic scalar situation, whereas the second
case is referred to as the electric scalar configuration. In the first case H is a scalar and ∇·(µH)= 0 is automatically fulfilled.
In the second case E is scalar and ∇ ·(εE) = 0 is fulfilled trivially. These particular 2D cases may appear too restricted and
academic with respect to the nonlinear dynamo problem. Nonetheless, they are related to interesting physical situations, and
they lead to nontrivial numerical problems. The algorithms for solving these problems are reduced versions of those required
for the more general 3D formulation, thus their study is a prerequisite for the forthcoming unrestricted 3D case.

In all the numerical tests reported in Sections 3 and 4, we assume ε = µ= σ = 1.

2. The Finite Element Method (FEM) algorithm

In this section we introduce the electric scalar and magnetic scalar formulations together with their respective finite element
approximation. Some details on the full 3D problem are also given.
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2.1. 2D Electric scalar formulation

We start by describing the 2D Electric scalar formulation. In this situation, the set of Eqs. (2) simplifies as follows






















∂t (µH)=−∇×E in Ω,

∇×H= σ(E + u× (µH))+ j in Ωc,

∇×H= 0 in Ωv,

H× n= 0 on Γ,

H=H0 at t = 0,

(4)

where we adopt the following notations:

∇×H= ∂xHy − ∂yHx , ∇×E = (∂yE,−∂xE), u× (µH)=µ(uxHy − uyHx). (5)

2.1.1. Stabilized weak formulation

To obtain a weak form of the system (4), we multiply the first equation by test functions and we integrate over Ω :

∇×H= (0,0, ∂xHy − ∂yHx), ∇×E = (∂yE,−∂xE,0), u× (µH)=
(

0,0,µ(uxHy − uyHx)
)

, (6)

where b are the test functions to be chosen later and (·, ·)Ω denotes the L2-scalar product on Ω . Now we integrate by parts the
second term in the equation and, by restricting the test functions b to satisfy the same essential boundary condition as H, i.e.,
b× n|Γ = 0, we obtain

(µ∂tH,b)Ω + (E,∇×b)Ω = 0, ∀b s.t. b× n|Γ = 0. (7)

The second integral in this equation can be represented as a sum of integrals over Ωc and Ωv . Then taking into account that in
the conducting medium Ωc we have

E =
1

σ
(∇×H− j)− u× (µH), (8)

we obtain

(µ∂tH,b)Ω +
(

1

σ
∇×H,∇×b

)

Ωc

− (u×µH,∇×b)Ωc
+ (E,∇×b)Ωv

=
(

1

σ
j,∇×b

)

Ωc

, ∀b. (9)

Although it can be shown that this form of Ampère’s theorem yields a well posed problem, we can freely guarantee some
additional control on the curl of H in the insulating region by adding the quantity (∇×H,∇×b)Ωv

to the above bilinear form.
At this point we want to emphasize also that, contrary to what is sometimes claimed by some authors, the equation

∇ ·(µH) = 0 is not part of the original system (4). In other words, the constraint ∇ ·(µH) = 0 need not be enforced for (4)
to be well posed. This equation is just an a posteriori consequence of (4) provided the initial data also satisfy this equation.
Nevertheless, it is standard to incorporate this equation in stabilized formulations to have an a priori control on the divergence
of µH. For instance we refer to [18] or [4] where this type of stabilization is used in conjunction with standard Lagrange
finite elements to solve MHD problems in conducting media with constant properties. Hence we can freely add the quantity
(∇·µH,∇·µb)Ω to the weak form of Ampère’s theorem and still be guaranteed to solve the correct problem.

Let us define σ̃ to be a smooth extension of σ on the whole domain Ω so that for all x ∈ Ω , infy∈Ωc
σ(y) � σ̃ (x) �

supy∈Ωc
σ(y). We now define the following stabilized bilinear form

as (H,b)=
(

1

σ̃
∇×H,∇×b

)

Ω

+
(

∇·(µH),∇·(µb)
)

Ω
−

(

u× (µH),∇×b
)

Ωc
. (10)

Now, we weakly enforce the constraint ∇×H= 0 in Ωv as follows

(∇×H, e)Ωv
= 0 ∀e. (11)

Finally we consider the following problem: for j given and H0 such that ∇·(µH0)= 0,






















Find H with H× n|Γ = 0 and E s.t.,
H|t=0 =H0,

(µ∂tH,b)Ω + as(H,b)+ (E,∇×b)Ωv
=

(

1

σ
j,∇×b

)

Ωc

, ∀b with b×n|Γ = 0,

(∇×H, e)Ωv
= 0, ∀e.

(12)

This problem is shown to be well posed and equivalent to the original problem (4) in [16].
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At this point it is worth noting that the presence of the insulating region gives to the problem a saddle point structure where
the electric field in the insulating region is the Lagrange multiplier that enforces the magnetic field to be curl-free. It seems
that this structure, which is partly responsible for the numerical difficulties referred to in the introduction for solving the MHD
equations with insulating regions, has been recognized only recently [16].

2.1.2. Finite element discretization

In this section we consider the finite element discretization of the formulation considered above. We shall denote by (Th)h>0
a family of regular meshes covering Ω and composed of triangles.

We introduce Xh the space of the vector-valued continuous finite element functions which are piecewise quadratic on each
triangle of the mesh and satisfy bh × n|Γ = 0. We denote by Mh the space of the scalar-valued continuous finite element
functions which are piecewise linear.

Denoting by Ih the Lagrange interpolation operator and by dt the finite difference temporal operator, we build an
approximate solution to (12) as follows:























Find Hh ∈ C1(0, T ;Xh) and Eh ∈ C0(0, T ;Mh) s.t.,

(µdtHh,bh)Ω + as (Hh,bh)+ (Eh,∇×bh)Ωv
=

(

1

σ
j,∇×bh

)

Ωc

, ∀bh ∈Xh,

(∇×Hh, eh)Ωv
= 0, ∀eh ∈Mh,

Hh|t=0 = IhH0.

(13)

The saddle point structure of the problem is our main reason for choosing two different types of interpolation for the magnetic
and the electric fields. In fact the problem is well posed if and only if there is a constant β > 0 such that

∀eh ∈Mh, sup
bh∈Xh

(∇×bh, eh)Ωv

‖bh‖X
� β‖eh‖M , (14)

where we have defined the norms

‖b‖2
X =

∫

Ω

(

b2+ (∇×b)2
)

dx, ‖e‖2
M =

∫

Ω

e2 dx. (15)

It is shown in [16] that using piecewise quadratic polynomials for the magnetic field and piecewise linear polynomials for the
electric field guarantees that the above so-called inf-sup condition is satisfied with β independent of the mesh size.

