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Abstract: Generalizing lifetime distributions is always precious for applied statisticians. In this
paper, we introduce a new four-parameter generalization of the exponentiated power Lindley (EPL)
distribution, called the exponentiated power Lindley geometric (EPLG) distribution, obtained by
compounding EPL and geometric distributions. The new distribution arises in a latent complemen-
tary risks scenario, in which the lifetime associated with a particular risk is not observable; rather,
we observe only the maximum lifetime value among all risks. The distribution exhibits decreasing,
increasing, unimodal and bathtub-shaped hazard rate functions, depending on its parameters. It
contains several lifetime distributions as particular cases: exponentiated power Lindley (EPL), new
generalized Lindley (NGL), generalized Lindley (GL), power Lindley (PL) and Lindley geometric
(LG) distributions. We derive several properties of the new distribution such as closed-form ex-
pressions for the density, cumulative distribution function, survival function, hazard rate function,
the rth raw moment, and also the moments of order statistics. Moreover, we discuss maximum
likelihood estimation and provide formulas for the elements of the Fisher information matrix. Sim-
ulation studies are also provided. Finally, two real data applications are given for showing the
flexibility and potentiality of the new distribution.

Keywords: Exponentiated power Lindley distribution, Maximum likelihood estimation, Model
selection criteria, Probability weighted moments, Residual life function.

1 Introduction

In many practical situations, classical probability distributions do not provide adequate fits to real
data. For example, if the data are asymmetric, the normal distribution will not be a good choice.
So, several methods for generating new probability distributions by adding one or more parameters
have been studied in the statistical literature recently. Among these methods, the compounding of
some discrete and important lifetime distributions has been in the vanguard of lifetime modelling.
Adamidis and Loukas (1998) pioneered a two-parameter exponential-geometric (EG) distribution by
compounding the exponential and geometric distributions. In a similar manner, the following dis-
tributions were proposed: exponential-logarithmic (EL) distribution (Tahmasbi and Rezaei, 2008);
exponential-power series (EPS) distribution (Chahkandi and Ganjali, 2009); Weibull-geometric
(WG) distribution (Barreto-Souza et al., 2011); Weibull-power series (WPS) distribution (Morais
and Barreto-Souza, 2011); exponentiated exponential-Poisson (EEP) distribution (Barreto-Souza
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and Cribari-Neto, 2009); complementary exponential-geometric (CEG) distribution (Louzada-Neto
et al., 2011); complementary Weibull geometric distribution (Tojeiro et al., 2014); Burr XII negative
binomial distribution (Ramos, 2015); compound class of extended Weibull power series distribu-
tions (Silva, 2013); compound class of linear failure rate-power series distributions (Mahmoudi and
Jafari, 2014); exponentiated Weibull-logarithmic distribution (Mahmoudi and Sepahdar, 2013);
exponentiated Weibull-logarithmic distribution (Mahmoudi et al., 2014); generalized exponential
power series distribution (Mahmoudi and Jafari, 2012); exponentiated Weibull power series dis-
tribution (Mahmoudi and Shiran, 2012); generalized modified Weibull power series distribution
(Bagheri et al., 2015).

Lindley (1958) introduced a one-parameter distribution, known as Lindley distribution, given
by its probability density function (pdf)

fL(x) =
λ2

λ+ 1
(1 + x) e−λx, (1)

where x > 0 and λ > 0. Ghitany et al. (2008) discussed various properties of this distribution
and showed that in many ways the pdf (1) provides a better model for some applications than
the exponential distribution. Bakouch et al. (2012) obtained an extended Lindley distribution
and discussed its various properties and applications. Ghitany et al. (2011) developed a two-
parameter weighted Lindley distribution and discussed its applications to survival data. Nadarajah
et al. (2011) obtained a generalized Lindley distribution and discussed various properties and
applications. Merovci and Elbatal (2014) used the quadratic rank transmutation map in order
to generate a flexible family of probability distributions taking Lindley-geometric distribution as
the base value distribution by introducing a new parameter that would offer more distributional
flexibility. Asgharzadeh et al. (2014) introduced a general family of continuous lifetime distributions
by compounding any continuous distribution and the Poisson-Lindley distribution. Oluyede and
Yang (2014) proposed a new four-parameter generalized Lindley (GLD) distribution called the
beta-generalized Lindley distribution (BGLD). This distribution contains the beta-Lindley, GLD
and Lindley distributions as particular cases. A two-parameter power Lindley distribution (PLD)
has been suggested by Ghitany et al. (2013). A new class of generalized power Lindley distributions
with applications to lifetime data has been proposed by Pararai et al. (2015).

The aim of this paper is to propose a new class of lifetime distributions called the exponenti-
ated power Lindley geometric (EPLG) distribution. The distributional properties including survival
function, hazard rate function, reverse hazard rate function, limiting behavior of hazard rate func-
tion, quantile function, moments, distribution of order statistics, mean deviations, Lorenz and
Bonferroni curves and Fisher information are presented. The method of maximum likelihood esti-
mation (MLE) is used to estimate parameters of this new class of distributions. This distribution
contains several lifetime distributions as particular cases: exponentiated power Lindley (EPL), new
generalized Lindley (NGL), generalized Lindley (GL), power Lindley (PL) and Lindley geometric
(LG) distributions. Simulation study is presented to assess the performance and accuracy of the
MLEs. Two real data examples are discussed to illustrate the usefulness and applicability of the
EPLG distribution.

The contents of this paper are organized as follows. In Section 2, we define the EPLG distri-
bution. The pdf, survival function and hazard rate function and some of their properties are given
in this section. We derive quantiles, moments, moment generating function, moments of order
statistics of the EPLG distribution in Section 3. In Section 4, we discuss probability weighted mo-
ments, residual and reverse residual life functions, mean deviations, Bonferroni and Lorenz curves,
reliability of the EPLG distribution. Some particular cases of the EPLG distribution are discussed
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in Section 5. In Section 6, estimation of the parameters by maximum likelihood and inference for
large samples are presented. We present a simulation study in Section 7. In Section 8, applications
to two real data sets are given. Finally, conclusions are provided in Section 9.

