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ABSTRACT

Data center networks are typically grossly under-provisioned.
This is not a problem in a corporate data center, but it
could be a problem in a shared infrastructure, such as a co-
location facility or a cloud infrastructure. If an application
is deployed in such an infrastructure, the application own-
ers need to take into account the infrastructure limitations.
They need to build in counter-measures to ensure that the
application is secure and it meets its performance require-
ments. In this paper, we describe a new form of DOS attack,
which exploits the network under-provisioning in a cloud in-
frastructure. We have verified that such an attack could be
carried out in practice in one cloud infrastructure. We also
describe a mechanism to detect and avoid this new form of
attack.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design—Network
topology

General Terms

Design, Security

Keywords

DOS attack, bandwidth estimation

1. INTRODUCTION
Data center networks are typically grossly under-provisioned.

Typical designs are under-provisioned by a factor of 2.5:1 to
8:1 [22]. An 8:1 under-provisioning ratio means that a host
can only send at 1/8 of its interface speed for some com-
munication patterns. The reasons for this level of under-
provisioning are two-folds. First, it is prohibitively expen-
sive to build a network with full 1:1 bi-section bandwidth,
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Figure 1: A typical data center network architec-
ture.

even for a modest-size data center. Second, although the
current network architecture supports multi-path routing
with ECMP [8], the number of paths supported is typically
small. Fig. 1 shows a typical data center network archi-
tecture. There are several tiers of routers, each aggregates
traffic from the local tier. There are two routers at each tier
providing both path diversity and fault tolerance. Since the
number of paths is limited, the full bisection bandwidth of
a network cannot exceed a small multiple (in Fig. 1, only
twice) of a single link’s capacity. Although proposals to
change the network architecture exist [1] [20] [6] [7] [5]. ,
they often require router changes and it will take years to
swap out the existing routers, even if they are adopted by
the industry.
Under-provisioning is typically not a problem in a tradi-

tional corporate data center. The standard practice is to
co-locate servers for an application (e.g., web servers, app
servers and database servers for a multi-tier application) in
the same subnet; thereby localize the bulk of the communi-
cation. Since data center managers have the full control over
the infrastructure, they can perform the optimizations nec-
essary to avoid the worst-case communication patterns. In
addition, because of the full control, data center managers
can track down offending applications or put in counter-
measures if and when the worst-case communication pattern
happens.
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However, under-provisioning could be a problem in a cloud
data center or a hosting company’s data center. The prob-
lem arises because a cloud data center is different from a
corporate data center in several regards. First, a cloud data
center is typically much bigger than most corporate data
centers. For example, at the end of 2007, Rackspace has
36,692 servers, hosted in 114,749 square feet of data center
space [25]. Because of the limit on the number of multi-paths
in the current network architecture, a cloud data center’ net-
work could be dramatically under-provisioned. For example,
our analysis of a cloud company’s network shows that it is
under-provisioned by at least a factor of 45:1 1.
Second, a cloud data center could be used by many people

from many organizations. This opens doors for adversaries
to attack other applications hosted in the same cloud data
center. In Sec. 2, we describe how an adversary can exploit
the under-provisioned network and perform a DOS (Denial
Of Service) attack on other applications hosted in the same
data center.
Third, an application owner has no or little control over

the underlying network in a cloud data center. In a corpo-
rate data center, an application owner at least has an indi-
rect access to the underlying network, so that she can put
in counter-measures in the network if needed. But, applica-
tion owners do not own the cloud data center, and they have
a very limited visibility into and control on the underlying
network in the cloud.
Solving the DOS attack that we describe in Sec. 2 is dif-

ficult in a traditional data center without human interven-
tion. Even if the application can detect that an attack is
underway, it has no ability to dynamically provision the in-
frastructure to react. Since manual intervention is required,
it often takes days to react to a DOS attack, long after
the damage is incurred. However, when data center is vir-
tualized and when a self-service infrastructure management
capability (such as the ability to start new virtual servers on
demand) is built-in (e.g., in a cloud data center), an appli-
cation owner can leverage the new provisioning capability to
build a highly dynamic application which can automatically
detect and avoid these kinds of DOS attacks.
We have verified that the new form of DOS attack could

be effectively launched in one cloud provider’s data center in
practice 2. Because the data center manager was not aware
of this new type of DOS attack, no measure was in place
to detect and prevent. A hacker could potentially bring
down many cloud users at the same time with a minimal
cost. We have also verified that our solution, described in
Sec. 3, can effectively detect and avoid such attacks. Even
though we have only verified the problem in one cloud data
center, we believe the under-provisioning problem is wide-
spread. Furthermore, we believe that the DOS attack and
our avoidance mechanism are applicable to many other cloud
data centers.
The contributions of this paper include:

∙ Identify a new form of DOS attack in a cloud data
center, and verify that such an attack could be carried
out in a real cloud data center. We further show that
this attack could be carried out even if the cloud ven-
dor locks down its network completely, for example,

1Analysis omitted due to confidentiality agreement
2Data center name not released due to confidentiality agree-
ment

by disabling TTL expiration notices. We demonstrate
that the topology information needed for attack could
still be obtained by a network probing technique.

∙ Propose and evaluate a new mechanism for applica-
tions to dynamically relocate to a different infrastruc-
ture when the desired Quality of Service (QoS) could
not be met. This mechanism is applicable not only
when an application is under a DOS attack, but it
could also be used when QoS degrades due to other
legitimate bandwidth-hungry applications.

∙ Propose and evaluate a new available bandwidth de-
tection technique which can accurately determine the
available bandwidth in a high speed network.

