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Abstract 
 
Purpose - This study aims to apply a new forecasting approach to improve 
predictions in the hospitality industry. In order to do so we develop a multivariate 
setting that allows incorporating the cross-correlations in the evolution of tourist 
arrivals from visitor markets to a specific destination in Neural Network models. 
 
Design/methodology/approach - This multiple-input multiple-output approach 
allows generating predictions for all visitors markets simultaneously. Official data 
of tourist arrivals to Catalonia (Spain) from 2001 to 2012 are used to generate 
forecasts for 1, 3 and 6 months ahead with three different networks. 
 
Findings – The study reveals that multivariate architectures that take into account 
the connections between different markets may improve the predictive 
performance of neural networks. Additionally, we develop a new forecasting 
accuracy measure and find that radial basis function networks outperform the rest 
of the models. 
 
Research limitations/implications - This research contributes to the hospitality 
literature by developing an innovative framework to improve the forecasting 
performance of artificial intelligence techniques and by providing a new 
forecasting accuracy measure. 
 
Practical implications - The proposed forecasting approach may prove very 
useful for planning purposes, helping managers to anticipate the evolution of 
variables related to the daily activity of the industry. 
 
Originality/value – A multivariate neural network framework is developed to 
improve forecasting accuracy, providing professionals with an innovative and 
practical forecasting approach. 
 
Keywords: Forecasting, Tourism, Spain, Neural Networks, Hospitality industry, 
Management, Accuracy measures, Cointegration 
 
Article Classification: Research Paper 
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I. Introduction 

 

International tourism is becoming one of the most important activities 

worldwide. As a result, an increasing amount of financial resources are flowing to 

the hospitality industry. In order to efficiently allocate the increasing investments, 

both public and private sectors need accurate forecasts of tourism demand, 

specially at the destination level (Reyonlds et al., 2013). Accurate estimates of the 

demand for tourism enable decision makers and managers in the hospitality 

industries to improve strategic planning. 

New forecasting methodologies play an important role in this context, as they 

often allow to improve the predictive accuracy of estimates. As a result, a growing 

body of literature has focused on tourism demand forecasting. Most research 

efforts apply econometric models such as static almost-ideal demand system 

(AIDS) models (Han et al., 2006), error correction (EC) and co-integration (CI) 

models (Veloce, 2004; Ouerfelli, 2008, Lee, 2011), vector autoregressive (VAR) 

models (Song and Witt, 2006), time varying parameter (TVP) models (Song et al., 

2011). Choice models (Talluri and van Ryzin, 2004) have also been increasingly 

used in revenue management. 

Time series models such as exponential smoothing (Athanasopoulos et al., 

2012) and autoregressive integrated moving average (ARIMA) models (Claveria 

and Datzira, 2010; Assaf et al., 2011; Gounopoulos et al., 2012) have been widely 

used in the literature. While there is no consensus on the most appropriate 

approach to forecast tourism demand (Kim and Schwartz, 2013), there seems to 

be unanimity on the importance of applying new approaches to tourism demand 

forecasting (Song and Li, 2008), and on the fact that nonlinear methods 

outperform linear methods in modelling economic behaviour (Cang, 2013). 

Nevertheless, nonlinear models are still limited in that an explicit relationship 

for the data series has to be assumed with little knowledge of the underlying data 

generating process. Since there are too many possible nonlinear patterns, the 

specification of a nonlinear model to a particular data set becomes a difficult task. 

The suitability of artificial intelligence (AI) techniques to handle nonlinear 

behaviour and the need for more accurate forecasts explain why these techniques 

have become an essential tool for economic and tourism forecasting. 
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AI methods can be divided into five categories: grey theory, fuzzy time series, 

rough sets approach, support vector machines (SVMs) and artificial neural 

networks (ANNs). Yu and Schwartz (2006) use grey theory and fuzzy time series 

models in predicting annual US tourist arrivals. Goh et al. (2008) apply a rough 

sets algorithm to forecast US and UK tourism demand for Hong Kong. SVMs 

were first applied to tourism demand forecasting by Pai et al. (2006) in order to 

obtain predictions of visitors to Barbados. Chen and Wang (2007) find empirical 

evidence that SVMs outperform ARIMA models in predicting quarterly tourist 

arrivals to China. 

ANNs are a flexible tool for modelling and forecasting. The introduction of the 

backpropagation algorithm fostered the use of ANNs for forecasting purposes, 

such as predicting business failure (Coleman et al., 1991), personnel inventory 

(Huntley, 1991), international airline passenger traffic (Nam and Schaefer, 1995), 

etc. Some of the first applications of ANNs for tourism demand forecasting are 

those of Pattie and Snyder (1996) and Law (1998). Many authors have found 

evidence that ANNs outperform time series models for tourism demand 

forecasting (Law, 2000; Cho, 2003; Claveria and Torra, 2014). Zhang et al.(1998) 

review the literature comparing ANNs with time series models. 