In the numerical tests reported in this paper, the time derivative is approximated by means of the second order Backward
Difference Formula (BDF2).

2.2. Magnetic scalar formulation and 3D formulation

Although in the numerical applications we shall restrict ourselves to the 2D magnetic scalar formulation, we present now
the complete 3D theory, since the 2D magnetic scalar formulation and the full 3D theory are almost identical.

2.2.1. Stabilized weak formulation

We now consider the initial-boundary-value problem (2). Note that the equations ∇×H|Ωv
= 0, ∇ · εE|Ωv

= 0, and
E · n|Γv

= 0 are the trace of Ampère’s theorem µε∂tE = ∇× (µH) where ε = 1/µc
2, and the speed of light c is assumed

to be much larger than the characteristic scale of the velocity field u (see [19,20] for more details).
To obtain a weak form of Ampère’s theorem we proceed as in the electric scalar case. Choosing test functions b that satisfy

the same boundary condition as H on Γ , we obtain

(µ∂tH,b)Ω + as (H,b)+ (E,∇×b)Ωv
=

(

1

σ
j,∇×b

)

Ωc

. (16)

As for the electric scalar case, we can enforce weakly the constraint ∇×H= 0 in Ωv as follows

(∇×H, e)Ωv
= 0, ∀e. (17)

It is at this very point that the 2D electric scalar situation differs from that of the 2D magnetic scalar and that of the full 3D
case. In the 3D case, E is still the Lagrange multiplier for the constraint ∇×H = 0 in Ωv , but this multiplier must be chosen
to satisfy the additional constraint ∇ ·εE= 0 in Ωv . To account for this additional constraint on the Lagrange multiplier, we
propose to enforce it in the least-squares sense by adding to the above equation the following bilinear form

ds (e, e′)= (∇·εe,∇·εe′)Ωv
. (18)
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Hence, we enforce ∇×H= 0 and ∇·εE= 0 in Ωv as follows:

(∇×H, e)Ωv
− δsds (E, e)= 0, ∀e, (19)

where δs is a positive free parameter yet to be fixed.
Finally, the weak formulation of (2) is as follows. For a given current j and an initial magnetic field H0 s.t. ∇·(µH0)= 0,























Find H with H× n|Γ = 0 and E with E · n|Γv
= 0 s.t.,

H|t=0 =H0,

(µ∂tH,b)Ω + as(H,b)+ (E,∇×b)Ωv
=

(

1

σ
j,∇×b

)

Ωc

, ∀b with b× n|Γ = 0,

(∇×H, e)Ωv
− δsds (E, e)= 0, ∀e with e · n|Γv

= 0.

(20)

2.2.2. Finite element discretization

Based on a finite element mesh (Th)h>0, we introduce two finite element spaces of vector-valued function: Xh and Mh. Xh

is composed of continuous piecewise polynomials of degree two satisfying the boundary condition bh × n|Γ = 0, whereas Mh

is composed of continuous piecewise polynomials of degree one satisfying the boundary condition eh · n|Γv
= 0.

Denoting again by Ih the Lagrange interpolation operator and by dt the finite difference temporal operator, we build an
approximate solution to (20) as follows:























Find Hh ∈ C
1(0, T ;Xh) and Eh ∈ C

0(0, T ;Mh) s.t.,

(µdtHh,bh)Ω + as (Hh,bh)+ (Eh,∇×bh)Ωv
=

(

1

σ
j,∇×bh

)

Ωc

, ∀bh ∈Xh,

(∇×Hh, eh)Ωv
− δsds (Eh, eh)= 0, ∀eh ∈Mh,

Hh|t=0 = IhH0.

(21)

The convergence analysis of this formulation, reported in [17], shows that the best convergence estimates are obtained if the
free parameter δs is chosen to be equal to the mesh size, h. Hence, hereafter we choose δs = h.

It is believed, though not yet proved completely, that the setting described above is such that an appropriate inf-sup condition
like (14) holds in the 3D situation; we refer to [17] for the mathematical details.

3. Electric scalar cases

We study configurations with Ez �= 0 and Hz = 0 in various geometries, where both the velocity and magnetic lines are
planar. To assess the performance of the finite element algorithm described in Section 2.1.2, we first compare analytic solutions
and numerical computations in the case of ohmic decay and in the case of a circular rotating conductor embedded in vacuum.
Situations with no analytic solutions are also investigated such as a square conductor and a circular conductor embedded in
conducting regions. Then we consider cases where the magnetic field lines are stretched by the flow, which is one of the basic
physical mechanisms involved in dynamo action.

3.1. Ohmic decay

We consider a solid conducting circular cylinder of radius R = 1 embedded in vacuum,

Ω =R
2, Ωc =

{

(x, y) ∈R
2,

√

x2 + y2 <R
}

. (22)

A uniform magnetic field parallel to the x-axis is sustained in the whole domain for t � 0 and is turned off for t > 0. We study
the evolution of the magnetic field for t � 0.

3.1.1. Analytical computation

Let us briefly recall how the analytic solution to this problem can be found. It can be inferred from (2) that, in non-
dimensional units, the magnetic field is a solution to the following set of equations,

∂H

∂t
=
H for r � 1, rot (H)= 0 for r > 1, and ∇·H= 0 in Ω, (23)

with H continuous across Σ and ‖H‖ → 0 for r →+∞. Using polar coordinates (er , eϕ , ez), the magnetic field may be
represented as

H(r,ϕ, t)=ℜ
[

∑

m

(

bmr (r, t)er + bmϕ (r, t)eϕ
)

exp(imϕ)

]

, (24)
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Table 1

m 1 2 3 4

λm 5.783 14.682 26.375 40.706

Table 2

Case λ1 Error (%) ne np h

1 5.678 1.82 2320 1201 0.15
2 5.776 0.12 7670 3916 0.15

where m is the azimuthal wavenumber. H being solenoidal, we introduce the stream-function ψ such that ∇×(ψez)=H, i.e.,

bmr = i
ψm

r
, bmϕ =−

1

m

∂ψm

∂r
. (25)

The continuity of H at r = 1 forces the continuity of ψm and its derivative. After some calculations, the solution reads:

for r � 1







bmr (r, t)= iCm

√
λm

2m

[

Jm+1
(√

λmr
)

+ Jm−1
(√

λmr
)]

exp(−λmt),

bmϕ (r, t)= Cm

√
λm

2m

[

Jm+1
(√

λmr
)

− Jm−1
(√

λmr
)]

exp(−λmt),
(26)

for r > 1

{

bmr (r, t)= iCmr−m−1Jm
(√

λm
)

exp(−λmt),

bmϕ (r, t)=Cmr−m−1Jm
(√

λm
)

exp(−λmt),
(27)

where Cm is a constant, Jm are the Bessel functions of the first kind, and λm is determined by Jm−1(
√
λm)= 0. Table 1 gives

some typical values of λm.
The smallest rate λ1, corresponding to the decay time of the uniform initial magnetic field m= 1, is numerically computed

in the next section.