2. A NEW FORM OF DOS ATTACK
The gross under-provisioning and the public nature of a

cloud data center open a potential venue for exploit. An
adversary can simply saturate the limited network band-
width to perform a DOS attack against other applications
in the same network. To perform such an attack, an adver-
sary must first identify a bottleneck link in the network to
attack.
In a data center network today, a router is typically con-

nected to a large number of hosts (or other routers), and the
aggregate capacity of these hosts greatly exceeds the uplink
capacity. In Fig. 1, Link A, B, and C are the uplinks of
router R5, R1 and R2 respectively. We refer to the hosts
connected to a router (e.g., host H1..H4 for router R1 or
R2) as part of the subnet of the router. We use the term
subnet loosely. Even if the hosts are connected to a layer 2
switch, we still refer to them as the subnet of the switch.
Since the uplink capacity is much smaller than the aggre-

gate subnet capacity, an uplink is an easy attack target. To
attack, an adversary simply transmits enough traffic from
a few hosts in the subnet to hosts in other subnets. By
symmetry, the traffic would saturate the uplink in both di-
rections. As an example, let us consider Link B as a target,
assuming Link B is the active link and Link C is a fail-over
link. To saturate Link B, an adversary needs to send traf-
fic from a host in R1’s subnet (e.g., H1) to another host in
a different subnet (e.g., H5). Due to under-provisioning, a
small number of hosts in R1’s subnet are sufficient to sat-
urate link B. In a commodity data center, link B and C
typically have 1Gbps of bandwidth and the hosts also have
1Gbps interface speed; thus, one host is sufficient. When
Link B is saturated, no other legitimate traffic could reach
other hosts in R1’s subnet, effectively denying services to all
hosts in R1’s subnet.
We distinguish between an untargeted and a targeted at-

tack. In an untargeted attack, an adversary just want to
have a critical mass (enough hosts) in any subnet. In a tar-
geted attack, an adversary wants to gain a critical mass in a
specific subnet, for example, to attack a specific application
hosted in that subnet.

2.1 Topology identification
Taking topology information into account (which hosts

are under which subnets) is important to launch an effective
attack. A naive approach is to gain access to a number
of hosts in a cloud data center, then blindly send traffic
to each other at the maximum rate. Unfortunately, such
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Figure 2: Gaining topology information is important
to maximize attack effectiveness. (a) sending traffic
at full speed would not saturate network. (b) send-
ing traffic across the link between the two routers
can saturate the network.

a brute-force attack may not be effective at all. Consider
the example shown in Fig. 2 where an adversary is able
to gain access to eight hosts. For simplicity, we assume
all links have 1Gbps capacity. The topology could be as
shown in Fig. 2(a), where all hosts are connected to the
same switch. An adversary could blindly send traffic, but no
traffic pattern would saturate the network since the switch
can support 100% throughput. However, if the adversary
knows that the topology is as shown in Fig. 2(b), he can
easily identify the link between the two routers (an uplink
for both routers) as a bottleneck and he can send traffic
from just one host on the left to another host on the right
to saturate the network.
To carry out an attack, an adversary would first gain ac-

cess to a set of hosts (e.g., by launching virtual machines
using the cloud API), then learn the topology, and deter-
mine whether there is a bottleneck link to attack. If none
found, the adversary can continue to gain access to more
hosts and repeat the steps above. In this section, we de-
scribe two approaches one can use to identify the topology
given a set of hosts.
In the first approach, one can gain a good insight into the

network topology by simply running Traceroute from the
end hosts. By running Traceroute among all pairs of nodes,
one can map out all routers connecting the hosts, and learn
what hosts are in the same subnet. For ease of setting up and
management, data center networks typically follow a regular
structure and the IP addresses are typically assigned based
on a set naming convention. Running Traceroute from a few
hosts is often enough to infer the overall IP layer topology.
There are two disadvantages of using the Traceroute ap-

proach. First, one cannot see layer 2 switches through the
Traceroute command, but only the layer 3 routers. Sec-
ond, Traceroute requires router support, i.e., routers must
respond to TTL (Time To Live) expiration. Such router
support could be disabled, rendering Traceroute useless. To-
day, most cloud networks support Traceroute and there are

L1

L2

L3

R1

R2

Figure 3: Routers multiplex incoming packets.

good reasons for it. First, it is a valuable debugging tool for
both the administrators and the application owners. Second,
it requires router change to disable TTL expiration, which
cannot readily be done by a network administrator. Even
though difficult, an administrator may eventually disable
TTL as the DOS attack we describe in this paper becomes
more common.
In addition to the first approach using Traceroute, we pro-

pose another approach to detect the network topology. The
second approach exploits the multiplexing nature of a router.
As shown in Fig. 3, packets from the two incoming links (link
L1 and L2) of router R1 are multiplexed before they are sent
out on the outgoing link. At the downstream router R2, the
packets are again multiplexed with other packets from the
other incoming link (link L3). As a result, at the final output
link, packets from L1 and L2 receive half of the bandwidth
compared to that of L3. In general, the further away a link
is from the output link, the less bandwidth it will receive.
Given a set of hosts, to probe for the network topology

among them, we choose one host as the sink and the rest of
hosts as sources. From each source, we send a sequence of
packets back-to-back to the sink at the same time. At the
sink, we measure the number of packets that we received
from each source. Based on the received traffic rate, we
can derive how many switches are between a source and the
sink; therefore, we can derive the topology from the sink
host’s perspective. To build a complete topology, we need
to choose all hosts as the sink hosts and construct the view
from each host’s perspective. Although we suspect that a
much smaller number of sink hosts are needed, we leave that
optimization as an enhancement for future work.
We should note that our detected topology may be dif-