Additionally, the fact that tourism data are characterised by strong seasonal 

patterns and volatility, make it a particularly interesting field in which to apply 

new forecasting techniques. ANNs can be regarded as a multivariate nonlinear 

nonparametric statistical method. As data characteristics are associated with 

forecast accuracy (Peng et al., 2014), nonlinear data-driven approaches such as 

ANNs represent a flexible tool for forecasting, allowing for nonlinear modelling 

without a priori knowledge about the relationships between input and output 

variables. 

ANNs can be classified into two major types of architectures depending on the 

connecting patterns of the different layers: feed-forward networks and recurrent 

networks. In feed-forward networks the information runs only in one direction, 

while in recurrent networks there are bidirectional data flows. The feed-forward 

topology was the first to be developed. The most widely used feed-forward model 

in tourism demand forecasting is the multi-layer perceptron (MLP) network 

(Uysal and El Roubi, 1999; Law, 2000, 2001; Law and Au, 1999, Burger et al., 



 4

2001; Tsaur et al., 2002; Kon and Turner, 2005; Palmer et al., 2006; Padhi and 

Aggarwal, 2011). 

A special class of multi-layer feed-forward architecture with two layers of 

processing is the radial basis function (RBF) network. RBF ANNs were devised 

by Broomhead and Lowe (1988). The first attempt to use RBF ANNs in tourism 

demand forecasting is that of Cang (2013), who generates RBF, MLP and SVM 

forecasts of UK inbound tourist arrivals and combines them in non-linear models. 

Another paper in which RBF ANNs are implemented is that of Cuhadar et al. 

(2014), who evaluate the forecasting accuracy of RBF networks to predict cruise 

tourist demand to Izmir (Turkey). 

The fact that recurrent networks allow for temporal feedback connections from 

outer layers to lower layers of neurons make them specially suitable for time 

series modelling. There are many recurrent architectures. A special case of 

recurrent network is the Elman network (Elman, 1990). This ANN model has not 

been used in tourism demand forecasting except by Cho (2003), who applies the 

Elman architecture to predict the number of arrivals from different countries to 

Hong Kong. 

This study seeks to break new ground by evaluating the forecasting 

performance of three different ANN models (MLP, RBF and Elman) in a 

multivariate setting based on multiple-input multiple-output (MIMO) structures. 

By incorporating cross-correlations between foreign visitor markets to a specific 

destination we can simultaneously obtain forecasts for all countries, without 

having to estimate the models for each market. The proposed forecasting approach 

is designed so as to improve the forecasting accuracy of ANNs and may prove 

very useful for effective policy planning. The main aim of the study is to provide 

investors and managers with a useful procedure to anticipate the evolution of 

demand for all different markets simultaneously. 

Multivariate approaches to tourist demand forecasting are also few and have 

yielded mixed results. While Athanasopoulos and Silva (2012) find that 

exponential smoothing methods in a multivariate setting improve the forecasting 

accuracy of univariate alternatives, du Preez and Witt (2003) obtain evidence that 

multivariate time series models do not generate more accurate forecasts than 

univariate time series models. 
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When comparing the performance of different ANN models we are evaluating 

the impact of alternative ways of processing data on forecast accuracy. ANNs 

learn from experience. In non-supervised learning networks, the subjacent 

structure of data patterns is explored so as to organize such patterns according to 

their correlations. While MLP networks are supervised learning models, RBF 

networks combine both supervised and non-supervised learning, which is known 

as hybrid learning. 

The present study focuses on international tourist arrivals to Catalonia, which 

is a region of Spain, the world’s third most important destination after France and 

the US, with 60 million tourist arrivals in 2013. Capó et al. (2007) and Balaguer 

and Cantavella-Jordá (2002) show the fundamental role of tourism in the Spanish 

long-run economic development. Catalonia received 15,5 million tourists in 2013, 

which accounted for 25% of tourism revenues in Spain. The first four moths of 

2014, Catalonia experienced a 10.4% growth of tourist arrivals with respect to the 

same time last year. It follows that tourism is one of the fastest growing sectors in 

Catalonia. These figures also show the importance that accurate forecasts of 

tourism volume have for policy makers and professionals in the hospitality and 

leisure industry. 

We use official statistical data of tourist arrivals from all countries of origin to 

Catalonia over the period 2001 to 2012. By means of the Johansen test we find 

correlated accelerations between the different markets, which leads us to apply a 

multivariate approach to obtain forecasts of tourism demand for different forecast 

horizons (1, 3 and 6 months). To assess the effect of expanding the memory on 

forecast accuracy, we repeat the analysis assuming different topologies with 

respect to the number of lags used for concatenation. Finally, we compute several 

measures of forecast accuracy and the Diebold-Mariano (DM) test for significant 

differences between each two competing series. 