2 The EPLG distribution

The three-parameter exponentiated power Lindley (EPL) distribution was introduced by Ashour
and Eltehiwy (2014). The cumulative distribution function (cdf) of the EPL distribution with
parameters α, β, λ > 0 is

G(x) =

[
1−

(
1 +

λxβ

λ+ 1

)
e−λx

β

]α
. (2)

The pdf of the EPL distribution is

g(x) =
αβλ2xβ−1

λ+ 1

(
1 + xβ

)
e−λx

β

[
1−

(
1 +

λxβ

λ+ 1

)
e−λx

β

]α−1

. (3)

Let X1, . . . , XN be independent and identical EPL random variables with cdf and pdf given by
(2) and (3). Let N be a geometric random variable independent of X1, . . . , XN with probability
mass function

P (N = n) = (1− θ)θn−1, n = 1, 2, . . . , θ > 0.

Also let X = max (X1, . . . , XN ), then the cdf of X given N = n is

FX|N=n(x) =

[
1−

(
1 +

λxβ

λ+ 1

)
e−λx

β

]αn
which is an EPL cdf with parameters αn, β, and λ. The EPLG distribution, denoted by EPLG
(α, β, λ, θ), is defined by the marginal cdf of X, i.e.

FEPLG(x) =
(1− θ)

[
1−

(
1 + λxβ

λ+1

)
e−λx

β
]α(

1− θ
[
1−

(
1 + λxβ

λ+1

)
e−λxβ

]α) , (4)

where α, β, λ, θ > 0. The pdf of EPLG (α, β, λ, θ) is

fEPLG(x) =

αβ(1−θ)λ2xβ−1

λ+1

(
1 + xβ

)
e−λx

β
[
1−

(
1 + λxβ

λ+1

)
e−λx

β
]α−1

(
1− θ

[
1−

(
1 + λxβ

λ+1

)
e−λxβ

]α)2 . (5)

The survival and hazard rate functions of the EPLG distribution are

SEPLG(x) = 1−
(1− θ)

[
1−

(
1 + λxβ

λ+1

)
e−λx

β
]α(

1− θ
[
1−

(
1 + λxβ

λ+1

)
e−λxβ

]α) ,
and

hEPLG(x) =

αβ(1−θ)λ2xβ−1

λ+1

(
1 + xβ

)
e−λx

β
[
1−

(
1 + λxβ

λ+1

)
e−λx

β
]α−1(

1−
[
1−

(
1 + λxβ

λ+1

)
e−λxβ

]α)(
1− θ

[
1−

(
1 + λxβ

λ+1

)
e−λxβ

]α) . (6)
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Proposition 2.1. The limiting distribution of EPLG (α, β, λ, θ) as θ → 0+ is

lim
θ→0+

F (x) =

[
1−

(
1 +

λxβ

λ+ 1

)
e−λx

β

]α
,

which is the cdf of the EPL distribution.

Proof. The proof is straightforward. �

Figure 1: Plots of pdf, cdf and hazard rate function of the EPLG distribution: pdf for (α, β, λ) =
(0.2, 2, 0.2) (top left) and pdf for (α, β, λ) = (0.6, 1.5, 0.9) (top middle), cdf for (α, β, λ) =
(0.2, 2, 0.1) (top right) and cdf for (α, β, λ) = (1.2, 0.8, 1.5) (bottom left), hazard rate function
for (α, β, λ) = (0.2, 2, 1.2) (bottom middle) and hazard rate function for (α, β, λ) = (0.1, 1.6, 0.8)
(bottom right).

Proposition 2.2. The limiting behavior of the hazard rate function of the EPLG distribution in
(6) is

h(x) =


∞, α ≤ 1, β < 1,

(1−θ)λ2
(λ+1) , α = β = 1,

0, α ≥ 1, β > 1.

Proof. The proof is straightforward. �

Plots of pdf, cdf and hazard rate function of the EPLG distribution for some values of α, β, λ
and θ are shown in Figures 1 and 2.

3 Quantiles, moments and moments of order statistics of the EPLG
distribution

Some of the most important features and characteristics of a distribution can be studied through
its moments and quantiles such as dispersion, skewness and kurtosis. Also, the quantiles of a
distribution can be used in data generation.

Figure 2: Plots of pdf, cdf and hazard rate function of the EPLG distribution: pdf for (α, β, λ) =
(0.4, 1.5, 0.4) (top left) and pdf for (α, β, λ) = (0.3, 1.5, 0.3) (top middle), cdf for (α, β, λ) =
(0.8, 1.8, 0.9) (top right) and pdf for (α, β, λ) = (0.2, 2, 0.9) (bottom left), hazard rate function
for (α, β, λ) = (0.2, 2, 1.8) (bottom middle) and hazard rate function for (α, β, λ) = (0.2, 1.8, 1.5)
(bottom right).

3.1 Quantiles

Hence, we propose algorithms for generating random data from the EPLG distribution. Let X
denote a random variable with the pdf (5). The quantile function, say Q(p), defined by F (Q(p)) =
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p, for 0 < p < 1, is the root of

(
1 +

λxβ

λ+ 1

)
e−λx

β
= 1−

(
p

1− θ + pθ︸ ︷︷ ︸
kc

) 1
α

= 1− k
1
α
c . (7)

Substituting Z(p) = −1− λ− λ[Q(p)]β, one can rewrite (7) as

Z(p)eZ(p) = −(1 + λ)

(
1− k

1
α
c

)
e−1−λ.

So, the solution for Z(p) is

Z(p) = W
(
− (1 + λ)

(
1− k

1
α
c

)
e−1−λ

)
, (8)

where W (·) is the Lambert W function, see Corless et al. (1996) for detailed properties. Inverting
(8), one obtains

Q(p) =

[
− 1− 1

λ
− 1

λ
W

(
− (1 + λ) e−1−λ

(
1−

(
p

1− θ + pθ

) 1
α
) )] 1

β

.

3.2 Moments

Moments are necessary and important in any statistical analysis, especially in practical applications.
Ashour and Eltehiwy (2014) showed that if X ∼ EPL(α, β, λ), then the rth moment of X, say
E
(
Xr
)
, is

νr[α, β, λ] = E
(
Xr
)

=
α

λ+ 1
Ci,k

 Γ
(
r+β(k+1)

β

)
(
λ
r+kβ
β
−1
)(

(i+ 1)
Γ
(
r+β(k+1)

β

)) +
Γ
(
r+β(k+2)

β

)
(
λ
r+kβ
β

)(
(i+ 1)

Γ
(
r+β(k+2)

β

))
 ,

where Ci,k =
∑∞

i=0

∑∞
k=0

(
α−1
i

)(
i
k

)
(−1)i

(
θ
θ+1

)k
. Suppose that Y(n) = max (Y1, . . . , Yn) ∼ EPL

(αn, β, λ), then the rth moment of EPLG (α, β, λ, θ) is given by the following.