ferent from the actual topology due to a compression effect.
For example, in Fig. 4, the detected topology (Fig. 4(b))
is different from the real topology (Fig. 4(a)). This is be-
cause there are two routers on the same path, and packets
traverse through them unaltered. Since we are not able to
inject traffic in between the two routers, we are not able to
observe the existence of the extra router. This inaccurate
view is not a problem for us, since we are only interested
in determining if we have enough critical mass in a router’s
subnet to launch an attack.
Since each node will send traffic at its maximum interface

speed during probing, the load to the network could be very
high. To minimize impact, we limit the probing length, e.g.,
to a few milliseconds. We denote the probing length – the
time to continuously send packets from a host – to be �.
The probe length � varies as the number of hosts involved.
The more hosts, the longer the probe length needs to be to
maintain good resolution. The probe length � also needs
to account for the network latency incurred when the mas-
ter node sends out commands to all hosts to start sending
probing packets at the same time. At the sink host, we start
the measurement period after we have received at least one
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Figure 4: The compression effect. (a) The real topol-
ogy. (b) The detected topology. One of the routers
is invisible because we are not able inject traffic in
betweem.

packet from each source, and we continue packet collection
as long as possible until a point where at least one packet
from each source is still in the queue. This guarantees that
we capture the period where packets from all sources are
being multiplexed.
The bandwidth probing technique described above only

works well when all the links have the same capacity, e.g.,
1Gbps. This is true for all three different cloud providers
that we investigated. The reason is that cloud is built on
commodity hardware and 10Gbps links and routers are still
very expensive. If a router’s uplink capacity is higher than
the incoming link’s capacity, two streams of probes from two
incoming links would retain the same data rate after passing
the router. Since the probing traffic’s rate is not reduced, we
would not observe this router in our probing. Although the
probing technique would not accurately depict the network
topology if an uplink has a higher capacity (e.g., 10Gbps),
those links are unlikely to be a bottleneck link because of
their higher capacity; thus, they are less interesting from a
DOS attack perspective.
We have done a preliminary evaluation of the second pro-

posed approach of topology detection in one cloud vendor.
Instead of evaluating whether the detected topology is ex-
actly the same as the real topology (e.g., as detected by the
first traceroute approach), we check whether we can accu-
rately find the router whose subnet contains the most num-
ber of hosts. In the first experiment, we launch 10 hosts in
the cloud vendor and compare the two approaches for topol-
ogy detection. In both cases, we are able to identify the
router with the most number of hosts in its subnet (which
has 2 hosts). We complete the detection using the second ap-
proach in 45ms, which includes the probe length �, which is
set to be 5ms, and the network latency needed to transmit
the commands, to analyze the received probe packets and
to collect the results. In a second experiment, we launch
20 hosts. Again, we are able to accurately find the router
with the most number of attached hosts (which has 3 hosts),
and we are able to complete the detection using the second
approach in 87ms.

2.2 Gaining access to enough hosts
In order to saturate an uplink, we must have access to

enough hosts connected to the router. How many hosts is
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Figure 5: Number of clusters formed, where each
cluster is in a single subnet. Cluster size varies from
2 to 5.

enough depends on the uplink capacity, which is not readily
known from the topology information. We assume that we
can determine the uplink’s capacity using a capacity esti-
mation tool, such as Pathload [4], Nettimer[17] or Bprobe
[2]. Alternatively, we can keep on increasing the number of
hosts in a subnet, and send maximum traffic from all avail-
able hosts, until the uplink is saturated.
In this section, we show that it is both possible and eco-

nomical to launch a large number of VMs in a subnet. We
first consider an untargeted attack, i.e., the attacker is in-
terested in gaining access to enough hosts in any subnet.
We first discovered and verified this form of DOS attack

in a cloud vendor in Apr. 2009. Through trials of launch-
ing many Virtual Machines (VM) in the cloud provider, we
learned the VM assignment algorithm used at the time,
which is responsible for determining which physical host
(thus which subnet) to launch a new VM on. By exploit-
ing the VM assignment algorithm, we were able to launch
enough hosts in a subnet in a single trial. Further, in most
cloud vendors, we only need to gain access to a small num-
ber of hosts in a subnet to launch an attack. This is because
the uplink bandwidth is typically the same as the host’s in-
terface speed (e.g., 1Gbps). Because of the small number of
hosts needed, lauching an attack in those cloud vendors is
both fast and economical.
Since the VM assignment algorithm may change over time

and since it is different across cloud vendors, we focus on
using a brute-force approach in this section. We run the
following experiment in a cloud vendor to see how soon we
can have enough hosts in a subnet. We launch 10 VMs at
a time, then run the probing technique to determine how
many are in a subnet. We then launch an additional 10
VMs and probe again. Fig. 5 shows the results when we
launch up to 200 VMs. With 20 VMs, there are already 3
2-host clusters, where the two hosts are in the same subnet.
At 200 VMs, there are 31 2-host clusters. Larger clusters are
harder to form. At 200 VMs, there are 10 3-host clusters, 8
4-host clusters and 2 5-host clusters. Even though harder,
our results show that it is still economical to launch a cluster
of VMs inside a single subnet.
We should note that our experiment is different than that

in [28], where they tried to see how soon one can launch
a single VM co-located on the same physical machine as a
target VM. Instead of on the same physical hardware, we are
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interested in how quickly we can launch a sufficient number
of VMs in the same subnet.
In addition to an untargeted attack, we also carry out

an experiment to see how fast one can launch a targeted
attack. A targeted attack is used when the adversary is
not interested in bringing down just any part of the cloud,
but rather interested in bringing down a specific application
hosted in a specific subnet. The adversary would find out
which router the target application is sitting behind through
its IP address, then launch an attack for that specific router’s
subnet.
To simulate a targeted attack, we randomly choose a sub-

net in the cloud provider’s network, then launch 10 VMs at
a time to see how fast we can form a cluster in that sub-
net. We form a 2-host cluster at 60 VMs, a 3-host cluster at
160 VMs, a 4-host cluster at 210 VMs, and a 5-host cluster
at 320 VMs. Even though it takes more VMs to launch a
targeted attack, it is still quite fast and economical to do.