The structure of the paper is as follows. Section 2 describes the different neural 

networks architectures used in the analysis. Section 3 analyses the data set. 

Section 4 presents the methodology used in the study. In Section 5, results of the 

forecasting comparison are presented. Concluding remarks are given in Section 6. 

Finally, we discuss on the limitations of the analysis and the lines for future 

research in Section 7. 
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2. Artificial Neural Network models 

 

This is the first study that implements multiple-input multiple-output ANN 

architectures to tourism demand forecasting. This framework allows to 

incorporate the common trends in inbound international tourism demand from all 

visitor markets to a specific destination in ANNs. Multivariate networks also 

allow to generate predictions for all countries simultaneously, instead of 

implementing each model for each visitor market. Additionally, we repeat the 

analysis using different memory values in order to test the effect on the 

forecasting accuracy of the number of lags included in the models. 

In this study we focus on three ANN models (MLP, RBF and Elman). Each 

network represents a different way of handling information. A complete summary 

on ANN modelling issues can be found in Bishop (1995) and Haykin (1999). 

 

2.1. Multi-layer perceptron neural network 

 

MLP networks consist of multiple layers of computational units interconnected 

in a feed-forward way. MLP networks are supervised neural networks that use as 

a building block a simple perceptron model. The topology consists of layers of 

parallel perceptrons, with connections between layers that include optimal 

connections. The number of neurons in the hidden layer determines the MLP 

network’s capacity to approximate a given function. In this work we used the 

MLP specification suggested by Bishop (1995) with a single hidden layer and an 

optimum number of neurons derived from a range between 5 and 25: 
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Where ty  is the output vector of the MLP at time t ; g  is the nonlinear 

function of the neurons in the hidden layer; itx −  is the input value at time it −  

where i  stands for the memory (the number of lags that are used to introduce the 

context of the actual observation.); q  is the number of neurons in the hidden 
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layer; ijφ  are the weights of neuron j  connecting the input with the hidden layer; 

and jβ  are the weights connecting the output of the neuron j  at the hidden layer 

with the output neuron. 

 

2.2. Radial basis function neural network 

 

RBF networks consist of a linear combination of radial basis functions such as 

kernels centred at a set of centroids with a given spread that controls the volume 

of the input space represented by a neuron (Bishop, 1995). RBF networks 

typically include three layers: an input layer; a hidden layer and an output layer. 

The hidden layer consists of a set of neurons, each of them computing a 

symmetric radial function. The output layer also consists of a set of neurons, one 

for each given output, linearly combining the outputs of the hidden layer. The 

output of the network is a scalar function of the output vector of the hidden layer. 

The equations that describe the input/output relationship of the RBF are: 
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Where ty  is the output vector of the RBF at time t ; jβ  are the weights 

connecting the output of the neuron j  at the hidden layer with the output neuron; 

q  is the number of neurons in the hidden layer; jg  is the activation function, 

which usually has a Gaussian shape; itx −  is the input value at time it −  where i  

stands for the memory (the number of lags that are used to introduce the context 

of the actual observation); jμ  is the centroid vector for neuron j ; and the spread 

jσ  is a scalar and it can be defined as the area of influence of neuron j  in the 

space of the inputs. The spread jσ  is a hyper parameter selected before 

determining the topology of the network, and it was determined by cross-

validation on the training database. 
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2.3. Elman neural network 

 

An Elman network is a special architecture of the class of recurrent neural 

networks, and it was first proposed by Elman (1990). The architecture is also 

based on a three-layer network but with the addition of a set of context units that 

allow feedback on the internal activation of the network. There are connections 

from the hidden layer to these context units fixed with a weight of one. At each 

time step, the input is propagated in a standard feed-forward fashion, and then a 

back-propagation type of learning rule is applied. The output of the network is a 

scalar function of the output vector of the hidden layer: 
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Where ty  is the output vector of the Elman network at time t ; tjz ,  is the output 

of the hidden layer neuron j  at the moment t ; g  is the nonlinear function of the 

neurons in the hidden layer; itx −  is the input value at time it −  where i  stands for 

the memory (the number of lags that are used to introduce the context of the actual 

observation); ijφ  are the weights of neuron j  connecting the input with the hidden 

layer; q  is the number of neurons in the hidden layer; jβ  are the weights of 

neuron j  that link the hidden layer with the output; and ijδ  are the weights that 

correspond to the output layer and connect the activation at moment t . Note that 

the output ty  in our study is the estimate of the value of the time series at time 

1+t , while the input vector to the neural network will have a dimensionality of 

1+p . 

 

3. Data set 
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In this study we use the number of international tourist arrivals to Catalonia 

(first destination) over the period 2001:01 to 2012:07. Data is provided by the 

National Institute of Statistics (INE). Table 1 shows a descriptive analysis of 

tourist arrivals to Catalonia for the out-of-sample period (January 2009 to July 

2012). Since data characteristics, including the origin of tourists, have an 

influence on the predictive ability of the models, we use tourist arrivals from all 

source markets. The first four visitor countries (France, the United Kingdom, 

Belgium and the Netherlands and Germany) account for more than half of the 

total number of tourist arrivals to Catalonia. Russia is the country that presents the 

highest dispersion in tourist arrivals, while Italy shows the highest levels of 

Skewness and Kurtosis. 