Proposition 3.1. The rth moment of EPLG (α, β, λ, θ) is

µr =
∞∑
n=1

∞∑
i=0

∞∑
k=0

(
αn− 1

i

)(
i

k

)
(−1)i

(
θ

θ + 1

)k αnP (N = n
)

λ+ 1

·

 Γ
(
r+β(k+1)

β

)
(
λ
r+kβ
β
−1
)(

(i+ 1)
Γ
(
r+β(k+1)

β

)) +
Γ
(
r+β(k+2)

β

)
(
λ
r+kβ
β

)(
(i+ 1)

Γ
(
r+β(k+2)

β

))
 . (9)

Proof. See Appendix 1. �
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The first and second moments of the EPLG distribution can be computed by substituting r = 1
and r = 2 into (9).

From (9), the measures of skewness and kurtosis of the EPLG (α, β, λ, θ) can be obtained as

skewness= µ3−3µ1µ2+2µ13(
µ2−µ1

) 3
2

and kurtosis= µ4−4µ3µ1+6µ12µ2−3µ14(
µ2−µ1

)2 .

Figure 3 plots the behavior of the Galton’ skewness (Johnson et al., 1994) and Moors’ kurtosis
(Moors, 1988) as functions of θ for representative values of α, β and λ. We conclude that both
Galton’ skewness and Moors’ kurtosis decrease as θ increases and when α, β, λ are not very large.

Figure 3: Plots of Galton’ skewness (left) and Moors’ kurtosis (right) for the EPLG distribution
for different values of α, β and λ.

3.3 Moment generating function

Here, we obtain the moment generating function of the EPLG distribution. Using (9) and the
expansion of etx =

∑∞
r=0

tr

r!x
r, it can be shown that

MX(t) =
∞∑
r=0

∞∑
n=1

∞∑
i=0

∞∑
k=0

(
αn− 1

i

)(
i

k

)
(−1)i

(
θ

θ + 1

)k tr
r!

αnP
(
N = n

)
λ+ 1

·

 Γ
(
r+β(k+1)

β

)
(
λ
r+kβ
β
−1
)(

(i+ 1)
Γ
(
r+β(k+1)

β

)) +
Γ
(
r+β(k+2)

β

)
(
λ
r+kβ
β

)(
(i+ 1)

Γ
(
r+β(k+2)

β

))
 .

3.4 Moments of order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Moments of
order statistics play an important role in quality control testing and reliability, where a practitioner
needs to predict the failure of future items based on the times of a few early failures. These
predictors are often based on moments of order statistics. We now derive explicit expressions for
the pdf and cdf of the ith order statistic, Yi:n, in a random sample of size n from the EPLG
distribution. By using (4) and (5), the pdf and the cdf of Yi:n for i = 1, . . . , n can be expressed as
follows.

Proposition 3.2. The pdf and the cdf of Yi:n are

fi:n(y) =
1

B(i, n− i+ 1)

αβ(1−θ)λ2yβ−1

λ+1

(
1 + yβ

)
e−λy

β
[
1−

(
1 + λyβ

λ+1

)
e−λy

β
]α−1

(
1− θ

[
1−

(
1 + λyβ

λ+1

)
e−λyβ

]α)2

·
n−i∑
j=0

(
n− i
j

)
(−1)j

(1− θ)
[
1−

(
1 + λyβ

λ+1

)
e−λy

β
]α

1− θ
[
1−

(
1 + λyβ

λ+1

)
e−λyβ

]α

j+i−1

(10)
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and

Fi:n(y) =
n∑
k=i

n−k∑
j=0

(
n− k
j

)(
n

k

)
(−1)j

(1− θ)
[
1−

(
1 + λyβ

λ+1

)
e−λy

β
]α

1− θ
[
1−

(
1 + λyβ

λ+1

)
e−λyβ

]α

j+k

,

respectively.

Proof. See Appendix 2. �

So, by using (10), the ith moment of the order statistics (Y1:n ≤ Y2:n · · · ≤ Yn:n) becomes

E
(
Y k
i:n

)
=

1

B(i, n− i+ 1)

n−i∑
j=0

(
n− i
j

)
(−1)j

∫ ∞
0

ykf(y)
[
F (y)

]j+i−1
dy.

Consequently, for k = 1, we have

E
(
Y1:n

)
= n

n−1∑
j=0

(
n− 1

j

)
(−1)j

∫ ∞
0

yf(y)
[
F (y)

]j
dy,

E
(
Y2:n

)
= n(n− 1)

n−2∑
j=0

(
n− 2

j

)
(−1)j

∫ ∞
0

yf(y)
[
F (y)

]j+1
dy,

and

E
(
Yn:n

)
= n

∫ ∞
0

yf(y)
[
F (y)

]n−1
dy.

4 Other properties of the EPLG distribution

Here, we derive some of the other properties of EPLG distribution. For more simple notation,
throughout we define P (N = n) = θn

T (θ) in which T (θ) = θ(1− θ)−1 and F (x) = T (θG(x))
T (θ) .

4.1 Probability weighted moments

Probability weighted moments (PWMs) are expectations of certain functions of a random variable
defined when the ordinary moments of the random variable exist. The PWMs method can generally
be used for estimating parameters of a distribution whose inverse form cannot be expressed ex-
plicitly. Estimates based on PWMs are often considered to be superior to standard moment-based
estimates. They are sometimes used when MLEs are unavailable or difficult to compute. They
may also be used as starting values for MLEs. The PWMs method, which has been investigated by
many researchers, was originally proposed by Greenwood et al. (1979). Since then it has been used
widely in practice for research purposes. Hosking et al. (1985) investigated the PWMs method for
the generalized extreme value (GEV) distribution using fairly long observed series, and they gave a
good summary of the PWMs method. Hosking (1986) showed that the PWMs method is superior
to the ML method in parameter estimation when the extreme value distribution is used for longer
return periods. For a random variable with the pdf f(·) and cdf F (·), the PWMs are defined by

Ψs,r = E
(
XsF (X)r

)
=

∫ ∞
0

xsF (x)rf(x)dx.