2.3 Carrying out the attack
Once an attacker has gained access to enough hosts, all he

needs to do is to send a large amount of traffic through the
upstream router to saturate the router’s uplink. The easiest
way is to send a large amount of UDP traffic. Using UDP
packets is important because it will starve the other TCP
sessions, who back off during congestion. To make sure the
attack traffic goes though the uplink, the attacker needs to
send traffic to hosts in other subnets.
Totally saturating the uplinks is not effective against highly

adaptive applications. For example, some applications have
active standbys which actively communicate with the main
application through a heart-beat mechanism. During an at-
tack, if no heart-beat message is able to get through, the
standby may think the main application has died. If the
standby is in a different subnet than the one under attack,
it could trigger the fail-over mechanism, rendering the attack
ineffective.
For these adaptive applications, an attacker can avoid

sending traffic at full speed. Instead, they can use a band-
width estimation technique, such as the one we will describe
in Sec. 3, to estimate the remaining bandwidth, and send
only enough traffic to saturate most of the bandwidth, leav-
ing some for the heartbeat mechanism. Since the heartbeat
mechanism requires very little bandwidth, it can go through.
However, the application users will still experience a much
degraded level of service.

3. DOS ATTACK/BANDWIDTH STARVATION

DETECTION AND AVOIDANCE
There are several ways a cloud provider could prevent this

type of DOS attack, but none of them is attractive. First, a
cloud provider could provision more bandwidth up to the
full bisectional bandwidth. Although this will guarantee
that no DOS attack is possible, this solution is cost pro-
hibitive, especially given the current network architecture.
Further, the solution may not even be feasible for large cloud
data centers, since the root router must support the full bi-
sectional bandwidth. Second, a cloud provider could cap the
bandwidth consumption per server to its proportional share.
Since the current data centers are grossly under-provisioned,
a proportional share is only a small fraction of the capac-
ity, which significantly limits a server’s throughput. Third, a

cloud provider could charge for the bandwidth consumption,
thus, deterring the adversary economically. Unfortunately,
a cloud vendor could not charge a high price for bandwidth,
since it would make the cloud business model unattractive.
But if a cloud vendor only charges a small price, it is not
enough a deterrence for a determined attacker. Fourth, the
cloud vendor could attempt to detect high bandwidth us-
age and shutdown offending applications if needed. Unfor-
tunately, it is difficult to determine whether it is a legit-
imate bandwidth-hungry application or an attacker. This
is especially true since an attacker could get multiple cloud
accounts, disguising as multiple legitimate cloud users.
In this section, we present an approach to detect and avoid

the DOS attack described in the last section, which leverages
the dynamic provisioning capabilities offered by a cloud data
center. This solution is a user-side solution, which does not
require any cloud service provider cooperation. Thus, even
in a data center that does not have any counter-measures
(e.g., either due to cost or performance reasons described
above), our proposed solution can help a cloud user avoid
this form of DOS attack.
Traditional DOS or DDOS (Distributed Denial Of Ser-

vice) attacks [31] and their counter-measures are well known.
There are sophisticated techniques[14] to counter even the
most elaborate DDOS attacks where the bot simulates a
human behavior. Once a DOS attack is detected, traceback
mechanisms [29, 33] can be used to trace and possibly stop
the attack at the source. However, all those techniques as-
sume that the attacker is sending packets directly to the
application, so that the application can learn that an at-
tack is underway. But, in the new form of DOS attack we
described, the application is not even aware that a DOS at-
tack is underway; thus, new techniques to detect and avoid
are needed.
Fig. 6 shows our solution architecture. There is a moni-

toring agent which resides either in a different subnet or out-
side the cloud infrastructure, e.g., in a corporate data center.
The monitoring agent and the application constantly probe
each other to see the available bandwidth in both directions
(we describe how we probe in Sec. 4). When the applica-
tion notices that the available bandwidth degrades below a
certain threshold, it starts sending a large number of UDP
packets to the monitoring agent to ask for help. Even in
a total bandwidth starvation, the UDP packets would com-
pete with other attack packets and a portion of them can
still get through. When the monitoring agent either de-
tects a bandwidth deterioration or receives a help packet,
it initiates application migration. It launches a new active
standby in a different subnet behind a different router if
there is not an active standby already, and it then mea-
sures the bi-directional bandwidth between the monitoring
agent and the active standby to make sure there is enough
bandwidth. If the bandwidth is not sufficient, it keeps on
launching new instances until it can find a free subnet.
When an attacker attacks several subnets at the same

time, it may not be possible to find a free subnet in a few
trials. The monitoring agent gives up after a set threshold
(currently set to 3 trials), it then starts to launch new servers
in a different cloud provider. When it finds a good subnet
in a cloud provider to host the active standby, it converts
the active standby to be the main application.
To prevent further attacks, we can optionally start appli-

cation hopping – moving the application from one subnet to

69



Figure 6: Bandwidth estimation and migration
when under attack.