 
Table 1. Descriptive analysis of tourist arrivals (levels) 
 

Before estimating the models, we determine whether the underlying process 

which generated the series is stationary. If the series are found to have a unit root, 

differencing is necessary to obtain stationary series (Lim et al., 2009). In Table 2a 

we present the results of several unit roots tests: the ADF test (Dickey and Fuller, 

1979), the PP test (Phillips and Perron, 1988) and the KPSS test (Kwiatkowski et 

al., 1992) While the ADF and the PP statistics test the null hypothesis of a unit 

root in ty , the KPSS statistic tests the null hypothesis of stationarity. In most 

countries we cannot reject the null hypothesis of a unit root at the 5% level. 

Similar results are obtained for the KPSS test, where the null hypothesis of 

stationarity is rejected in most cases. These results imply that differencing is 

required in most cases and prove the importance of detrending tourism demand 

data (Zhang and Qi, 2005). In order to eliminate both linear trends as well as 

seasonality we used the first differences of the natural log of tourist arrivals. 

 
Table 2. Tests. Unit Root Tests and Unrestricted Cointegration Rank Tests 
 

Given the common patterns displayed by most countries, we test for 

cointegration using Johansen’s trace tests (Johansen, 1988, 1991). Trace statistics 

test the null hypothesis of r  cointegrating vectors against the alternative 

hypothesis of n  cointegrating vectors. In Table 2b we present the results of five 

different unrestricted cointegration rank tests. It can be seen that we can only 
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reject the null hypothesis of nine cointegrating vectors with two of the tests. The 

fact that the evolution of tourist arrivals is multicointegrated has led us to apply a 

multivariate multiple-output neural network approach to obtain forecasts of 

tourism demand for all visitor markets. 

 

4. Methodology 

 

As the evolution of tourist arrivals from different visitor markets shows a 

common stochastic trend, we apply a multivariate neural network approach to 

obtain forecasts of tourism demand. To our knowledge this is the first study to 

evaluate the performance of different ANN models in a multiple-input multiple-

output setting that uses the cross-correlations between the evolution of foreign 

visitors from different markets to a specific destination. This approach also allows 

to generate predictions for all visitors markets simultaneously without having to 

replicate the analysis for each country. 

We divide the collected data into three sets: training, validation and test. This 

division is done in order to asses the performance of the network on unseen data 

(Bishop, 1995; Ripley, 1996). The initial size of the training set is determined to 

cover a five-year span in order to accurately train the networks. Therefore, the 

first sixty monthly observations (from January 2001 to January 2006) are selected 

as the initial training set, the next thirty-six (from January 2007 to January 2009) 

as the validation set, and the last 20% as the test set. 

We implement an iterative forecasting scheme: after each forecast, a retraining 

is done by increasing the size of the set by one period and sliding the validation 

set by another period. This iterative process is repeated until the test set consists of 

the out-of-sample period. The selection criterion for the topology and the 

parameters is the performance on the validation set. To ensure optimal parameter 

estimation, we apply a multi-start technique that initializes the neural network 

three times for different initial random values returning the best result. Using as a 

criterion the performance on the validation set, the results correspond to the 

selection of the best topology and the best spread in the case of the RBF neural 

networks. 

Following the suggestions made by Koupriouchina et al. (2014), we evaluate 

our predictions at a number of forecasting horizons. Therefore, forecasts for 1, 3 
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and 6 months ahead are generated in a recursive way. To assess the forecast 

accuracy we make use of three different measures. First, we compute the Root 

Mean Squared Error (RMSE). An additional key aspect that should be addressed 

is whether the reduction in RMSE is statistically significant when comparing 

models. 

With this in mind, we obtain the measure of predictive accuracy proposed by 

Diebold and Mariano (1995). The DM loss-differential test for predictive accuracy 

tests the null hypothesis that the difference between the two competing series is 

non-significant. We calculate the DM test using a Newey-West type estimator to 

construct the t-statistic from a simple regression of the loss function on a constant. 

A negative sign of the t-statistic associated to the DM test implies that the 

absolute value of the forecast error associated with the prediction coming from the 

competing series is lower, while a positive sign implies the opposite. 

Finally, in order to attain a more comprehensive forecasting performance 

evaluation, we propose a dimensionless measure based on the CJ statistic for 

testing market efficiency (Cowles and Jones, 1937). This accuracy measure allows 

us to compare the forecasting performance between two competing models. This 

statistic consists on a ratio that calculates the proportion of periods in which the 

model under evaluation obtains a lower absolute forecasting error than the 

benchmark model. In this study we use the no-change model as a benchmark. This 

new measure of forecast accuracy will be referred to as the percentage of periods 

with lower absolute error (PLAE). 

