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A. Background 

Several synthetic aperture radar (SAR) processing 
algorithms have been developed since the first 
spaceborne SAR (SEASAT) was launched in 1978. 
The range-Doppler algorithm [l] was the first fast 
algorithm used for processing spaceborne SAR data 
but was later refined to accommodate secondary 
range compression [2]. This algorithm is still used 
for processing SAR data operationally. Since about 
1987 more advanced algorithms have also appeared 
which take care of the phase quality in the processed 
signal data. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw-k algorithm, which was borrowed 
from seismics, was introduced in [3 and 41. This 
algorithm was based on the wave equation and 
inspired development of another phase preserving 
algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5].  In [5] they invoked SAR-specific 
considerations in order to improve the processing 
efficiency and ease of implementation. However, the 
latest algorithm, the chirp scaling (CS) approach [6-81 
has nearly perfected the airborne SAR processing. 
No interpolation is needed in this algorithm. Another 
approach for fast processing has been analyzed in [9]. 
All the mentioned algorithms were derived based on 
the airborne SAR geometry. 

The airborne SAR algorithms referred to above 
have been adapted for spaceborne SAR processing 
by calculating a squint angle which is dependent on 
the Doppler frequency caused by Earth rotation. To 
take into account the orbital motion of the satellite a 
scaled satellite speed (effective velocity) is used for 
estimation of the azimuth Doppler rate. For small 
azimuth beam angles a straight line motion with an 
effective velocity (radar velocity) may be a good 
approximation to a circular motion of a spaceborne 
SAR, but not to a general relative motion between a 
satellite and the rotating Earth. A general second-order 

relative motion was first treated in [lo] in order 
to use state vectors of the satellite directly. In this 
approach two parameters, the Doppler centroid and 
the azimuth Doppler rate, could be used to describe 
the relative motion. Hence, the azimuth phase history 
was expressed by these two parameters, which again 
are functions of the state vectors of the satellite and 
the rotation of the Earth. This formalism was used 
in [ 111 in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe expression given for the second-order 
two-dimensional exact transfer function (ETF) for 
a spaceborne SAR. The work described in [ 111 
uses the “spaceborne SAR” formalism and not the 
“airborne SAR’ formalism. The ETF algorithm treats 
a general waveform of transmitted signal while the 
original CS algorithm assumes a linear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFM chirp in 
the transmitted signal. 

All the mentioned algorithms were derived based 
on second-order azimuth phase history. An ETF 
algorithm was calculated exactly in [12] for simulation 
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of an airborne spot AR in a circular trajectory and in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 131 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa wide-be m spaceborne SAR for a perfectly 
circular orbit aroun a planet. In the last case the 
rotation of the plan, i t was not included. 

B. Objectives 

algorithms above in mind we 
in processing of spaceborne 

possible future SAR 
times, such as wide 

SAR or spotSAR. 
Section IA apart 

is described 

on of block size in range is 
c case. The azimuth variation 

eloped. In this way many 
with the same ETF. 

not treated here since the 
problem. However, it can 
the algorithm. The ETF 

corrections is referred to as the 
ETF algorithm (fourth-order 

e fourth-order EETF has been 
or and is applicable for ERS- 1, 

and ENVISAT [ 141. The EETF 
t perform curvature equalization 

ot very important for a 
ariation of the range 

smaller than for 

In this work the 1 
determined for a 

EETF or EET d-order EETF with simpler 

airborne SAR. ~ 

fourth-order azimuth phase 
and in Section IIB it 

responses processed with the 2D EETF4 are shown 
and their quality are assessed. 

II. AZIMUTH PHASE HISTORY MODEL 

In most publications (e.g. [l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, 8, 91) the phase 
history is developed based on airborne SAR geometry 
where the aircraft moves in a straight line. For 
spaceborne SARs the aircraft geometry is modified as 
explained in Section IA by incorporating an effective 
squint angle and an effective satellite velocity (e.g. 
[15]). The phase history is not expanded around the 
beam center, but about the time of closest approach 
which may be far from the beam center. An expansion 
about the beam center with zero time [5, 101 is a 
more natural way to proceed for very high Doppler 
centroids, especially if the time of integration is long 
(e.g. when 1 m azimuth resolution is required). The 
formalism introduced in [lo] and later used in [16] 
will now be extended to 4th order. 