another every few minutes before the adversary could launch
enough servers in the new subnet to attack again.
Converting an active standby to be the main applica-

tion requires reprogramming the DNS entry. Due to DNS
caching, users of the application may perceive that the ap-
plication is not available for a short period of time (typically
less than a few hours). Even though it may take hours, it
is still better than the traditional manual approach to DOS
prevention. For example, a DDOS attack launched from Ko-
rean paralyzed many US government sites for days in 2009
[16].
The reaction time could dramatically improve with the

newer dynamic capabilities offered by a cloud. For exam-
ple, Amazon Web Service – a prominent cloud provider –
offers a service called “ElasticIP”, which allows the user to
re-assign an IP address to a different VM possibly in a dif-
ferent subnet. Compared to DNS programming, ElasticIP
is much faster. In our experiments, it takes roughly 1 to 5
seconds to reassign an IP address.
We have implemented the DOS attack avoidance mecha-

nism. To evaluate its effectiveness, we consider a stateless
web application. We use a default Apache web server in-
stallation on top of a Ubuntu Linux distribution. The web
server and the OS are captured in a machine image, so that
when we launch a VM from the machine image, the Apache
web server would start automatically. When we migrate the
web application, we assume no state information, including
the current sessions in progress, needs to migrate. A differ-
ent application may require a longer time to migrate state
information than what we report here, if it is at all possible
to migrate under bandwidth starvation.
We set up an experiment where we attack a single subnet

where the web application is hosted. We run the exper-
iment 10 times to measure the overall time it takes from
attack launching to the application successfully migrating
to a new subnet. We first measure the case where there is
an active standby VM in a different subnet. The total time
to migrate varies from 2.3 seconds to 7.1 seconds with an
average of 5.2 seconds, where the majority of time is spent
waiting for the reprogrammed ElasticIP to take effect. We
then measure the case where there is no active standby. The
total migration time ranges from 38.2 seconds to 59.5 sec-
onds with an average of 47.3 seconds. The majority of time
is spent launching the standby VM and then booting up

the Linux OS. In all cases, we are able to migrate within a
minute, which is much less than the days typically required
to mitigate a tradition DOS attack.
The proposed solution assumes that not all cloud providers

are under attack at the same time. This is reasonable be-
cause there are a large number of cloud vendors and each
cloud vendor has many data centers; thus, a systematic at-
tack is unlikely. If a cloud provider could put in counter-
measures to protect against a data-center-wide attack, our
solution would work even if only a single cloud provider is
used.
A cloud data-center-wide solution is easy to put in. In

order to bring down a whole cloud data center, an attacker
must attack the uplink of the root router in the data center
(e.g., Link A of router R5 in Fig. 1). In order to attack the
root router, an attacker must send a large amount of traffic
to hosts outside of the cloud. Since the bandwidth between
the cloud and an outside end host is likely small (few end-to-
end Internet paths are able to support 1Gbps bandwidth),
it would be easier for the cloud provider to identify the at-
tacker’s traffic, as its sending rate inside the cloud is sub-
stantially higher than the rate sustained outside the cloud.
Even if an attacker can secure a high-speed end host and a
high-speed link from that host to the cloud, sending traffic
at a high rate becomes costly (traffic to outside of cloud is
typically not free), making it difficult economically to carry
out the attack. Alternatively, an attacker could send traffic
(if he is willing to pay for the bandwidth cost) to high-speed
hosts that he does not control (e.g., google.com), the high
traffic rate would raise alarm at the end host, making it easy
to detect the attacker. Once the attacker is identified, the
cloud provider could easily shut down the attacker. In com-
parison, if an attacker attacks a first-tier router (e.g., R1
in Fig. 1) while sending traffic to another host in a different
subnet, the traffic could be indistinguishable from legitimate
traffic generated by a bandwidth hungry application; thus,
it is much harder for a cloud provider to detect and avoid.
Our proposed solution is an application-side solution, i.e.,

it requires no cooperation from the cloud provider. It com-
pliments any cloud provider solutions. The cloud provider
solution focuses on detecting and shutting down easy-to-
detect data-center-wide attacks. In contrast, our application-
side solution focuses on detecting degradation in quality of
service due to either a smaller-scale attack or an increase in
legitimate traffic in the same subnet, and proactively relo-
cating the application for a better quality of service.

4. BANDWIDTH ESTIMATION
Existing DOS detection methods may use a combination

of signals available to the host, such as CPU utilization and
memory usage, to detect a DOS is underway. However, in
the new form of DOS attack, those signals available to the
host are not affected, as the attack is on the underlying
network. To detect this new form of DOS attack, we must
first know that the available bandwidth is getting depleted;
thus, we need a mechanism to accurately estimate how much
bandwidth is left. Note that a simple Ping mechanism to
see if an application responds is not sufficient because an
attacker may not drain the bandwidth completely, leaving
small room for Ping or other heart-beat mechanisms.
In this section, we describe a novel technique to accurately

detect the available bandwidth in a high speed network.
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4.1 Prior work
There has been a large body of existing work on estimating

network bandwidth (see [24] for a good survey). Some work,
such as Pathrate [4], Nettimer[17] and Bprobe [2], focus on
measuring the link capacity, while others, such as Pathload
[12], TOPP [19], PTR/IGI [11], Packet pair [15], Delphi [26],
Pathchirp [27], Spruce [32], Yaz[30], focus on measuring the
available bandwidth. We focus on estimating the available
bandwidth because it directly corresponds to the quality of
service the application would receive.
The available bandwidth is the unused capacity on a link.