Let us denote ty  as actual value and tŷ  as forecast at period t , nt ,,1 K= . 

Forecast errors can then be defined as ttt yye ˆ−= . Given two competing models A  

and B , where A  refers to the forecasting model under evaluation, whereas B  

stands for benchmark model, we can then obtain the proposed statistic as follows: 

n
λ

PLAE
n
t t∑

= =1  where 
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=
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 if   1 ,, BtAt
t

ee
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5. Results 

 

When analysing the forecast accuracy, MLP and RBF networks show lower 

RMSE values than Elman networks. Nevertheless, the no-change model 

outperforms both MLP and Elman networks. While RBF networks display the 
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lowest RMSE values for longer horizons in most countries, the no-change model 

shows higher percentages of PLAE than the rest of the networks, especially for 

the shorter forecasting horizons. The fact that the no-change model generates 

more accurate one-period-ahead forecasts than other more sophisticated models 

confirms previous research by Witt et al. (1994). 

 
Table 3. Forecast accuracy. RMSE and percentage of PLAE (2010:04-2012:02) 
 

When the forecasts are obtained incorporating additional lags of the time 

series, that is to say when the memory is set to three periods, the forecasting 

performance of RBF networks significantly improves in Switzerland and Russia 

for 6 months ahead. Nevertheless, the highest forecasting errors are always found 

in Russia. This result may be caused by the high dispersion observed in Russian 

tourist arrivals, and it endorses the conclusions obtained by Peng et al. (2014) 

with reference to the fact that the country of origin affects the accuracy of the 

predictions. By contrast, the lowest RMSE value is obtained with the RBF 

network for total tourist arrivals, for 6 months ahead when the memory is zero, 

and for 3 months ahead when using a memory of three lags. In Fig.1 we compare 

the actual evolution of total tourist arrivals to the six moth ahead forecasts with 

RBF network. 

 
Fig. 1. Total tourist arrivals to Catalonia – Observed versus six month ahead forecasts (RBF) 
 

Unlike the results obtained by Chow (2003) when comparing the forecasting 

performance of Elman ANN to exponential smoothing and ARIMA models to 

forecast tourist arrivals to Hong Kong, we do not find evidence in favour of 

Elman networks, which suggests that divergence issues may arise when using 

dynamic networks with forecasting purposes. The only network that outperforms 

the benchmark model in most cases is the RBF. These results also show that 

hybrid models such as RBF, which combine supervised and non-supervised 

learning, are more indicated for tourism demand forecasting than models using 

supervised learning alone. Our finding on the suitability of using RBF ANNs for 

tourism demand forecasting in the hospitality industry confirms previous research 

by Cuhadar et al. (2014).  
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Finally, we repeat the analysis assuming different topologies regarding the 

memory values, which refer to the number of past months included in the context 

of the input, ranging from one to four months. Therefore, when the memory is 

one, the forecast is done using only the current value of the time series, without 

any additional temporal context. In Table 4 we present the results of the DM test 

so as to assess whether the different memory values are statistically significant on 

forecast accuracy. We find that in most cases, as the number of previous months 

used for concatenation increases, the forecasting performance of the different 

networks shows no significant improvement. This result suggests that the increase 

in the weight matrix is not compensated by the more complex specification, 

leading to overparametrization. 

 
Table 4. Diebold-Mariano loss-differential test statistic for predictive accuracy 
 

6. Conclusion 

 

The increasing importance of the hospitality sector worldwide has led to a 

growing interest in new approaches to tourism demand forecasting. New methods 

provide more accurate estimations of anticipated tourist arrivals for effective 

managerial and policy planning. Artificial intelligence techniques are generating 

an increasing interest as a way to refine the predictions of tourist arrivals at the 

destination level. The main aim of this study is to develop a new forecasting 

framework to improve the forecasting performance of artificial neural networks. 

We use three models that represent alternative ways of handling information: the 

multi-layer perceptron, the radial basis function and the Elman recursive neural 

network. 

 

6.1. Theoretical implications 

 

The theoretical contribution of this study to the hospitality and tourism 

literature is twofold. On the one hand, we apply an innovative approach to 

improve the forecasting accuracy of artificial intelligence techniques. Based on 

multiple-input multiple-output structures, we design a framework that allows to 

incorporate the existing cross-correlations in tourist arrivals form different visitor 
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markets to a specific destination in neural networks. This new procedure allows to 

estimate the evolution of demand from all different markets simultaneously. 

On the other hand, we propose a dimensionless forecasting accuracy measure 

based on the statistic for testing market efficiency. This new measure allows to 

compare the forecasting performance between two competing models by giving 

the percentage of periods in which the model under evaluation obtains a lower 

absolute forecasting error than the benchmark model. 