For the EPLG (α, β, λ, θ) distribution, the PWMs are given by the following.
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Proposition 4.1. For the EPLG (α, β, λ, θ) distribution,

Ψs,r = A2

∞∑
n=0

b∗n+1θ
n+1

n
νs(αn, β, λ),

where A2 =
(

1
T (θ)

)r
, b∗0 = (a∗0)n, a∗n = n + 1 and b∗m = 1

ma∗0

∑m
k=0 (rk −m+ k) a∗kb

∗
m−k. Also, the

sth moment of the EPLG distribution can be obtained by setting r = 0 in Ψs,r.

Proof. See Appendix 3. �

4.2 Residual life function of the EPLG distribution

Given that a component survives up to time t ≥ 0, the residual life is the period beyond t until the
time of failure and defined by the conditional random variable X − t|X > t. The mean residual
life (MRL) function is an important function in survival analysis, actuarial science, economics and
other social sciences and reliability for characterizing lifetime. Although the shape of the hazard
rate function plays an important role in repair and replacement strategies, the MRL function is
more relevant as the latter summarizes the entire residual life function, whereas the former considers
only the risk of instantaneous failure. In reliability, it is well known that the MRL function and
ratio of two consecutive moments of residual life determine the distribution uniquely (Gupta and
Gupta, 1983). MRL function as well as hazard rate function are very important, since each of them
can be used to determine a unique corresponding lifetime distribution. Lifetimes can exhibit IMRL
(increasing MRL) or DMRL (decreasing MRL). MRL functions that first decreases (increases)
and then increases (decreases) are usually called bathtub-shaped (upside-down bathtub), BMRL
(UMRL). The relationship between the behaviors of the two functions of a distribution has been
studied by many authors, see Park (1985), Ghitany (1998), Mi (1995) and Tang et al. (1999).

4.3 The τth order moment of the residual life and reversed residual life function

The following proposition gives a general result on τth order moment of the residual life of the
EPLG distribution.

Proposition 4.2. The τ th order moment of the residual life of the EPLG (α, β, λ, θ) distribution
is

mτ (t) =
1

S(t)

τ∑
i=0

∞∑
n=1

αn−1∑
j=0

j∑
k=0

(
τ

i

)(
αn− 1

j

)(
j

k

)
(−t)τ−inαθ

nλ2

λ+ 1
(−1)j

( λ

λ+ 1

)k
·

[
Γ
( i
β

+ k + 1, λ(1 + j)tβ
)

+ Γ
( i
β

+ k + 2, λ(1 + j)tβ
)]
,

where A = 1−
(

1 + λxβ

λ+1

)
e−λx

β
.

Proof. See Appendix 4. �

The variance of the residual life function of the EPLG distribution can be obtained using m1(t)
and m2(t).
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We analogously discuss the reversed residual life and some of its properties. The reversed
residual life can be defined as the conditional random variable t−X|X ≤ t which denotes the time
elapsed from the failure of a component given that its life is less than or equal to t. This random
variable may also be called the inactivity time (or time since failure); for more details see Kundu
and Nanda (2010) and Nanda et al. (2003). Also, in reliability, the mean reversed residual life
(MRRL) and ratio of two consecutive moments of reversed residual life characterize the distribution
uniquely.

Proposition 4.3. The τ th moment of the reversed residual life function of the EPLG (α, β, λ, θ)
distribution is

m.reversedτ (t) =
1

F (t)

τ∑
i=0

∞∑
n=1

αn−1∑
j=0

j∑
k=0

(
τ

i

)(
αn− 1

j

)(
j

k

)
(−t)τ−inαθ

nλ2

λ+ 1
(−1)j

( λ

λ+ 1

)k
·
[
γ
( i
β

+ k + 1, λ(1 + j)tβ
)

+ γ
( i
β

+ k + 2, λ(1 + j)tβ
)]
,

where A = 1−
(

1 + λxβ

λ+1

)
e−λx

β
.

Proof. See Appendix 5. �

4.4 Mean deviations

The amount of scatter in a population can be measured by the totality of deviations from the
mean and median. The mean deviation from the mean is a robust statistic, being more resilient
to outliers in a data set than the standard deviation. For a random variable X with pdf f(x), cdf
F (x), mean µ and median M , the mean deviation from the mean and the mean deviation from the
median are defined by

δ1(µ) =

∫ ∞
0

∣∣x− µ∣∣f(x)dx = 2µF (µ)− 2I(µ),

and

δ2(M) =

∫ ∞
0

∣∣x−M ∣∣f(x)dx = 2MF (M)−M + µ− 2I(M),

respectively, where I(a) =
∫ a

0 xf(x)dx = $t
1

[
α, β, λ, θ

]
=
∫ t

0 xf(x)dx.

4.5 Bonferroni and Lorenz curves

Study of income inequality has gained a lot of importance over the last few years. Lorenz curve and
the associated Gini index are undoubtedly the most popular indices of income inequality. However,
there are certain measures which despite possessing interesting characteristics have not been used
often for measuring inequality. Bonferroni curve and scaled total time on test transform are two
such measures, which have the advantage of being represented graphically in the unit square and
also be related to the Lorenz curve and Gini ratio (Giorgi, 1998). These two measures have some
applications in reliability and life testing as well (Giorgi and Crescenzi, 2001). The Bonferroni and
Lorenz curves and Gini index have many applications not only in economics to study income and

9



poverty, but also in other fields like reliability, medicine and insurance. The Bonferroni curve of
the EPLG distribution is given by

BF
(
F (x)

)
=

1

µF (x)

∫ x

0
uf(u)du =

1

µF (x)
$t

1

[
α, β, λ, θ

]
.

The Lorenz curve of the EPLG distribution can be obtained via

LF
(
F (x)

)
= BF

(
F (x)

)
F (x) =

1

µ

∫ x

0
uf(u)du =

1

µ
$t

1

[
α, β, λ, θ

]
.

Some numerical values of µ1, µ2, µ3, µ4, MX(t = 2), skewness, kurtosis, δ1(µ) and δ2(M) of the
EPLG distribution for (α, β, λ) = (1, 1, 2), (1, 2, 1) and θ = (0.03, 0.8, 1, 1.5, 3, 3) are listed in Table
1.