A. Fourth-Order Taylor Expansion 

One can approximate the relative satellite-Earth 
motion using a fourth-order Taylor expansion in 
azimuth time (slow time) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, 

where 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv ,  A, 8, c are 3-dimensional relative 
position, velocity, acceleration, rate of acceleration, 
and rate of the rate of acceleration vectors between 
the satellite and a given target on the earth at azimuth 
time 0. Equation (1) is a 3-dimensional vector 
equation and the azimuth time is associated with the 
motion of the satellite in the azimuth direction. The 
geometry is simply illustrated in Fig. 1. The position 
vector of the satellite (S) and the position vector of 
the target zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2’) are denoted zS and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzT, respectively. 
For simplicity, the velocity vector of the satellite, G, 
is defined as the azimuth direction and is coincident 
with the y-axis of the attitude reference system in 
Fig. 1. This is generally not the case. The axes of the 
attitude reference system which is fixed to the satellite 
is denoted with three vectors zA, PA, and zA. Usually 
the attitude control system tries to make the z-axis 
(2,) perpendicular to the surface of the Earth. The 
look angle a for a given target in the range direction 
is indicated in the figure. All vectors are defined in an 
inertial system with axes denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI, 5, and 2, with 
the origin at the geocenter. The different vectors in (1) 
(at zero azimuth time) are given by 

f i = R s - i ? T  (2) 

V = % - V T  (3) 

A = A S - A T  (4) 
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Using (8), the azimuth phase history is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAzimuth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, 

Vernal equinox zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 1. Relative satellite-Earth motion in inertial reference frame zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(X,,yl,ZI). Attitude reference frame fixed to satellite zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(S) also 

shown. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 5 )  

(6)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ - t +  

B = B s - B T  

c = cs, - cT 
where subscript S means satellite and subscript T 
means target. Time 0 is selected to be the instant 
when a given target is in the middle of the azimuth 
illumination time. Taking the square of both sides in 
(1) and using the relation (e.g. [17]) 

where X is the radar wavelength. Using (8) the range 
migration is written 

R(t,) = Rr(t,) - R,(O) = clta + c2t? + c3t2 + c4t,4. 

(15) 

The azimuth Doppler frequency is defined by using 

Using (8), (14), (15), and (16) it can be shown that 

f(t,) z a, + a,t, + a3t: + a4t2 (17) 

where the c-coefficients in (15) are related to the 
a-coefficients in (17) by 

x x ,. .. 
c1 = -Fal, c2 = -4a2, 

(18) ~, x x 
6 8 

c3 = --a3, c4 = --a4. 

The a-coefficients in (17) which we call the Doppler 
parameters are now defined. It should be noted that all 
Doppler parameters can be considered as functions of 
slant range (see Table 11). The first Doppler parameter 
is given by 

R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA28.3 
a1 = --x1= -- x XR * 

1 1 2  1 3  5 4  
= + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZx - Sx + Ex - iZX ' '  ' (7) The second Doppler parameter is 

(20) 
2 1 2  a2 = --R(x2 - 5x1) the relative distance as a function of azimuth time can 

be approximated x 
or using (10) and (11) 

Rr(ta) = JlR(ta)12 = R(l + &X - sx 1 2  + zx 1 3 - 5 4  1 2 8 ~  ) 

(8) 

It can be shown that a4 = --R(~x, 2 -xlx3 - Zx2 1 2  + +x2,x2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9~~). 5 4  x 
(23) 