By means of cointegration analysis we find that the evolution of arrivals from 

international visitor markets to Catalonia share a common trend, which leads us to 

apply a multivariate approach. The forecasting out-of-sample comparison shows 

that radial basis function models outperform the rest of the networks in most 

cases. 

The research highlights that hybrid models, which combine supervised and 

non-supervised learning, are more indicated for tourism demand forecasting than 

models using supervised learning alone. Our results also suggest that when using 

dynamic or recurrent neural networks with forecasting purposes scaling issues 

may arise. 

In order to evaluate the effect of the memory on the forecasting results, we 

repeat the analysis assuming different topologies regarding the number of lags 

used for concatenation and find no significant differences when additional lags are 

incorporated, especially in the case of multi-layer perceptron neural networks. 

This result can in part be explained by the cross-correlations accounted for in the 

multivariate approach. 

 

6.2. Practical Implications 

 

From a managerial perspective, the study provides a new and practical 

approach to predict the arrival of tourists, overnight stays or any other variable 

related to the daily activity of the hospitality and leisure industries. This new 

procedure allows practitioners to incorporate the common trends in customers 

from all markets in neural networks in order to anticipate the evolution of demand 

for all different markets simultaneously. 
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The study also provides managers with a new and easily interpretable measure 

to evaluate forecasts from different methods with the aim of attaining a more 

comprehensive forecasting performance evaluation. 

The research reveals the suitability of hybrid models such as radial basis 

function networks for medium-term forecasts. The results of the analysis also 

highlight that the predictive performance can be improved by taking into account 

the connections between the different markets. 

Demand is the most basic force driving the industry's development. Therefore, 

these findings aim to improve forecasting practices in the hospitality industry and 

provide new tools that may prove very helpful to anticipate future demand for 

planning purposes. 

 

7. Limitations and future research 

 

Nevertheless, this study is not without its limitations. First, a comparison 

between different tourist destinations would allow to analyze to what extent 

regional differences have a significant influence on forecasting accuracy. Another 

question to be considered in further research is whether a combination of the 

forecasts from different topologies may improve the accuracy of predictions. 

Finally, there is the question of whether the implementation of alternative 

artificial intelligence techniques such as support vector regressions could improve 

the forecasting performance of neural networks. 
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Table 1. Descriptive analysis of tourist arrivals (levels) 

Country Minimum Maximum Mean Variation 
coefficient Skewness Kurtosis 

France 137,503 607,086 295,538 43% 0.88 2.94 

United Kingdom  42,857 216,548 125,772 45% -0.04 1.49 

Belgium and NL 32,542 364,183 114,631 81% 1.53 4.55 

Germany 39,314 186,726 101,756 46% 0.20 1.68 

Italy 55,873 164,907 84,419 28% 2.14 7.68 

US and Japan 36,812 131,089 77,316 34% 0.34 2.13 

Northern countries 17,474 99,879 47,410 43% 0.62 3.20 

Switzerland  9,425 57,119 26,912 43% 0.45 2.51 

Russia 4,301 162,505 38,957 103% 1.45 4.18 

Other countries  174,868 442,597 292,201 26% 0.19 1.91 

Total 615,508 2,157,879 1,204,911 38% 0.40 2.07 
Notes: Estimation period 2009:01-2012:07. 
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Table 2. Tests. Unit Root Tests and Unrestricted Cointegration Rank Tests 

2a. Unit Root Tests 

Test for I(0) Test for I(1) 
Country 

ADF PP KPSS ADF PP KPSS 

France -2.19 -3.41 0.32 -3.32 -2.48 0.15 
United Kingdom -1.71 -2.28 0.35 -2.72 -2.88 0.15 
Belgium and the NL -3.53 -2.55 0.21 -2.56 -3.42 0.10 
Germany -2.28 -3.61 0.23 -3.36 -3.70 0.15 
Italy -0.78 -0.99 0.33 -3.96 -2.46 0.08 
US and Japan -1.29 -2.40 0.33 -7.16 -4.06 0.03 
Northern countries -3.26 -2.16 0.17 -3.86 -3.61 0.07 
Switzerland -1.80 -2.99 0.16 -7.11 -4.10 0.07 
Russia 0.25 0.82 0.30 -5.01 -3.70 0.09 
Other countries -2.04 -1.96 0.20 -4.56 -4.23 0.06 
Total -2.14 -1.76 0.30 -2.99 -2.91 0.14 

2b. Unrestricted Cointegration Rank Tests 

Type of test 

Assume no deterministic 
trend in data 

Allow for linear deterministic 
trend in data 

Allow for 
quadratic 

deterministic 
trend in data 

No intercept 
in CE 

Intercept in 
CE 

Intercept in 
CE 

Intercept in 
CE 

Intercept and 
trend in CE 

Hypothesized 

number of 

CE(s) 