The values of the first four moments of the EPLG distribution for α = 1, β = 1 and λ = 2
EPLG for θ : 0.03 0.2 0.5 0.7 0.9
µ1 2.248 1.297 0.911 0.787 0.701
µ2 5.967 2.362 1.346 1.073 0.899
µ3 17.813 5.337 2.662 2.024 1.641
µ4 58.830 14.308 6.549 4.848 3.856
MX(t = 2) 45577.049 2017.731 338.521 166.394 96.282
skewness 0.005 0.071 0.153 0.191 0.221
kurtosis 0.023 0.220 0.421 0.512 0.586
δ1(µ) 0.748 0.651 0.557 0.515 0.483
δ2(M) 0.748 0.645 0.543 0.497 0.462
The values of the first four moments of the EPLG distribution for α = 1, β = 2 and λ = 1
θ : 0.03 0.8 1.5 3 5
µ1 2.136 1.595 1.316 1.214 1.139
µ2 4.793 2.832 2.021 1.757 1.574
µ3 11.155 5.411 3.445 2.863 2.477
µ4 26.772 10.957 6.364 5.109 4.305
MX(t = 2) 107.351 42.039 25.388 20.949 18.115
skewness -0.065 -0.050 -0.009 0.014 0.032
kurtosis -0.188 -0.121 -0.004 0.052 0.097
δ1(µ) 0.367 0.427 0.434 0.430 0.425
δ2(M) 0.366 0.426 0.434 0.430 0.424

Table 1: The values of the first four moments of the EPLG distribution for different parameter
values.

4.6 Reliability

We derive the reliability R = P (Y > X) when X ∼ EPLG (α1, β1, λ1, θ1) and Y ∼ EPLG
(α2, β2, λ2, θ2) are independent random variables. It can be shown that

Proposition 4.4. The reliability R = P (Y > X) can be expressed as

R =
α1β1θ1λ

2
1

(λ1 + 1)T (θ1)T (θ2)

∞∑
n=1

∞∑
i=0

∞∑
n=1

∞∑
j=0

(
nα1 − 1

i

)
(−1)i

(
nα2 − 1

j

)
(−1)jnθn−1

1 θn2

·
i∑

m=0

j∑
l=0

(
i

m

)(
j

l

)(
λ1

λ1 + 1

)m( λ2

λ2 + 1

)l
.

Proof. See Appendix 6. �
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5 Particular cases of the EPLG distribution

The EPLG distribution contains various particular cases. Some of these distributions are discussed
here.

(a) The EPL distribution

The EPL distribution is a particular case of the EPLG distribution for θ −→ 0 with the cdf
and pdf given in (2) and (3). It was introduced by Ashour and Eltehiwy (2014).

(b) The Lindley-geometric (LG) distribution

The LG distribution is a particular case of the EPLG distribution for α = 1 and β = 1
introduced by Gui et al. (2014). The pdf of the LP distribution is

fLG(x) =
λ2

λ+ 1
(1− θ)(1 + x)e−λx

[
1− θ

(
1 +

λx

λ+ 1

)
e−λx

]−2

, 0 < θ < 1, x, λ > 0.

(c) The power Lindley (PL) distribution

The PL distribution is a particular case of the EPLG distribution for θ −→ 0 and α = 1
introduced by Ghitany et al. (2013). The pdf of the PL distribution is

fPL(x) =
βλ2

λ+ 1

(
1 + xβ

)
xβ−1e−λx

β
.

(d) The new generalized Lindley (NGL) distribution

The NGL distribution is a particular case of the EPLG distribution for θ −→ 0 and β = 1
introduced by Nadarajah et al. (2011). The pdf of the NGL distribution is

fNGL(x) =
αλ2

1 + λ
(1 + x) e−λx

[
1−

(
1 +

λx

λ+ 1

)
e−λx

]α−1

.

6 Estimation and inference

Standard statistical techniques such as MLE can always be used for parametric estimation. The
likelihood equations, given the complete or censored failure data set, can be derived and solved.
Parameter estimation is usually a difficult problem even for the four-parameter EPLG distribution.
Methods like the MLE will not yield a closed form solution. Different methods can be used to
estimate parameters of the EPLG distribution. Among these methods, the MLE method is the
most commonly used method for parameter estimation. Here, we use the ML procedure to derive
the point and interval estimates of the parameters. The log-likelihood function is

L = n ln (α) + n ln (β) + 2 n ln (λ)− n ln (λ+ 1) + n ln (1− θ) + (β − 1)

n∑
i=1

ln (xi) +

n∑
i=1

ln
(

1 + xi
β
)

−λ
n∑
i=1

xi
β + (α− 1)

n∑
i=1

ln

(
1−

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β

)

−2
n∑
i=1

ln

(
1− θ

(
1−

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β

)α)
.
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Calculating the first partial derivatives of L with respect to α, β, λ, θ and equating each to zero, we
get the derivative of likelihood equations in the following system of nonlinear equations

∂L

∂α
=

n

α
+

n∑
i=1

ln

(
1−

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β

)

+2
n∑
i=1

θ

(
1−

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β

)α
ln

(
1−

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β

)

·
(

1− θ
(

1−
(

1 +
λ xi

β

λ+ 1

)
e−λ xi

β

)α)−1

,

∂L

∂β
=

n

β
+

n∑
i=1

ln (xi) +
n∑
i=1

xi
β ln (xi)

1 + xiβ
− λ

n∑
i=1

xi
β ln (xi)

+ (α− 1)
n∑
i=1

(
−λ xi

β ln (xi) e
−λ xi

β

λ+ 1
+

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β
λ xi

β ln (xi)

)

·
(

1−
(

1 +
λ xi

β

λ+ 1

)
e−λ xi

β

)−1

+2
n∑
i=1

θ α

(
1−

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β

)α

·

(
−λ xi

β ln (xi) e
−λ xi

β

λ+ 1
+

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β
λ xi

β ln (xi)

)

·
(

1−
(

1 +
λ xi

β

λ+ 1

)
e−λ xi

β

)−1(
1− θ

(
1−

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β

)α)−1

,

∂L

∂λ
= 2

n

λ
− n

λ+ 1
−

n∑
i=1

xi
β

+ (α− 1)

n∑
i=1

(
−
(
xi
β

λ+ 1
− λ xi

β

(λ+ 1)2

)
e−λ xi

β
+

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β
xi
β

)

·
(

1−
(

1 +
λ xi

β

λ+ 1

)
e−λ xi

β

)−1

− 2
n∑
i=1

−α θ
(

1−
(

1 +
λ xi

β

λ+ 1

)
e−λ xi

β

)α
·
(
−
(
xi
β

λ+ 1
− λ xi

β

(λ+ 1)2

)
e−λ xi

β
+

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β
xi
β

)
·
(

1−
(

1 +
λ xi

β

λ+ 1

)
e−λ xi

β

)−1(
1− θ

(
1−

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β

)α)−1

,

∂L

∂θ
= − n

1− θ
+ 2

n∑
i=1

(
1−

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β

)α(
1− θ

(
1−

(
1 +

λ xi
β

λ+ 1

)
e−λ xi

β

)α)−1

.