3.1.2. Numerical results

For numerical purposes the domain Ω is truncated. We consider the following two numerical domains,

Ω1,h =]−5R,+5R[2 (case 1), Ω2,h =]−10R,+10R[2 (case 2). (28)

In each case we enforce Hh(t)× n to be zero at the boundary of the computational domain for t > 0. To evaluate λ1, we record
the time evolution of the total magnetic energy,

E(t)= 1

2

∫

Ω

µH2 dx, (29)

which decays as E(t = 0) exp(−2λ1t). A linear fit of the logarithm of E(t) gives λ1, the decay rate. The numerical results
obtained in the two cases are reported in Table 2. The three rightmost columns give, respectively, the number of finite elements
ne in each domain (i.e., the number of triangles used), the number of nodes np used for the computation of Hh, and the typical
mesh size h in the vicinity of the interface Σ . The number of elements to represent the conducting region is kept constant in the
two simulations. We observe here that the larger the computational domain the more accurate the computation of λ1.

3.2. Reconnections of magnetic field lines and steady regime in solid rotors

We again consider Ω =R
2, and a uniform magnetic field parallel to the x-axis, He = ex , is applied in the whole domain at

t = 0 and at infinity for t > 0. We study the evolution of the magnetic field and the stationary regime for simple rotor geometries
embedded in insulating or conducting regions. The characteristic lengthscale and velocity are denoted as R and U respectively.
Two timescales can then be constructed, the stretching time τs = R/U and the diffusive time τd = R2µσ .

3.2.1. Circular cylinder embedded in vacuum

We first consider a circular rotor of radius R = 1

Ωc =
{

(x, y) ∈R
2,

√

x2 + y2 <R
}

. (30)
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Fig. 2. Streamlines of the magnetic field. First observed reconnections at ωt = 4. Rotation is counter-clockwise.3

At t � 0 the cylinder is at rest; at latter times it rotates with the velocity u= ωez × r, where r = (x, y,0) and ez = (0,0,1).
This problem has been studied first in [21] and analytic solutions have been derived. A distinctive feature of this problem is that
the magnetic lines can reconnect to form closed loops during the transient regime.

The domain is truncated so that the actual computational domain is

Ω1,h =]−5R,+5R[2, (31)

whose numerical parameters are listed in the previous subsection: ne = 2320, np = 1201, h= 0.15. At t = 0 we set H0 =He

and for t > 0 we enforce H × n|∂Ω1,h = He × n. We perform simulations with different magnetic Reynolds numbers,

Rm = µσωR2.
It is shown in [21] that no reconnection of the magnetic lines can occur if Rm < Rc

m, with Rc
m ≈ 15.46, and, for magnetic

Reynolds numbers slightly higher than Rc
m , one reconnection should occur at a time t such that 4 � ωt � 5. Numerically

we observe no reconnection for Rm = 15, whereas one reconnection pair is observed for Rm = 16. These observations are
compatible with the value of the critical magnetic Reynolds number obtained by Parker. We illustrate this phenomenon in Fig. 2
by showing the numerical magnetic lines at ωt = 4 for the two cases Rm = 15 and Rm = 16.

In Fig. 3, we compare the analytic solution from [21] and the finite element one for Rm = 100. For times ωt = 1,2, . . . ,6,
the analytic solution is on the left of the figure and the numerical one is on the right. The first set of reconnections is observed
in the time interval 2 � ωt � 4. Note that reconnections always occur in pairs.

As time goes to infinity, the solution reaches a steady state for which the magnetic lines cannot reconnect. We show some
of these steady states in Fig. 4 for Rm = 10, 20, 40, and 100. We clearly observe in this figure the so-called skin effect: as the
magnetic Reynolds number increases, the magnetic field is expelled from the conductor, and a boundary layer appears at the
circumference of the cylinder. The skin width, or penetration length, is given by the formula δ =

√
2π/µσω = R

√
2π/Rm .

For instance, at Rm = 100 we have δ/R = 0.25. Note that this ratio is significantly larger than the grid size, h = 0.15, at
the interface Σ ; hence, the computation at Rm = 100 is meaningful. If the mesh size is too large with respect to δ/R, the
computation remains numerically stable, but the precision deteriorates; for instance, the divergence of the magnetic field is no
longer of the order of the consistency error.

In Fig. 5, the total magnetic energy for the magnetic Reynolds numbers Rm = 10, 20, 40, and 100 shows transient
oscillations due to the successive reconnections. In the steady regime, the energy is a decreasing function of Rm and saturates
at a level lower than the initial one due to expulsion of the magnetic field from the rotor. We clearly observe that the non-
dimensional reconnection time scales like ωτs = ωR/U = 1, while the non-dimensional time to reach steadiness scales like
ωτd = ωR2µσ = Rm.

We observe that at steady state, the induced magnetic field Hind =H−He outside the conductor is roughly that of a magnetic
dipole whose angle with respect to the vertical axis varies with the magnetic Reynolds number (see [22]). For example, Fig. 6
shows the lines of the induced magnetic field at Rm = 10 and Rm = 100. The angles of the dipole, counted from the vertical
axis, are 61◦ and 89◦ respectively, in accordance with [22]. Expulsion of the magnetic field from the rotor is achieved in the
limit Rm→∞ as the angle of the dipole converges to 90◦.

As Rm increases, the dipole axis rotates and tends to align itself with the opposite direction of the external field, and the
intensity of the magnetic field inside the rotor approaches that of the external field. As a result, the magnetic energy in the rotor
decreases to zero since it is contained in a shell of width comparable to the skin depth.

3 The window size does not correspond to the computational domain in figures 2–4, 6, 10, 13, 19 in order to focus on the physical mechanism.
In each case, or the radius is unity, or the size of the conducting square is 2. Each integration domain is defined in the text.
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Fig. 3. Streamlines of the magnetic field, Rm = 100. Analytical solution from [21] (gray lines), our computations (dark lines). Rotation is
clockwise.

Fig. 4. Streamlines of the magnetic field at steady state. Rotation is counter-clockwise. Note the skin effect.
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Fig. 5. Time evolution of the total magnetic energy for Rm = 10, 20, 40, 100 in non-dimensional time unit ωt for the rigid rotor in vacuum.

Fig. 6. Streamlines of the induced magnetic field Hind = H − He showing a dipole structure at Rm = 10 and Rm = 100. Rotation is
counter-clockwise and the imposed external fluid is He = ex .