No test VAR No intercept 
in VAR Test VAR No trend in 

VAR 
Linear trend 

in VAR 
0:0 =rH  856.6229 969.8334 946.8238 1085.223 1012.763 

1:0 ≤rH  642.9016 741.4399 719.5322 857.7293 785.4048 

2:0 ≤rH  489.0577 586.3624 566.5598 676.3885 604.4294 

3:0 ≤rH  358.9547 452.6527 432.9569 541.7908 471.6636 

4:0 ≤rH  267.2172 344.7378 327.2923 412.1319 342.0272 

5:0 ≤rH  186.4016 256.9106 240.6405 314.3369 245.5905 

6:0 ≤rH  118.7815 176.0951 162.8499 227.6863 160.0873 

7:0 ≤rH  59.45009 110.2719 97.56685 149.9044 92.67206 

8:0 ≤rH  20.81093 56.72323 47.79385 85.37519 38.75788 

9:0 ≤rH  0.041106* 
(0.8681) 18.08417 10.98843 35.64879 0.944397* 

(0.3311) 
Notes: Estimation period 2002:01-2012:07. 

Tests for unit roots. Intercept included in test equation. Critical values for I(0) and I(1): ADF and PP tests - the 
5% critical value is -2.88; KPSS test - the 5% critical value is 0.46. 
Unrestricted Cointegration Rank Tests. * Denotes rejection of the hypothesis at the 0.05 level ** MacKinnon-
Haug-Michelis p-values (MacKinnon et al., 1999). p-values in parentheses when different from zero. 
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Table 3. Forecast accuracy. RMSE and percentage of PLAE (2010:04-2012:02) 

  Memory (1) Memory (4) 
 No-change MLP RBF Elman MLP RBF Elman 
France       
1 month 0.12 0.21 (43%) 0.09 (74%) 0.59 (9%) 0.28 (26%) 0.09 (61%) 0.41 (17%)
3 months 0.12 0.23 (48%) 0.09 (61%) 0.47 (26%) 0.23 (22%) 0.09 (70%) 0.46 (9%) 
6 months 0.13 0.16 (52%) 0.08 (70%) 0.29 (26%) 0.33 (30%) 0.09 (65%) 0.47 (13%)
United Kingdom       
1 month 0.11 0.16 (52%) 0.16 (35%) 0.46 (22%) 0.35 (9%) 0.16 (30%) 0.50 (17%)
3 months 0.12 0.31 (26%) 0.16 (39%) 0.46 (13%) 0.35 (35%) 0.16 (39%) 0.41 (26%)
6 months 0.15 0.22 (39%) 0.15 (48%) 0.40 (17%) 0.46 (22%) 0.15 (48%) 0.54 (26%)
Belgium and the NL       
1 month 0.13 0.21 (43%) 0.12 (48%) 0.39 (22%) 0.28 (22%) 0.12 (48%) 0.34 (30%)
3 months 0.13 0.13 (43%) 0.11 (57%) 0.34 (30%) 0.24 (39%) 0.12 (52%) 0.34 (13%)
6 months 0.14 0.23 (35%) 0.12 (61%) 0.28 (35%) 0.38 (26%) 0.12 (57%) 0.48 (30%)
Germany       
1 month 0.26 0.19 (43%) 0.18 (74%) 0.43 (43%) 0.22 (52%) 0.18 (74%) 0.59 (17%)
3 months 0.24 0.27 (57%) 0.18 (65%) 0.43 (22%) 0.28 (35%) 0.18 (65%) 0.46 (35%)
6 months 0.24 0.23 (57%) 0.18 (61%) 0.37 (52%) 0.32 (39%) 0.18 (61%) 0.56 (22%)
Italy       
1 month 0.12 0.32 (17%) 0.08 (43%) 0.63 (13%) 0.43 (17%) 0.09 (43%) 0.44 (13%)
3 months 0.14 0.37 (26%) 0.09 (48%) 0.43 (35%) 0.33 (17%) 0.09 (57%) 0.49 (22%)
6 months 0.15 0.29 (43%) 0.09 (78%) 0.43 (22%) 0.52 (4%) 0.09 (83%) 0.57 (13%)
US and Japan       
1 month 0.12 0.18 (48%) 0.13 (43%) 0.55 (9%) 0.30 (17%) 0.13 (39%) 0.35 (22%)
3 months 0.16 0.32 (39%) 0.13 (52%) 0.28 (35%) 0.30 (26%) 0.13 (52%) 0.39 (35%)
6 months 0.20 0.21 (52%) 0.13 (65%) 0.28 (57%) 0.49 (39%) 0.13 (70%) 0.59 (26%)
Northern countries       
1 month 0.17 0.29 (35%) 0.19 (48%) 0.55 (13%) 0.37 (26%) 0.17 (61%) 0.41 (30%)
3 months 0.20 0.33 (35%) 0.17 (43%) 0.34 (26%) 0.41 (39%) 0.18 (48%) 0.34 (35%)
6 months 0.26 0.16 (65%) 0.18 (70%) 0.23 (52%) 0.31 (39%) 0.18 (61%) 0.39 (26%)
Switzerland       
1 month 0.25 0.28 (43%) 0.19 (57%) 0.67 (26%) 0.34 (39%) 0.19 (52%) 0.49 (26%)
3 months 0.26 0.40 (35%) 0.19 (52%) 0.70 (26%) 0.42 (26%) 0.19 (48%) 0.55 (22%)
6 months 0.30 0.65 (39%) 0.20 (43%) 0.45 (26%) 0.45 (35%) 0.18 (52%) 0.49 (35%)
Russia       
1 month 0.17 0.38 (35%) 0.34 (17%) 1.00 (17%) 0.72 (13%) 0.36 (13%) 1.01 (0%) 
3 months 0.19 0.86 (9%) 0.38 (22%) 1.04 (30%) 0.76 (4%) 0.37 (22%) 0.86 (13%)
6 months 0.23 0.90 (13%) 0.39 (26%) 0.92 (17%) 0.90 (9%) 0.36 (30%) 1.07 (17%)
Other countries       
1 month 0.08 0.18 (17%) 0.08 (39%) 0.36 (17%) 0.26 (22%) 0.08 (48%) 0.36 (22%)
3 months 0.10 0.28 (26%) 0.08 (57%) 0.27 (22%) 0.25 (30%) 0.08 (48%) 0.31 (22%)
6 months 0.13 0.23 (39%) 0.08 (70%) 0.21 (30%) 0.21 (39%) 0.08 (70%) 0.35 (43%)
Total       
1 month 0.06 0.11 (30%) 0.05 (57%) 0.33 (13%) 0.14 (39%) 0.05 (57%) 0.30 (17%)
3 months 0.07 0.20 (39%) 0.05 (61%) 0.17 (26%) 0.15 (35%) 0.04*(65%) 0.31 (9%) 
6 months 0.08 0.15 (30%) 0.04*(61%) 0.23 (22%) 0.19 (26%) 0.05 (61%) 0.28 (22%)