To find out the MLEs of (α, β, λ, θ), say
(
α̂, β̂, λ̂, θ̂

)
we have to solve the above system of

nonlinear equations. As it seems, this system has no closed form solution. We used the Newton-
Raphson method to obtain the solution.
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The approximate confidence intervals for the parameters can be based on the asymptotic dis-
tribution of the MLEs of α, β, λ, θ. Under certain regularity conditions, the limiting distribution

of
√
n
(
α̂− α, β̂ − β, λ̂− λ, θ̂ − θ

)
as n → ∞ is a four dimensional normal distribution with zero

means and covariance matrix [E (I)]−1, where the elements of I are given in Appendix 7. In practice,

n is finite. It is customary that the distribution of
√
n
(
α̂− α, β̂ − β, λ̂− λ, θ̂ − θ

)
is approximated

by a four dimensional normal distribution with zero means and covariance matrix Î−1, where Î is

the I with (α, β, λ, θ) replaced by
(
α̂, β̂, λ̂, θ̂

)
. Let Σ̂ = Î−1. Using the approximation, 100(1− δ)

percent confidence intervals for α, β, λ, θ can be determined as

α̂± z δ
2

√
Σ̂11, β̂ ± z δ

2

√
Σ̂22, λ̂± z δ

2

√
Σ̂33, θ̂ ± z δ

2

√
Σ̂44,

respectively, where zδ is the upper δth percentile of the standard normal distribution.

7 Simulation study

Here, we used a simulation study to investigate the performance of the accuracy of point estimates
of the parameters of the EPLG (α, β, λ, θ) distribution. The following steps were followed:

1. Specify the sample size n and the values of the parameters α, β, λ and θ;

2. Generate Ui ∼ Uniform(0, 1), i = 1, . . . , n;

3. Set

Xi =

[
− 1− 1

λ
− 1

λ
W

(
− (1 + λ) e−1−λ,

(
1−

(
Ui

1− θ + Uiθ

) 1
α
) )] 1

β

;

4. Calculate the MLEs of the four parameters;

5. Repeat steps 2-3, N times;

6. Calculate the mean squared error (MSE) for each parameter.

The comparison is based on MSEs. The MSEs were computed by generating one thousand
replications of samples of size n = 10, 20, . . . , 100 from the EPLG distribution with (α, β, λ, θ) =
(1, 1.5, 2, 0.7). Figures 4 plot the MSEs of the MLEs of the four parameters. The assessment based
on simulation study is that the MSEs for each parameter decreases with increasing sample size.

Figure 4: Plots of the MSE (α̂), MSE
(
β̂
)

, MSE
(
λ̂
)

and MSE
(
θ̂
)

for (α, β, λ, θ) = (1, 1.5, 2, 0.7) based

on 1000 replications.

8 Real data applications

To show the superiority of the EPLG distribution, we compare the results of fitting the EPLG
distribution to some other distributions using two real data sets. The first data set represents the
strength of 1.5 cm glass fibres, measured at National physical laboratory, England (see Smith and
Naylor (1987)). The second data represents the survival times (in days) of 72 guinea pigs infected
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with virulent tubercle bacilli, observed and reported by Bjerkedal (1960). We compare the fit of
the EPLG distribution with the following distributions:

• The generalized Lindley (GL) distribution, introduced by Zakerzadeh and Dolati (2009), with
pdf

fGL(x) =
λ2(λx)α−1(α+ γx)

(γ + λ)Γ(α+ 1)
e−λx, x, θ, α, γ > 0.

• The two-parameter weighted Lindley (WL) distribution, introduced by Ghitany et al. (2011),
with pdf

fWL(x) =
λc+1

(λ+ c) Γ(c)
xc−1(1 + x)e−λx, x, α, λ > 0.

• The Lindley-Poisson (LP) distribution, introduced by Gui et al. (2014), with pdf

fLP (x) =
λ2θ(x+ 1)e

θe−λx(λ+λx+1)
λ+1

−λx

(λ+ 1) (eθ − 1)
, x, θ, λ > 0.

• The beta-generalized Lindley (BGL) distribution, introduced by Oluyede and Yang (2014),
with pdf

fBGL(x) =
αλ2

β(a, b) (1 + λ)
(1 + x) e−λx

[
1−

(
1 +

λx

λ+ 1

)
e−λx

]aα−1

·
{

1−
[
1−

(
1 +

λx

λ+ 1

)
e−λx

]α}b−1

, x, a, b, α, β, λ > 0.

• The beta-exponentiated power Lindley (BEPL) distribution, introduced by Pararai et al.
(2015), with pdf

fBEPL(x) =
αβ2w

β(a, b) (1 + β)
(1 + xα) xα−1 e−βx

α

[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]aw−1

·
{

1−
[
1−

(
1 +

βxα

β + 1

)
e−βx

α

]w}b−1

, x, a, b, α, β, w > 0.

• The generalized linear failure rate-geometric (GLFRG) distribution, introduced by Nadarajah
et al. (2012), with pdf

fGLFRG(x) =
α (a + b x) (1− θ) e−a x−1/2 b x2

(
1− e−a x−1/2 b x2

)α−1

(
1− θ

(
1−

(
1− e−a x−1/2 b x2

)α))2 , x, α, θ, a, b > 0.