It is defined by averaging over a time window � as

��(�) =
1

�

∫ �+�

�

(�� − ��(�))�� (1)

where ��(�) is the available bandwidth on link 	 at time
�, �� is the link capacity, and ��(�) is the amount of traffic
on link 	 at time �. The available bandwidth along a path
is the minimum available bandwidth of all links making up
that path.
The existing available bandwidth estimation tools can be

divided into two categories based on the underlying ap-
proaches to estimation.

∙ The probe gap model (PGM). PGM tools send
a pair of probe packets with a pre-determined time
gap of Δ�, and they arrive at the receiver with a time
gap of Δ�. If we assume there is a single bottleneck
and if we assume the queue is not empty between the
two probe packets, then Δ� is the time taken by the
bottleneck to transmit the second probe packet and
the cross traffic that arrived during Δ�. Therefore,
the time to transmit the cross traffic is Δ = Δ� − ��,
where �� is the time taken to transmit the second probe

packet. The rate of the cross traffic is then
Δ�−��

Δ�
×�,

where � is the bottleneck link capacity. The available
bandwidth can be derived as follows:

� = � × (1−
Δ� − ��
Δ�

) (2)

The PGMmodel is shown in Fig. 7. Spruce[32], IGI[11],
Pathneck[9][10], and Delphi [26] are examples of using
the PGM model. The PGM assumes a single bottle-
neck which is both the narrow link (link with the small-
est capacity along a path) and the tight link (link with
the minimum available bandwidth along a path). This
assumption is necessary for the model analysis, but the
tools work well in practice even when the assumption
does not hold [11].

∙ The probe rate model (PRM). The PRM model
is based on the theory that if you send traffic at a rate
higher than the available bandwidth, packets would be
delayed; thus, the received packet rate would be lower.
However, if you send traffic at a lower rate, the received
packet rate should be no different from the sending
rate. One can send a sequence of packets at different
rates to search for the turning point, from where the
received rate is lower than the send rate. The turn-
ing point is the available bandwidth. Pathload [12],
Pathchirp [27], PTR[11], and TOPP[19] use the probe
rate model.

Bottleneck

∆i ∆o

tp

Cross traffic Probe traffic

Figure 7: The probe gap model (PGM).

These existing bandwidth estimation tools work well when
the link capacity is lower. However, in a cloud data center,
the link capacity is typically 1Gbps or more. At such a high
speed, a slight error in timing measurement could dramati-
cally affect the end result. At 1Gbps, it takes only 12us to
send a maximum size 1500B Ethernet packet; thus, there is
not much room for errors. As described in [13], a number
of system level issues could affect the timing measurement,
making it hard to collect accurate timing information. There
are two key problems on timing measurement at high speed.
First, it is difficult to pace sending packets accurately at high
speed on a general purpose CPU. Second, most systems sup-
port interrupt coalescence, where the network interface card
waits until several packets are received before raising the
interrupt to the system. Interrupt coalescence is necessary
to reduce the CPU load, but it introduces significant timing
error that makes it difficult to estimate available bandwidth
accurately. For a full discussion on the timing issues, we
refer interested readers to [18][13].
To cope with the timing inaccuracy at high speed, recent

proposals for bandwidth estimation, such as PBProbe [3]
and ICIM-abw [18], send a burst of packets in place of a
single probe packet. The idea is to enlarge the probe packet
beyond the 1500B packet limit. Unfortunately, a burst of
packets do not behave the same as a giant packet. For
example, the burst of packets may be spread out during
transmission and the burst of packets may not be received
together at the receiver even if they arrive back-to-back.

4.2 A new bandwidth estimation tool
In this paper, we propose a new technique called Loaded

Spread Pair estimator (LSP). It is an extension of the Spruce
[32] tool, which improves upon Spruce to tolerate timing
errors. For ease of discussion, we first describe how Spruce
works.
Spruce is a tool based on the PGM model, and it com-

putes the available bandwidth based on equation 2. It sends
two 1500B packets with a spacing Δ� the same as the time
it takes to transmit a 1500B packet on the bottleneck link.
The spacing is chosen to make sure that the queue is not
empty between the departure of the two probe packets, a
requirement necessary for deriving equation 2. At the re-
ceiver, Spruce measures the received packet spacing Δ� and
then use equation 2 to compute the available bandwidth.
To average out timing measurements over time, Spruce

performs a sequence of measurements, where the time be-
tween two measurements is set to be an exponentially dis-
tributed function, whose time constant 
 is much larger than
the send gap Δ�. This essentially results in a Poisson sam-
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pling process, which ensures that we observe the average
cross traffic rate. The time constant 
 could be tuned to ad-
just the intra-measurement spacing, so that we can adjust
the load the measurement tool puts in the network so that
it is not intrusive for other applications.
The key problem with Spruce is that the send gap Δ� is

too small at high speed, yet it is necessary to ensure that
the queue at the bottleneck link is not empty between the
departure of the two probe packets. To allow a larger send
gap, in LSP, we send a burst of � 1500B load packets first,
then we send a pair of small 64B probe packets spaced Δ�

apart. Compared to Spruce, Δ� is set to be much bigger.
As a result, Δ� tends to be bigger also. Because Δ� and
Δ� are much larger, LSP can tolerant small timing errors
better than Spruce can. The � load packets are designed
to keep the queue loaded so that when the second probe
packet arrives, the first probe packet is still in the queue,
thus satisfying the requirement for equation 2.
The time difference from sending the first load packet to

sending the second probe packet is � = �×1500×8/�+Δ�.
We have to ensure that there are enough arriving packets
during this period to make sure the queue is not empty; thus,
the total arriving traffic during this period �×1500×8+�×�
has to be larger than what the bottleneck link can transmit
� × � , where � is the cross traffic arrival rate. Solving the
equation, we have