Notes: * Model with the lowest RMSE. 
Percentage of PLAE values in parentheses. The PLAE ratio measures the number of out-of-sample 
periods with lower absolute errors than the benchmark model (no-change model). 
The memory indicates the number of past months included in the context of the input. 
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Table 4. Diebold-Mariano loss-differential test statistic for predictive accuracy 
 Memory (1) versus Memory (4) 
 MLP RBF Elman 
France    
1 month -2.68* 0.47 2.42* 
3 months -1.11 0.62 -0.22 
6 months -2.74* -0.65 -2.92* 
United Kingdom     
1 month -3.98* 0.32 -0.70 
3 months -1.19 -0.37 -0.17 
6 months -3.75* 1.07 -1.35 
Belgium and the Netherlands    
1 month -0.85 0.53 0.75 
3 months -2.63* -2.72* -0.73 
6 months -1.47 -2.19* -2.24* 
Germany    
1 month -0.95 0.12 -1.36 
3 months -0.92 -0.47 0.04 
6 months -1.75 -0.40 -2.24* 
Italy    
1 month -1.29 -0.55 1.44 
3 months -0.07 1.84 -1.38 
6 months -3.09* 1.31 -2.08* 
US and Japan    
1 month -1.93 -0.22 2.08 
3 months -0.09 -1.43 -0.97 
6 months -1.39 -0.64 -3.62* 
Northern countries    
1 month -1.30 1.98 1.27 
3 months -1.17 -1.95 0.38 
6 months -2.25* -0.92 -2.54* 
Switzerland     
1 month -1.48 0.08 1.25 
3 months 0.06 -0.52 0.95 
6 months 0.36 3.01* -0.38 
Russia    
1 month -2.66* -0.66 -0.38 
3 months -0.29 1.64 0.82 
6 months -1.16 3.41* -0.75 
Other countries     
1 month -1.75 -0.07 -0.51 
3 months -0.41 -0.97 -0.66 
6 months -0.10 -0.24 -1.24 
Total    
1 month -0.78 0.46 0.25 
3 months 0.20 0.62 -3.55* 
6 months -0.75 0.53 -0.78 
Notes:  Diebold-Mariano test statistic with NW estimator. Null hypothesis: the difference between the 

two competing series is non-significant. A negative sign of the statistic implies that the second 
model has bigger forecasting errors. 
* Significant at the 5% level. 
The memory indicates the number of past months included in the context of the input. 
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Fig. 1. Total tourist arrivals to Catalonia – Observed versus six month ahead forecasts (RBF) 
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Notes: The black line represents the evolution of total tourist arrivals to Catalonia. The dotted line represents the 6 

month ahead forecasts of total tourist arrivals to Catalonia obtained with the RBF model. 
 

 