• The McLomax distribution, introduced by Lemonte and Cordeiro (2013), with pdf

fMcLomax(x) =
cαβα

(
β + x

)−(α+1)

B
(
ac−1, η + 1

) {
1−

( β

β + x

)α}a−1[
1−

{
1−

( β

β + x

)α}c]η
,

where x, α, β, a, c > 0 and 0 ≤ η.
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• The Weibull (W) distribution, introduced by Weibull (1951), with pdf

fW (x) = αγxγ−1e−αx
γ
, x, α, γ > 0.

• The exponentiated Weibull (EW) distribution, introduced by Mudholkar and Srivastava
(1993, 1995), with pdf

fEW (x) = αγβγxγ−1e−(βx)γ
(
1− e−(βx)γ

)α−1
, x, α, β, γ > 0.

• The modified Weibull (MW) distribution, introduced by Mudholkar and Srivastava (1996),
with pdf

fMW (x) = αxγ−1(γ + λx)eλxe−αx
γeλx , x, α, β, γ > 0.

Estimates of the parameters of the distributions, Akaike Information Criterion (AIC = 2p −
2 ln(L)), Bayesian Information Criterion (BIC = p ln(n)− 2 ln(L)) and −2 ln(L) are given in Table

2 for the strength of glass fibres data and in Table 4 for guinea pigs data, where L = L
(
Θ̂
)

is the value of the likelihood function evaluated at the parameter estimates, n is the number of
observations, and p is the number of estimated parameters. For more discussion, we present the
values of Kolmogorov-Smirnov (KS) statistic, Anderson-Darling statistic (AD) and Cramér-von
Mises statistic (CM) for these data sets in Table 4. The smaller the values of these statistics
the better the fit. For more details of these statistics, see Chen and Balakrishnan (1995). We
also computed the maximum values of the unrestricted and restricted log-likelihoods to obtain the
likelihood ratio (LR) statistics for testing some particular cases of the EPLG distribution in Tables
3 and 5. In addition, the empirical scaled TTT transform (Aarset, 1987) and Kaplan-Meier curve
can be used to identify the shape of the hazard rate function.

8.1 Data set 1: Strength of glass fibres data

The data are: 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04,
1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60,
1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84,
0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89.

According to the statistics in Table 2, the EPLG distribution fits better than the others for
the strength of glass fibres data. Also by using the likelihood ratio (LR) test in Table 3, we test:
H0: W distribution versus the alternative hypothesis H1: EPLG distribution. The value of the LR
test statistic and the corresponding p-value are 6.53858 and 0.04, respectively. Therefore, the null
hypothesis (W distribution) is rejected in favor of the alternative hypothesis (EPLG distribution)
at a significance level > 0.04. Similarly, we can test the other nested distributions versus the EPLG
distribution based on Table 3. We see that the EPLG distribution is better than others in that
it has the smallest AIC, smallest BIC, smallest AD statistic, smallest CM statistic and smallest
K-S statistic. In addition, Figures 5 and 6 show the estimated survival function plot, TTT plot
and Kaplan-Meier curve of the fitted distributions for the strength of glass fibres data. These
figures show that the EPLG distribution fits better than the other distributions. Consequently,
from the values of the statistics in Tables 2, 3 and from Figures 5 and 6, we conclude that the
EPLG distribution gives the better fit for strength of glass fibres data.
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Table 2: Estimates of fitted distributions for strength of glass fibres data.
Estimated parameters Model selection criteria

Model α̂ β̂ λ̂ θ̂ γ̂ ĉ AIC BIC −2 ln(L) AD CM K-S

EPLG 0.69931 0.9173 3.08735 0.94201 31.88 40.45 23.88 0.48 0.07 0.10
W 0.05975 5.7807 34.41 38.70 30.41 1.26 0.22 0.15
EW 0.67124 0.58204 7.2846 35.35 41.78 29.35 1.10 0.20 0.15
MW 0.00871 2.16075 2.4027 34.71 41.14 28.71 0.96 0.17 0.14
L 0.99612 164.56 172.58 162.56 16.45 3.36 0.39
GL 17.43953 11.57396 0.00469 53.90 60.33 47.90 3.13 0.57 0.22
NGL 26.17184 2.99009 65.24 69.53 61.24 4.26 0.78 0.23
WL 11.73897 17.0957 51.78 56.06 47.78 3.12 0.57 0.22
PL 4.45839 0.22242 33.38 37.67 29.38 1.13 0.19 0.14
EPL 0.56742 0.07985 5.84341 33.71 40.14 27.71 0.86 0.15 0.13
LP 0.0233 709.75968 141.96 146.25 137.96 15.40 3.15 0.38
LG 0.95155 3e-05 166.79 171.07 162.79 15.51 3.12 0.36

Model Estimates AIC BIC −2 ln(L) AD CM K-S

BGL α̂ = 1.17396, 54.56 63.13 46.56 45.96 0.55 0.81

λ̂ =0.89994,
â =11.54124,

b̂ =11.66821
BEPL α̂ = 0.47568, 64.76 75.48 54.76 3.68 0.66 0.23

β̂ =2.73528,
â =9.21066,

b̂ =8.99497,
ŵ =8.65379

GLFRG α̂ =6.00162, 64.14 72.71 56.14 3.41 0.53 0.18

θ̂ =0.8526,
â =0.14957,

b̂ =0.88854
McLomax α̂ =133.13023, 40.10 50.81 30.10 5.13 0.24 50.81

β̂ =196.29493,
ĉ =7.45377,
â =463.67918,
η̂ =18.15068

Figure 5: Estimated survival function and the empirical survival for strength of glass fibres data.

Figure 6: Empirical TTT-plot (top left), estimated hazard rate function (top right), estimated survival

function (bottom) for the fitted distributions to the strength of glass fibres data.
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Table 3: LR statistics and corresponding p-values for strength of glass fibres data.
H0 W EW L GL NGL WL PL EPL LP LG BGL GLFRG
H1 EPLG EPLG EPLG EPLG EPLG EPLG EPLG EPLG EPLG EPLG EPLG EPLG
LR statistics 6.54 5.48 138.68 24.03 37.36 23.90 5.50 3.83 114.09 138.91 22.68 32.26
p-value 0.04 0.02 0.00 0.00 0.00 0.00 0.06 0.05 0.00 0.00 0.00 0.00

8.2 Data set 2: Guinea pigs data

The data are: 10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 108,
109, 112, 113, 115, 116, 120, 121, 122, 122, 124, 130, 134, 136, 139, 144, 146, 153, 159, 160, 163,
163, 168, 171, 172, 176, 183, 195, 196, 197, 202, 213, 215, 216, 222, 230, 231, 240, 245, 251, 253,
254, 254, 278, 293, 327, 342, 347, 361, 402, 432, 458, 555.