3.2.2. Square cylinder embedded in vacuum

Keeping the same boundary conditions and initial data as in the previous example, we now consider a rotating conducting
cylinder of square section and of side L= 2,

Ωc =
]

−L

2
,+L

2

[2
. (32)

There is no known analytic solution for this case. The interface between the insulating and the conducting media is time
dependent. To avoid rebuilding the grid at each time step, we change the frame of reference so that the conducting cylinder is
kept fixed in a uniform magnetic field rotating with the angular velocity ω.

The numerical simulations are performed by using the following truncated domain

Ωh =
]

−
5L

2
,+

5L

2

[2
, (33)

at the boundary of which we enforce Hh(t)× n= (cos(ωt)ex + sin(ωt)ey )× n for t > 0. The Reynolds number is defined to
be Rm = µσω(L/2)2.

The two main differences with the rotor of circular cross section are that, during the transient phase, the threshold for the
first reconnections is lowered and more than two reconnections can occur at a given time.

The lowering of the critical magnetic Reynolds number is illustrated in Fig. 7. We show the magnetic lines at ωt = 2.7 for
Rm = 8 and Rm = 9. Our numerical simulations show that no reconnection occur for Rm = 8, whereas there is one pair for
Rm = 9 at ωt = 2.7; these results suggest 8 <Rc

m < 9.
To illustrate the fact that, when Ωc is a square, more than one pair of reconnections can occur at the same time, we show in

Fig. 8 the magnetic lines at ωt = 11 for Rm = 20. Four reconnections are clearly visible.
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Fig. 7. Streamlines of the magnetic field. First observed reconnections at ωt = 2.7.

Fig. 8. Streamlines of the magnetic field. Two pairs of reconnections at ωt = 11, Rm = 20.

Fig. 9. Streamlines of the magnetic field at steady state. Note the skin effect.

As in the case of the circular cylinder, for a given Rm, reconnections cease when t →+∞, and the magnetic field is
progressively expelled from the conducting medium as Rm increases. This skin effect is illustrated in Fig. 9 and qualitatively
resembles that observed for the rotor of circular cross section shown in Fig. 4.

3.2.3. Circular cylinder embedded in a conducting region

To demonstrate the ability of the FEM code to cope with various kind of boundary conditions, we have surrounded the
circular cylinder of radius R = 1 with a cylindrical conductive shell of radius a. Two cases are considered: a finite shell with the
ratio a/R = 1.5 and an “infinite” shell with a/R→∞ (i.e., in this case the numerical domain is uniformly conductive). These
two cases are compared with the reference situation corresponding to the ratio a/R = 1.
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Fig. 10. Magnetic lines showing a pair of reconnections at ωt = 3 for Rm = 100. Rotation is counter-clockwise.

The circular conducting region is then

Ωc =
{

(x, y) ∈R
2, r =

√

x2 + y2 < a
}

, (34)

and solid body rotation, u= ωez × r, is imposed within {r � R = 1}, such that the velocity is discontinuous at r = R. For all
ratios a/R � 1, the stationary solution coincides with the analytic steady state solution corresponding to a/R = 1 described in
Section 3.2.1 as proved by [1], but the transient evolution for a/R > 1 can only be determined numerically.

The actual computational domain is

Ω1,h =]−5R,+5R[2, (35)

whose numerical parameters are: ne = 2320, np = 1201, h|r=R = 0.15. The numerical modeling of a/R →∞ is done by
setting Ωc =Ω1,h, and we henceforth refer abusively to this situation by using the notation a/R =∞.

The magnetic lines show similar reconnections in the three cases, and these reconnections are always located within the rotor.
Fig. 10 shows the magnetic lines for Rm = 100 at the time ωt = 3, which corresponds to the first maximum of the magnetic
energy in the case a/R = 1.5.

The main qualitative difference we observe between the three cases considered is that, beyond r/R � 2, the magnetic lines
are curved in the reference case a/R = 1, whereas they are straight and parallel to the imposed external field outside the rotor
in the two other cases. Since, at short times (ωt = 3 ∼ ωτs ≪ ωτd ), the external induced field is restricted to a shell of width
comparable to the skin depth δ, the external magnetic field beyond r � R + δ is very close to the imposed field He . Significant
differences are also observed when looking at the time evolution of the total magnetic energy (Fig. 11). Due to the intense
stretching effects occurring at r = R, the amplitude of the oscillations induced by the reconnections increases significantly
with a/R. At the time ωt = 120, the energy for a/R = 1.5 differs from that for a/R = 1 by less than 0.1%, whereas the
energy for a/R =∞ decreases very slowly with time. The time for convergence to the common steady state is the diffusive
timescale ωτd (a/R) = ωa2µσ = Rm(a/R)2. This time is 100× 52 = 2500 in the case we denote by a/R =∞, since in this
case a/R ≈ 5.

This example shows that enforcing inadequate artificial boundary conditions at r = R to model the external non-conducting
medium may have dramatic effects on the computed solution.

3.3. Stretching of magnetic field lines by eddies

Although 2D flows cannot lead to dynamo action, as is well known from anti-dynamo theorems [1], they nevertheless exhibit
the main fundamental MHD processes, such as transient enhancement and final dissipation of magnetic fields by differential
rotation (the so-called Ω effect), or amplification in a converging flow. Aside from a few analytic solutions of academic interest,
the numerical approach is mandatory to have access to the time-dependent solution of the induction equation.

The goal of this section is to study the effects of simple fluid eddies on an external uniform magnetic field. The domain is
Ω =R

2 and Ωc is a circular cylinder of radius R = 1 containing a conducting fluid.
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Fig. 11. Evolution of the total magnetic energy with respect to the non-dimensional time ωt for Rm = 100 and a/R = 1, 1.5, ∞.

Fig. 12. Velocity vector fields for j−1 (left), j+1 (middle), and j2 (right).

3.3.1. The physical setting

To account for realistic flows, we henceforth choose velocity fields that are solutions to the 2D Euler equations. In polar
coordinates, the velocity field assumes the following form:







ur =−
m

r
Jm(λmr) sin(mθ),

uθ = λm
∂Jm

∂r
(λmr) cos(mθ),

(36)

for r � R = 1 where Jm are the Bessel functions of the first kind and λm is the first real root of Jm. Denoting Umax the
maximum flow speed, the magnetic Reynolds number is defined by Rm = σµUmaxR and time is given in units of turn-over
time τs = R/Umax for cases in Sections 3.3.2, 3.3.3, and 3.3.4.