Δ� < �× 1500 × 8(
1

� − �
−

1

�
) (3)

Note that we ignored the 64B probe packet in the deriva-
tion above as an approximation.
Given a level of cross traffic �, equation 3 shows how many

load packets are needed for a given send gap Δ�. For exam-
ple, when � = �/2 (half the capacity), Δ� should be less
than the time to send the � load packets. In our experi-
ments, we have found that Δ� = 100� and � = 8 work
well. Even though, in theory, if � falls below �/2, the mea-
surement may not accurately detect the bandwidth, we have
found that LSP works well even when � is small.
LSP does not generate significant measurement traffic to

overwhelm the network. With � = 8, LSP generates roughly
4 times the traffic Spruce would generate, assuming other
parameters are equal (e.g., 
 ). Using the same 
 as Spruce,
LSP would generate at most 960Kb/s of measurement traf-
fic, which is much smaller than the link capacity in a cloud
data center (e.g., 1Gbps). This is also smaller than other
PRM based tools, e.g., Pathload[12] which generates 2.5MB
to 10MB of probe traffic per measurement. Although Pathchirp
[27], another PRM based tool, may have a comparable traffic
load, because it shrinks multiple packet trains in Pathload
into one, its accuracy is even worst than Pathload due to
the timing errors at high speed.

4.3 Implementation details
LSP is implemented as two user-level sender and receiver

programs on Linux. When it is time to send one burst of
measurement packets, the sender program goes into a tight
polling loop, not releasing the processor voluntarily until all
packets in the burst have been transmitted. Using the cur-
rent default parameter (� = 8, Δ� = 100�, � = 1����),
the sender program would be in the tight loop for roughly
200us, small enough to neither cause problems for other run-
ning applications nor tax the CPU heavily.

If the sender’s network interface speed is high than � –
the bottleneck link capacity, the sender program would pace
the load packets at a transmission rate of �. In all our
experiments (both inside our data center and in a cloud), all
links, as well as the network interface cards, are at 1Gbps.
Thus, the sender sends the load packets as soon as possible.
In order to make sure the first probe packet is only sent

after all load packets have been transmitted, we set the send
buffer to be much smaller than 1500B using the SO SNDBUF
socket option before sending the first probe packet. This en-
sures that the send buffer is clear of the load packets when
the first probe packet is sent. Note that we cannot simply
time the sending of the first probe packet from the time we
sent the first load packet, because we would not know exactly
when the first load packet is sent if there are already packets
in the send buffer from other applications. We record the
time when the first probe packet is sent, then wait for Δ�

longer before sending the second probe packet.
On the receiving side, we set the SO TIMESTAMP socket

option so that the receiving kernel would timestamp each
received packet. The receiver calculates Δ� from the times-
tamp, then use equation 2 to estimate the bandwidth. The
receiver averages over a sliding window of 100 individual
samples to derive the bandwidth estimation.

4.4 Experimental evaluation
To evaluate the proposed bandwidth estimation technique,

we conducted extensive experiments, both inside a controlled
data center and inside a cloud provider. We compare LSP
with Pathload[12], a tool based on the PRM model, and
with Spruce [32], a tool based on the PGM model. We
choose Pathload and Spruce not only because they cover
both models, but also because they both perform well in
lower speed networks.
We first setup an evaluation environment in our own data

center as shown in Fig. 8. We setup two Cisco routers, one
Catalyst 3750G and the other Catalyst 4510, and connect
them on their GE interfaces. There are four servers con-
nected to the two routers, all are HP xw4400 workstations
with Intel Core2 Duo 2.4 GHz processors and 4GB of mem-
ory. The HP workstations are fast enough that they can
send packets as fast as the network interface can handle;
thus, no extra spacing would be created when pacing load
and probe packets. Two HP workstations are used as the
source and destination for network probing respectively, i.e.,
they run the bandwidth estimation tools such as LSP and
Spruce. Two other HP workstations are used as the source
and sink for the traffic generators.

Cisco 

Catalyst 4510

Cisco 

Catalyst 3750G

Probe destination
Probe source

Traffic generator destination Traffic generator source

Figure 8: Experiment setup in our internal data cen-
ter.

We use two traffic generators to generate cross traffic. One
is Netperf [21]. To send traffic at a specific rate, we enable
the interval feature on Netperf and we send a burst of
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cross 250Mbps 500Mbps 750Mbps
traffic
low 785.45 396.46 344.78
high 1070.31 846.83 634.17

Table 1: Average Pathload high and low estimates
over all measurements for each cross traffic rate.

packets every millisecond – the smallest granularity in Net-
perf. The size of the burst controls the average rate of traffic
generated. We also use a Poisson traffic generator [23], but
we do not see differences in our measurement results. For
brevity, we only report the results generated by using Net-
perf as the traffic generator.
Using Netperf, we generate increasingly higher traffic, first

250Mbps, then 500Mbps, then 750Mbps, and we then run
the bandwidth estimation tools repeatedly to collect the re-
sults that they are reporting.
Fig. 9 shows the results for Pathload. Both the high and

low estimates given by Pathload vary wildly even though
the cross traffic does not vary in each segment. In addition,
the gaps between the high and low estimates are generally
very high, giving no clear indication what the real available
bandwidth is. Due to the wildly varying estimates, it is hard
to see the overall trend in Fig. 9. So we take an average of
both high and low estimates in each segment and show the
result in Table 1. Even after averaging, the gap between
high and low ranges from 200Mbps to more than 400Mbps.
For the 750Mbps and 250Mbps segments, the average low
is actually higher than the actual available bandwidth. We
believe Pathload’s inaccuracy could be attributed to timing
errors at high speed.