Figure 7: Estimated survival function and the empirical survival function for the guinea pigs data.

Figure 8: Empirical TTT-plot (top left), estimated hazard rate function (top right), estimated survival

function (bottom) for the fitted distributions for the guinea pigs data.

According to the statistics in Table 4, the EPLG distribution fits better than the others for the
guinea pigs data. Also by using the likelihood ratio (LR) test in Table 5, we test: H0: W distribution
versus the alternative hypothesis H1: EPLG distribution. The value of the LR test statistic
and the corresponding p-value are 5.48 and 0.06, respectively. Therefore, the null hypothesis (W
distribution) is rejected in favor of the alternative hypothesis (EPLG distribution) at a significance
level > 0.06. Similarly, we can test the other nested distributions versus the EPLG distribution
based on Table 5. We see again that the EPLG distribution is better than others in that it has the
smallest AIC, smallest BIC, smallest AD statistic, smallest CM statistic and smallest K-S statistic.
In addition, Figures 7 and 8 show the estimated survival function plot, TTT-plot and Kaplan-
Meier curve of the fitted distributions to the guinea pigs data. These figures show that the EPLG
distribution fits better than the other distributions. Consequently, from the values of the statistics
in Tables 4, 5 and from Figures 7 and 8, we conclude that the EPLG distribution gives the better
fit for the guinea pigs data.

In both data applications, some of the fitted distributions (BEPL and McLomax) are not nested
with the EPLG distribution and have larger number of parameters. Yet the EPLG distribution
provides better fits than these distribution in that it yielded smaller AICs, smaller BICs, smaller
AD statistic, smaller CM statistic and smaller K-S statistic.

The parameter estimates of the best fitting EPLG distribution to the glass fiber data can be
interpreted as follows. Suppose each glass fiber is made of up a geometric number of components
working in parallel and that the failure time of each component is EPL distributed, so the glass
fiber will break if and only if all its components fail. According to the parameter estimates, there
is an average of 1.06 components working in parallel with a variance of 0.07. The mean failure time
of each component is 0.301. The variance of the failure time of each component is 0.137.

The parameter estimates of the best fitting EPLG distribution to the guinea pigs data can be
interpreted as follows. Suppose each guinea pig is made of up a geometric number of components
working in parallel and that the failure time of each component is EPL distributed, so the pig will
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Table 4: Estimates of fitted distributions for guinea pigs data.
Estimated parameters Model selection criteria

Model α̂ β̂ λ̂ θ̂ γ̂ ĉ AIC BIC −2 ln(L) AD CM K-S

EPLG 6.7385 4.34313 0.23122 0.99998 857.25 866.35 849.25 0.40 0.07 0.08
W 6e-05 1.82535 858.72 863.28 854.72 1.02 0.17 0.10
EW 2.65369 0.00886 1.16042 857.31 864.14 851.31 0.54 0.09 0.09
MW 6e-05 4e-05 1.82535 860.72 867.55 854.72 1.02 0.17 0.10
L 0.01125 860.55 877.55 858.55 1.93 0.32 0.17
GL 2.08461 0.01744 44.46963 857.60 864.43 851.60 0.59 0.09 0.09
NGL 1.69576 0.01443 855.32 859.88 851.32 0.53 0.08 0.09
WL 0.01751 2.10518 855.55 860.10 851.55 0.59 0.09 0.09
PL 1.26021 0.0028 855.99 860.55 851.99 0.69 0.11 0.09
EPL 1.6549 0.01346 1.01119 857.32 864.15 851.32 0.54 0.09 0.09
LP 0.00178 21.03036 857.98 861.54 852.98 0.87 0.14 0.12
LG 0.01125 1e-04 862.55 867.11 858.55 1.93 0.32 0.17

Model Estimates AIC BIC −2 ln(L) AD CM K-S

BGL α̂ = 0.81484, 860.18 869.29 852.18 0.72 0.12 0.09

λ̂ =0.00168,
â =1.46303,

b̂ =18.60763
BEPL α̂ =0.74477, 861.49 872.87 851.49 0.50 0.08 0.09

β̂ =0.04691,
â =1.32812,

b̂ =2.11286,
ŵ =1.98428

GLFRG α̂ =3.14925, 859.52 868.63 851.52 0.58 0.09 0.09

θ̂ =5e-04,
â =0.00972,

b̂ =1e-05
McLomax α̂ =0.08471, 861.08 872.46 851.08 6.54 0.08 872.46

β̂ =243.56762,
ĉ =2.97931,
â =661.49749,
η̂ =1.985
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Table 5: LR statistics and corresponding p-values for guinea pigs data.
H0 W L LG BGL GLFRG
H1 EPLG EPLG EPLG EPLG EPLG
LR statistics 5.48 9.31 9.31 2.94 2.27
p-value 0.06 0.03 0.01 0.00 0.00

die if and only if all its components fail. According to the parameter estimates, there is an average
of 1.00 component working in parallel with a variance of 2× 10−5. The mean failure time of each
component is 1.90. The variance of the failure time of each component is 0.026.

9 Conclusions

We introduced a four-parameter lifetime distribution called the exponentiated power Lindley geo-
metric (EPLG) distribution, a mixed distribution of the exponentiated power Lindley and geomet-
ric distributions. The EPLG distribution is flexible in modelling various types of failure data with
possibly bathtub-shaped hazard rate functions. The EPLG distribution is more flexible than the
Weibull, exponentiated Weibull, modified Weibull, Lindley, generalized Lindley, new generalized
Lindley, weighted Lindley, power Lindley, exponentiated power Lindley, Lindley Poisson, Lindley
geometric, beta generalized Lindley, beta exponentiated power Lindley, generalized linear failure
rate geometric and McLomax distributions. The mathematical properties of the EPLG distribution
derived include explicit expressions for the density function of the order statistics, their moments,
quantiles, moments, residual life moments and probability weighted moments. The simulation
study and two real data applications discussed show the potential of the EPLG distribution. We
hope that the EPLG distribution may attract wider applications in survival analysis.
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