We shall consider three cases: the first one, m= 1 and λ1 ≈ 3.83171, consists of two counter-rotating vortices (this field is
hereafter referred to as the j−1 velocity field); the second one consists of two co-rotating vortices obtained by using the j−1 -flow

on the right half plane x � 0 and the j−1 -flow reflected through the origin on the left half plane x < 0 (it is hereafter referred to

as the j+1 field); the third one, m= 2 and λ2 ≈ 5.13562, consists of four counter-rotating vortices creating a stagnation point at
the center of the cylinder (it is hereafter referred to as the j2 field). The three velocity fields are shown in Fig. 12.

The numerical simulations are performed in a truncated domain Ωh which will be described in due time for each
configuration. Two geometries for the imposed magnetic field are tested: He = ex and He = ey . At t = 0 we set H0 = He

and for t > 0 we enforce H× n=He × n at the boundary of Ωh.
We have also studied the velocity field (36) with m= 0 and λ0 ≈ 2.40483 (data not reported here), for which the orientation

of the applied uniform magnetic field is irrelevant. The time evolution of the magnetic energy and the patterns formed by the
magnetic lines are similar to those of a solid rotor surrounded by a conductive shell: the magnetic field is initially stretched by
the differential rotation term (H · ∇)u, and the magnetic energy settles to a value lower than the initial one.

3.3.2. Counter-rotating vortices

We first study the interaction between a horizontal magnetic field He = ex and the pair of counter-rotating vortices j−1 . The
numerical simulations are performed in the following truncated domain

Ω1,h =]−5R,+5R[2 (37)
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Fig. 13. Time evolution of the magnetic lines for counter-rotating vortices in turn-over time unit Umaxt/R; the imposed magnetic field is
He = ex . Left panels: Weiss’ results; Rm = 1000; a single band of counter-rotating vortices; one conducting periodic slab. Right panels: our
computations; Rm = 100; the j

−
1 flow embedded in vacuum.

whose numerical parameters are: ne = 2320, np = 1201, h= 0.15.
As time evolves, the applied uniform field is distorted by the velocity field and reconnections take place until a steady state

is reached. A typical evolution of the magnetic lines is shown in the right panels of Fig. 13 for Rm = 100.
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(a) (b)

Fig. 14. Time evolution of the total magnetic energy in turn-over time unit Umaxt/R for Rm = 10, 20, 40, 100 for the j−1 case in vacuum
subjected to (a) He = ex , (b) He = ey .

To make qualitative comparisons with our computations, we consider the results published in [23]. In this reference the
conducting domain is ]− 1

2 ,+
1
2 [

2, boundary conditions are periodic at x =± 1
2 , and Dirichlet boundary conditions are enforced

at y =± 1
2 , i.e., there is no insulating domain and the magnetic field lines are frozen at the top and bottom of the numerical box.

The velocity field is defined by ∇×(ψez) with the streamfunction ψ = − 1
4π (1− 4y2)4 sin(4πx). The results corresponding

to these data (drawn from [23]) are shown on the left panels of Fig. 13 to be compared with our j−1 -solution. Note that the
magnetic lines display similar patterns, although quantitative comparisons between our numerical results and Weiss’ are out of
question, for the geometries and the boundary conditions differ significantly.

The time evolution of the total magnetic energy is shown in Fig. 14(a). The energy amplification observed during the first
rotation period is due to the stretching term (H · ∇)u which induces reconnections of the magnetic lines in a way very similar
to what is observed in the rigid rotor case (see Section 3.2.3). As time increases, the magnetic field finally settles to a steady
state. The final energy is a decreasing function of Rm.

We have also studied the interaction of a vertical magnetic field He = ey with the j−1 flow embedded in vacuum. The
numerical simulations are performed in the following truncated domain

Ω2,h =]−2R,+2R[2 (38)

whose numerical parameters are: ne = 2610, np = 1332, h= 0.075. The spatial resolution is refined in this case to ascertain
accuracy. The time evolution of the total energy corresponding to this situation is presented in Fig. 14(b). We observe the same
types of features as those obtained by applying the horizontal magnetic field.

However, when comparing the magnetic fields at steady state, we observe significant differences. For He = ex (Fig. 13), the
magnetic lines exhibit cusp-like points, while, for He = ey , the magnetic field settles to a relatively smoother steady state (see
Fig. 15 for Rm = 100) with a significant amplification in the converging part of the flow (near x = 0, y = 0.6). In both cases,
the magnetic field is expelled from the vicinity of the two elliptic points of the flow.

To gain more insight on the amplification of the magnetic field that we observe at steady state in the region around the
point x = 0, y = 0.6, when He = ey , we represent in Fig. 16 the Hy -component of the magnetic field along the line y = 0.6
for Rm = 10, 20, 40, 100. As the skin depth δ = R

√
2π/Rm is the relevant lengthscale, we plot both the unscaled profiles

Hy (x, y = 0.6) and the rescaled ones Hy(x
√
Rm, y = 0.6). We observe that the maximum amplitude of the field does not scale

like
√
Rm as obtained by Weiss in a periodic flow. Between Rm = 10 and 100, this quantity shows no power law dependence

with Rm but seems to saturate as the magnetic Reynolds number increases, as already noted in the rotor case (see Section 3.2.1).
This should be confirmed by runs at higher Rm on finer grids.

3.3.3. Co-rotating vortices

In this section we study the interaction of the j+1 -flow with the enforced magnetic field He = ey . Let us recall that the

j+1 -flow is obtained by keeping the j−1 flow in the half plane x � 0, and by completing it in the half plane x < 0 by reflection
through the origin. The resulting vector field is solenoidal, and its tangential component along the x = 0 axis is discontinuous
(see the middle panel in Fig. 12).

The stretching term is locally diverging, but the FEM weak formulation allows for a discontinuous velocity field. Since
we want to compare the FEM solution with a case considered by Weiss [23], the conductivity is assumed to be equal to 1
everywhere; i.e., we set

Ωc =Ω2,h =]−2R,+2R[2 (39)
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Fig. 15. Magnetic lines at steady state for the j−1 case in vacuum, Rm = 100, and He = ey .

(a) (b)

Fig. 16. Magnetic field profiles Hy(x, y = 0.6) (a) and Hy(xs = x
√
Rm, y = 0.6) (b) for the j−1 -flow in vacuum and He = ey .

(with ne = 936, np = 495, h= 0.15). At t = 0 we set H0 =He and for t > 0 we enforce H× n=He × n at the boundary of
Ω2,h. The magnetic lines at steady state for Rm = 100 are shown in Fig. 17. We observe that magnetic lines cross the x = 0 axis
which is compatible with the symmetry of the velocity field. Indeed, as u(x, y, t) = −u(−x,−y, t) (central symmetry), then
H(x, y, t)=+H(−x,−y, t) with the appropriate boundary and initial conditions that we have used. Note that this crossing also
occurs in the rotor case (see Section 3.2.1).