600

800

1000

1200

1400

1600

1800

2000

B
a

n
d

w
id

th
 in

 M
b

p
s

Pathload low

Pathload high

Available bandwidth

0

200

400

600

800

1000

1200

1400

1600

1800

2000

B
a

n
d

w
id

th
 in

 M
b

p
s

Time

Pathload low

Pathload high

Available bandwidth

Figure 9: Pathload performance in our internal data
center.

Fig. 10 shows the results for Spruce. Even though the
bandwidth estimate fluctuates over time even in the same
segment, its range of fluctuation is much smaller than the
gap reported by Pathload. Unfortunately, Spruce appears to
consistently over-estimate the available bandwidth. On av-
erage, it over-estimates by about 110Mbps for the 750Mbps
segment, by 180Mbps for the 500Mbps segment, and by
160Mbps for the 250Mbps segment.
The results for LSP are shown in Fig. 11. Even though its

estimates also fluctuate, their averages are much closer to
the real available bandwidth. Its magnitude of fluctuation
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Figure 10: Spruce performance in our internal data
center.

is similar to that of Spruce’s, and it is less than 100Mbps
from the real available bandwidth in all cases.
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Figure 11: LSP performance in our internal data
center.

We also evaluate LSP and compare it against Pathload
and Spruce in a cloud data center. We launch two VMs
in one subnet, and two other VMs in other subnets. One
of the two VMs in the first subnet is used as the source
for running the measurement tool, and the other is used
to generate cross traffic. Being a public infrastructure, the
cloud data center does not expose any network statistics.
For example, all MIB access to the routers is disabled. Since
we do not know the actual available bandwidth, we adopt
the D-Test evaluation methodology used in [32], which is
based on relative errors.
The D-Test has two phases. In the first phase, the tool

estimates the available bandwidth. Let us denote this esti-
mate by �1. In the second phase, we inject a cross traffic
at rate of 0.5 × �1, and perform a bandwidth estimation
at the same time. Let us denote the second measurement
result to be �2. Assuming other background traffic does
not change much between the two phases (the two phases
are run close together to minimize impact), the tool should
report 0.5 ×�1. We define Relative Error to measure how
much off the second measurement is from the ideal result:

�����	������� =
�2 − 0.5×�1

0.5×�1

(4)

We plot the Relative Error for Pathload, Spruce and LSP
in Fig. 12 when we run the D-Test in the cloud data center
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with them. Fig. 12 shows the cumulative distribution func-
tion (CDF), which should be a step function at 0 ideally. For
Pathload, we take an average of the high and low estimate
and use the average to compute the Relative Error.
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Figure 12: Relative error for Pathload, Spruce and
LSP in a cloud data center.

Although none of the tools behaves ideally, LSP is clos-
est to a step function. Spruce performs fairly well too. As
we have seen in our internal data center, Spruce tracks the
bandwidth change fairly well except that it consistently over-
estimates, so it is no surprise that it performs well in the D-
Test. Pathload is the furthest away from being a step func-
tion. As we have seen in our internal data center, Pathload
sometimes produces wildly varying estimates; thus, it is no
surprise that the D-test result would not track the ideal value
well.

5. CLOUD PERFORMANCE MONITORING
Even though we have presented the avoidance mechanism

in the context of a DOS attack, in reality, it is difficult,
if not impossible, to distinguish an intentional DOS attack
from one or more bandwidth hungry applications. Our pro-
posed avoidance mechanism would be useful even if no DOS
attack is underway, so that the application could adapt to
the changing network condition.
Using our LSP tool, we conducted a 24-hour measurement

of a cloud provider. This cloud provider has a 1Gbps up-
link for each subnet. We launch two VMs in two different
subnets in the cloud, and we use LSP to measure the avail-
able bandwidth between the two VMs. The result is shown
in Fig. 13. For the most part, the bandwidth is plentiful
at around 700Mbps, which means that other applications in
the subnet are using roughly 300Mbps of bandwidth. How-
ever, for an hour of so, the available bandwidth decreased
dramatically, sometimes dipping below 200Mbps. Although
not totally starved, the limited bandwidth could have a di-
rect impact on application performance. Depending on the
application, it may be desirable to migrate to a different
subnet using our avoidance mechanism to improve network
performance.

6. CONCLUSION
The large-scale, public nature of a cloud data center brings

additional challenges when designing the underlying net-
work infrastructure. Today, these networks are typically
grossly under-provisioning, even below the recommended
under-provisioning ratio. By exploiting the under-provisioning,
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Figure 13: Available bandwidth probing in a cloud
data center for a 24 hour period.

we show that an adversary can bring down a subnet in the
cloud data center with minimal cost. Even though the data
center managers can put in measures to counter large-scale
attacks, smaller-scale attack is still possible since an attack
differs from a normal bandwidth-hungry application only
by intent. We propose a dynamic migration architecture,
leveraging the dynamic provisioning capability of a cloud,
to detect and avoid similar kind of DOS attacks. We also
propose a novel available bandwidth estimation tool that
works accurately and reliably in high-speed networks. Our
work points out that we need a better data center network
architecture to support cloud data centers in the future.
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