Weiss [23] has considered a similar case (referred to as “single eddy”) with a velocity jump using a finite difference method
and a spatially periodic flow. The flow is defined by the streamfunction ψ = (−1/π)(1 − 4y2)4 cosπx. To keep clear of the
divergence of the stretching term, the discontinuity of the velocity field is made to coincide with the periodic boundaries at
x =±1/2. The computational domain is fully conducting and Dirichlet conditions are imposed at the top and bottom of the nu-
merical box, y =±1/2. In contrast to our solution, the magnetic lines in Weiss’ computation (see for example his Fig. 2) remain
parallel to the vertical lines of discontinuity (x =±1/2 corresponding to x = 0 in our case) and do not cross it. Once again, this
example illustrates the fact that inadequate artificial boundary conditions may have important effects on the computed solution.

The time evolution of the magnetic energy for Rm = 10, 40, 100 is shown in Fig. 18. The results are similar to those obtained
previously with the double vortex j−1 flow.

3.3.4. Stagnation point

We finally consider the j2-flow embedded in vacuum. This flow exhibits a stagnation point. This configuration is often
studied in 3D for its ability to amplify the magnetic field. The numerical simulations are performed in the following truncated
domain

Ω1,h =]−5R,+5R[2 (40)
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Fig. 17. Streamlines of the magnetic field at Rm = 100 in the steady state for the j+1 flow in a conducting domain and He = ey .

(a) (b)

Fig. 18. Time evolution of the total magnetic energy in turn-over time unit Umaxt/R: (a) 0 � Umaxt/R � 30; (b) until convergence; Rm = 10,
40, 100; j+1 -flow in a conducting medium; He = ey .

whose numerical parameters are: ne = 2320, np = 1201, h = 0.15. We set He = ey , H0 = He at t = 0, and for t > 0 we
enforce H × n = He × n at the boundary of Ω1,h. Our solution obtained with Rm = 100 is shown in Fig. 19 (bottom
right panel). We compare the magnetic lines to that of [23] at Rm = 1000 where the flow is defined by the streamfunction
ψ = 1

4π sin 2πx sin 4πy if |y| � 1
4 and ψ = 0 otherwise. The flow is shown in the top panel in Fig. 19, and the magnetic lines

are shown in the bottom left panel. In both cases, inspection of the magnetic lines shows that inside the conducting region the
magnetic flux is expelled from the vicinity of the four elliptic points and concentrate within tubes of width comparable to the
skin depth. Note that in contrast to the j−1 -configuration, the converging region whose axis is perpendicular to the external
magnetic field is inefficient (see Fig. 13).

3.4. Scaling laws for the internal magnetic energy

For all the preceeding velocity flows, the total magnetic energy at steady state decreases with Rm . This is in contrast with
Weiss’ results which requires some discussion. Since the vortices of Weiss are periodic, the final concentration of the magnetic
field in tubes of transverse size scaling like 1/

√
Rm enforces the magnetic field to scale like

√
Rm , which is verified by Weiss’

solutions. In the present work, we have considered isolated vortices and have verified that the 1/
√
Rm skin depth scaling is

valid. However, the magnetic flux concentrated in a tube with a minimal width comparable to the skin depth stems from a
boundary strip which varies with Rm, so that the flux tube argument used for the periodic flow cannot be invoked in the case of
isolated eddies.

The internal magnetic energy Emi at steady state is a function of Rm which can be computed numerically. In the solid
rotor case, we expect that Emi scales like 1/

√
Rm since the maximal field saturates and is concentrated in a shell of width
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Fig. 19. Top: velocity lines for the double band of counter-rotating vortices considered by Weiss [23]. Bottom left: magnetic lines at steady state
in the conducting periodic slab considered by Weiss, Rm = 1000. Bottom right: magnetic lines at steady state using the j2-flow embedded in
vacuum, Rm = 100. In both cases the imposed magnetic field is He = ey .

Fig. 20. Scaling laws R
−β
m of the internal magnetic energy Emi for different 2D flows as indicated: RR for rigid rotor, βRR = 0.38; j0 for the

j0-flow, βj0 = 0.37; j1m for the j
−
1 -flow, β

j−1
= 0.35; j1p for the j

+
1 -flow, β

j+1
= 0.28 and j2 for the j2-flow, βj2 = 0.31.

comparable to the skin depth. Fig. 20 shows that Emi scales like R
−β
m for five different flows: solid rotor, j0, j+1 , j−1 and j2

for 10 � Rm � 100. The slopes β vary between 0.28 and 0.38 for the truncated domain Ω1,h. The departure from βrotor = 0.5
can be due to truncation discretization or to the narrow range of magnetic Reynolds numbers studied. In any case, the results
suggest that Emi is always a decreasing function of Rm for any 2D flow. This conjecture can be considered as a generalization
of the anti-dynamo theorem for planar flows submitted to an external field.

This section shows that accounting properly for vacuum and enforcing proper boundary conditions is important in the context
of the dynamo problem.

4. Magnetic scalar cases

We study configurations with H=Hzez and Ez = 0 in various geometries, where both the velocity and the current field are
planar. To assess the performance of the finite element algorithm described in Section 2.2.2, we first compare analytic solutions
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and numerical computations for ohmic decay and induction heating. We next consider the generation of eddy currents with a
magnetic Reynolds number of order unity. Finally we study the electric current flowing in a compound domain.

4.1. Ohmic decay

A constant magnetic field parallel to the z-axis is sustained in the whole domain, Ω = R
2, for t � 0 and is switched off at

t > 0. Conducting media subjected to this type of condition develop Ohmic currents which control the decay of the magnetic
field. To illustrate this effect, we consider the case of a conducting circular cylinder of radius R = 1 embedded in vacuum,

Ωc =
{

(x, y) ∈R
2,

√

x2 + y2 < 1
}

. (41)

The analytic solution to this problem can easily be calculated. Defining H= (0,0, b), assuming axisymmetry, and recalling
that the magnetic field is the solution to problem (23), we obtain

b(r, t)=
{

J0
(√

λ0r
)

exp(−λ0t) for r � 1,
0 for r � 1,

(42)

where
√
λ0 is the first root of the Bessel function J0, leading to λ0 ≈ 5.783.

The numerical simulations are performed in two truncated domains

Ω0,h =]−2R,+2R[2 (case 1), Ω1,h =]−5R,+5R[2 (case 2). (43)

At t = 0 we set H0 = ez , and for t > 0 we set the magnetic field to zero at the external boundary, i.e., H× n|∂Ωh
= 0.

To evaluate the decay rate λ0, we record the magnetic energy in time, E(t), then, assuming the decay E(t = 0) exp(−2λ0t),
we perform a linear fit of the logarithm of E(t). The results are reported in Table 3.

Table 3

Case λ0 Error (%) ne np h

1 5.882 1.72 424 239 0.3
2 5.812 0.50 2320 1201 0.15

As expected, the computed value of λ0 in the second case is the closest to the analytic solution, since in this case the external
boundary is farther from the interface Σ than in the first case, and the mesh is twice as fine. This conclusion is the same as that
we have derived for Ohmic decay in the scalar electric case in Section 3.1.2.

4.2. Induction heating

It is well known that externally controlled time varying magnetic fields induce currents and Ohmic heating in conducting
bodies. As an example of this phenomenon, we consider an harmonic magnetic field heating a circular cylinder of radius R = 1

Ω =R
2, and Ωc =

{

(x, y) ∈R
2,

√

x2 + y2 < 1
}

. (44)

Denoting by He exp(iωt) the external magnetic field, setting H= (0,0, b), and assuming the solution to be harmonic in time,
the analytic solution to this problem is

b(r, t)=







He
be(r

√
2π/δ)

be(
√

2π/δ)
exp(iωt), for r � 1,

He exp(iωt), otherwise,
(45)

where δ =
√

2π/µσω and be(r)≡ ber(r)+ i bei(r)= J0((−1+ i)r/
√

2) is the Kelvin function (see [19] for more details).
The numerical simulation is performed on the truncated domain

Ω0,h =]−2R,+2R[2. (46)

The initial data is zero. The frequency of the external oscillating magnetic field is chosen to be ω = 2π . For this frequency, the
skin depth δ = 1 is of the same order as R = 1, and one consequently expects only a moderate attenuation of the magnetic field
within the conducting cylinder.

In Fig. 21, we have plotted the real amplitude of the numerical solution at r = 1, i.e., bnum(1, t), as a function of that at
r = 0, i.e., bnum(0, t), for 0 � t � 2. It is clear that the transient regime does not last more than one period.

Defining φ(r) to be the ratio of the complex amplitude of the magnetic field at radius r to that at radius r = 0 as
t →+∞, our numerical solution gives φnum(1) ≈ 1.51 exp(i 1.29). This function compares very well with the analytic one
φ(1)= be(

√
2π)≈ 1.52 exp(i 1.31).
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Fig. 21. Time evolution of the magnetic field at the conductor circumference as a function of the magnetic field at the centre. After t > 1, the
forced steady regime is reached.

4.3. Eddy currents

Important industrial applications of magneto-dynamics consist of braking or driving bodies, either in solid or fluid state, by
applying magnetic fields to conducting materials. In the present preliminary study, we illustrate the value of the FEM approach
by showing a few academic 2D examples in this spirit.

An external static magnetic field is applied within a cross section only partially covering a moving conductor. Eddy currents
are thus generated, and the corresponding Lorentz force acts against the movement. When the interface between the conducting
and insulating media is close to the domain where the magnetic field is enforced, the eddy currents are influenced by edge
effects, and in this case the numerical approach proves to be very convenient. Denoting by He the enforced external field
and h the induced magnetic field, the total magnetic field is H = h + He . This decomposition is inserted into the weak
formulation (20) to obtain the evolution equation for h. The external magnetic field is then accounted for as an external source
current js = µσ(u×He).

Let us consider a semi-infinite conducting plane, {x < 4}, moving with a rectilinear velocity, v, in the direction of the y-axis.
The truncated computational domain is the sum of the conductor,

Ωc,h =
{

(x, y) ∈R
2, −4 � x < 4, −4 � y � 8

}

(47)

and of the vacuum,

Ωv,h =
{

(x, y) ∈R
2,4 � x � 12,−4 � y � 8

}

. (48)

The integration domain is shown on Fig. 22(a).
The external magnetic field, He , is applied inside a circle of radius R1 = 1 centred at xc = 1.5, yc = 0. It follows that in this

area, there is an external source current, js =µσ(vey ×He). Since the eddy currents must flow freely from Γc , we enforce the
following natural boundary conditions on Γc ,

(∇×h)× n|Γc
= 0, (49)

which, in the scalar magnetic case, amounts to ∂nh|Γc
= 0.

Let us now give some details on how to enforce this boundary condition naturally. The PDE’s we want to solve are






































∂t (µh)=−∇×E in Ω,

∇×h= σ
(

E+ u×
(

µ(h+He)
))

in Ωc,

∇×h= 0 in Ωv,

∇·E= 0 in Ωv,

h× n|Γv
= 0, (∇×h)× n|Γc

= 0,
E · n|Γv

= 0,
h|t=0 = h0.

(50)
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(a) (b)

Fig. 22. Integration domains for the semi-infinite sheet (a) and disk case (b). The imposed magnetic field He is limited to an excentred disk of
radius R1 = 1 centred at (1.5;0) for (a) and (0;−2) for (b).

Taking the scalar product of Faraday’s law with a test function b and integrating by parts, we obtain

(µ∂th,b)Ω +
(

1

σ
∇×h,∇×b

)

Ωc

− (u×µh,∇×b)Ωc

+ (E,∇×b)Ωv
+

∫

Γ

(E× n) · b= (u×µHe,∇×b)Ωc
, ∀b. (51)

By taking test functions that satisfy b× n|Γv
= 0, and by using Ohm’s law together with the fact that He|Γc

= 0 (localization
hypothesis) and (∇×h)× n|Γc

= 0, the remaining surface integral reduces to
∫

Γ

(E× n) · b=−
∫

Γc

(

(u×µh)× n
)

· b. (52)

In conclusion, the weak equations to be solved are






















(

µ∂th,b
)

Ω
+

(

1

σ
∇×h,∇×b

)

Ωc

− (u×µh,∇×b)Ωc
+ (E,∇×b)Ωv

−
∫

Γc

(

(u×µh)× n
)

· b= (u×µHe,∇×b)Ωc
, ∀b,

(∇×h, e)Ωv
− δsds (E, e)= 0, ∀e,

h|t=0 = h0, E · n|Γv
= 0, h× n|Γv

= 0.

(53)

It is the presence of the boundary integral in this weak formulation that enforces naturally the boundary condition (∇×h)×
n|Γc

= 0.
The contours of the induced magnetic field are represented in Fig. 23, where it can be seen that the larger the imposed

velocity the longer the wake.
We have performed a parametric study of the Lorentz force as a function of the magnetic Reynolds number, Rm = µσvR1 .

The Lorentz force has a dominating braking component, Fy , while the horizontal component, Fx , is induced by the presence
of the insulating medium. Fig. 24(a) shows the asymptotic value of Fy for t →+∞ as a function of Rm. It is clear from this
figure that Fy is a linear function of Rm for Rm � 0.1. This linearity can be shown using the dynamo equation

∂th= Rm∇×
(

u× (h+He)
)

+∇2h (54)

scaled with the ohmic diffusion time τd = µσR2
1 . For Rm ≪ 1, |h| ≪ |He|, then |h| and |j| scale like Rm|He|. The Lorentz

force Fy = −µjx(h + He) ∼ −µjxHe is then linear in Rm. At greater magnetic Reynolds numbers, the induced magnetic
field cannot be neglected with respect to |He| and linearity in Fy is lost. Note that slow convergence toward the steady state is
observed in the time evolution of Fx as shown in Fig. 24(b) for various Rm . This effect is the manifestation of the competition
between induction and diffusion.

To be closer to real devices, we consider now a conducting circular cylinder of radius R2 = 4 embedded in vacuum and
rotating with the counter-clockwise angular velocity ω. The source is modelled by a constant magnetic field He parallel to the
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(a) (b)

Fig. 23. Contours of the induced magnetic field in the half plane. He is limited to a disk of radius R1 = 1 centred at (1.5;0). The thick solid
line is the frontier between the conductor and the vacuum. Solid (dashed) lines correspond to positive (negative) values. The imposed velocity
is (a) v = 0.1 and (b) v = 1.

(a) (b)

Fig. 24. Lorentz force: (a) Fy component as a function of Rm, (b) time evolution of Fx component as a function of Rm (from top to bottom at
short times, Rm = 0.025, 0.05, 0.075, 0.1, 0.5, 1.0).

z-axis and applied within a disk of radius R1 = 1 centred at xc = 0, yc =−2. The integration domain is shown in Fig. 22(b).
Note that no natural boundary condition need be enforced since Γc = ∅.

The circulation of the eddy currents is limited to the circular region of radius R2. For small magnetic Reynolds numbers,
Rm = µσR2

2ω, the contours of the induced magnetic field are approximately symmetric with respect to the vertical diameter as
can be seen in Fig. 25(a) for ω = 0.1 (Rm = 1.6). This distribution compares well with analytic results from [24] (not shown
here).

At low magnetic Reynolds numbers, which is the case of practical applications, the induced field remains small compared
to the applied field. If the latter is symmetric with respect to the meridian plane x = 0, see Fig. 25(a), then the induced
field is antisymmetric, that is, hz(x, y, t) = −hz(−x, y, t). At higher magnetic Reynolds numbers, the induced field becomes
significant; therefore, the total magnetic field, which is the source term of the induced field (through the term σu× (h+He)),
is the sum of fields with different symmetry properties. This explains why the induced field represented in Fig. 25(b) has lost
symmetry and has a wake-like shape instead.

4.4. Current flowing in a compound domain

In the preceding examples, the external magnetic field parallel to the z-axis was piecewise uniform and no imposed current
was flowing. If the enforced external magnetic field has a constant gradient in a direction normal to Oz, then a uniform density
current flows in the direction orthogonal to this gradient and orthogonal to Oz. We examine here the effect of an insulating
obstacle on such a current.

To be more specific, a magnetic field parallel to the z-axis, of intensity −2 at y =−4 and +2 at y = 4, constant in time, is
applied on a square domain of side L= 8,

Ω =]−4,+4[2. (55)
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(a) (b)

Fig. 25. Contours of the induced magnetic field in a domain consisting of a circular conductor of radius R2 = 4 (thick solid line) embedded in
vacuum. The imposed magnetic field He is limited to a disk of radius R1 = 1 centred at (0;−2). Solid (dashed) lines correspond to positive
(negative) values. The imposed rotation rate is (a) ω= 0.1 and (b) ω= 1. Rotation is counter-clockwise.

Fig. 26. Streamlines of the electric field in a domain composed by a circular conductor of radius R1 = 1 embedded in vacuum of R2 = 4 limited
by a conducting square of side L= 8. Note the discontinuity of the normal component of the electric field at the interfaces.

Homogeneous Neumann conditions are enforced on the external vertical sides x =±4. This boundary condition implies that a
current intensity+4 is flowing in the x-direction through the section (y, z) of the domain. To demonstrate the ability of the FEM
code to cope with successive matching conditions, a circular cylinder of radius R2 = 2 centered at (0,0) forms an insulating
obstacle to this current, and a conducting circular cylinder of radius R1 = 1 is set in the middle of the insulating region. The
streamlines of the steady electric field simulated numerically are shown in Fig. 26.

Due to the presence of the non-conducting cavity, the current streamlines are deviated. Surface charges appear at the
boundary-vacuum interface, at r = R2 = 2, such that the tangential component of electric field is continuous but its normal
component is discontinuous. The presence of a conducting material without current at the centre forces the electric field to
be zero in this region, i.e., for r � R1 = 1. Continuity of the tangential component of the electric field across the interface
r = R1 = 1 forces the electric field to be normal there. The discontinuities of the normal component of the electric field are
clearly apparent in Fig. 26.
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5. Conclusion

We acknowledge the support of the ASCI laboratory (CNRS) where this work was initiated. We have tested numerically a
new finite element technique for solving the Maxwell equations in the MHD limit in presence of conducting and non-conducting
media. Contrary to penalization techniques (see [15]), we have accounted exactly for the insulating medium.

The limitation of our codes is that the boundary conditions at infinity are imposed at finite distance as in many other
numerical studies. For practical purposes, we have seen that by using a sufficiently large integration domain, truncation errors
can be reduced significantly (less than 1

2 % for an integration domain five times larger than the conductor).
We have preferred Lagrange finite elements to edge elements (the so-called Whitney elements) for their simplicity and, since

Lagrange finite elements are natural candidates for solving the Navier–Stokes equations, we have preferred to restrict ourselves
to these elements. We are aware that this choice may be restrictive in some circumstances. For instance, if simultaneously
the conductor/insulator interface is not smooth and if µ is discontinuous then it may happen that the Lagrange finite element
solution does not converge to the exact solution of the problem (see [25]). However, we do not expect this situation to occur in
the dynamo context.

We have studied two families of 2D problems, where either the magnetic field or the current field is coplanar with the flow
with magnetic Reynolds numbers up to 100. We have successfully compared our numerical results with some analytic solutions.
We have also investigated physically relevant problems such as magnetic flux expulsion, magnetic field stretching, and eddy
current generation. In each case, we have demonstrated the ability of the FEM formulation to compute physically consistent
electric and magnetic fields in realistic domains.

The investigation of 3D cases using the algorithm described in [17] is currently in progress with a particular focus on the
nonlinear dynamo action.
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