The first Doppler parameter is usually called the 
Doppler centroid since it is the Doppler frequency in 
the center of the azimuth beam pattern. The second 
Doppler parameter is usually called the azimuth 
Doppler rate. The expressions for the Doppler centroid 
and the azimuth Doppler rate have previously been 
published in e.g. [lo, 16, 181, however, the second 
term of (21) was not included in [lo, 161. For ERS-1 
in yaw steering mode, the second term of (21) is 

(10) 

(1 1) 

(12) 

(13) 
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TABLE I 
Orbit Characteristics for Selected Orbit 

Eccentricity 

Argument of perigee zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(O) 

Altitude at ascending node (m) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.001 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
90.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

498841.9 

I Altitude at perigeum (m) I 506044.5 

systems which are not 
SAT and the ERS-1 in roll 

the second-order coefficient is 
lity processing (see e.g. [18]). 

narrow-beam s 
sufficient for h 

g integration time the third 
the fourth Doppler parameter 
see in Section IV. must be includ 

ribed in [19, sect. 31 has 
stimate the Doppler centroid 

teering law. The attitude 
xed to the satellite body 

) in this system with 

ertial reference system. 
calculated. Then this pointing 

of the satellite &, the 
s calculated in the inertial 

e intersection of the 
he Earth’s surface. The Earth’s 
an ellipsoid. In [19] it is shown 

n by (19) is estimated. 
are then estimated 
arameters and also 
as a function of look 

ters for a given slant 
er) are calculated by 

eters. It should be 

are dependent on the range 
+ p . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv is a function of the 

B. Estimation of oppler Parameters Using Orbital 
State Vectors 

If we assume that the 

the target have been 

of the time dependent position vector in (1) can be 
estimated as shown below. We may also mention that 
the velocity vector of the target can be calculated 
with the cross-product, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApT = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGExRT, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGE is the 
angular rotation vector of the Earth. Now, the relative 
velocity vector is defined by differentiating (1) 

+ 

V(tJ = P( t , ) .  

Differentiation of (1) four times, evaluation at t, = 0 
and using (24) yields 

Assume that the relative velocity vectors have been 
estimated at 5 points t_2,  t-,, t, = 0, t,, t2 with spacing 

‘‘a 

w 2 > ,  Q(t-,>, V(0L Y‘ ( t l ) ,  V0.L). (26) 

Then the coefficients vectors in (1)  or (25) can be 
estimated by the following approximations (see e.g. 
[23, pp. 1041 for the one-dimensional case) 

The approximations in (27)-(29) are precise due 
to the smooth behavior of the relative satellite-target 
motion over small time intervals (a few seconds). 
Having obtained estimates for the vectors in 
(27)-(29), the Doppler parameters in (19), (21)-(23) 
can be estimated. However it is well known that the 
Doppler centroid (first Doppler parameter) is better 
estimated from SAR echo data when available due 
to its sensitivity to attitude variations. We also see 
from (19) and (21) that the azimuth Doppler rate is 
dependent on the Doppler centroid, so the azimuth 
Doppler rate will be estimated more accurately by 
estimating the second term in (21) from azimuth 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 
Doppler Parameters at Latitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA49.5" N for X-Band and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYaw Steering 

Look angle (O) Range (m) 

30.0 588345.3 

30.3 590334.3 

Look angle (O) I Range (m) I a1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s-1) 1 a;?(s-2) I a3 (s-3) I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% ( S A )  

30.0 I 588345.7 1-640.19 1-5937.41 10.1833 10.4684 

a1 ( ~ - 1 )  a2 (s-2) a3 ( 5 3 )  

-10988.9 -5934.24 2.6345 0.4670 

-11080.5 -5913.70 2.6384 0.4622 

I 

30.3 I 590334.7 1-638.09 1-5916.91 10.1819 10.4637 I 

TABLE I11 
Doppler Parameters at Latitude 49.4" N for X-Band and No Yaw Steering 

spectra and the first term by geometric methods 
described in [19]. The Doppler parameters are 
dependent on the definition of the attitude reference 
system. We simulate here the parameters for both yaw 
steering and no yaw steering. In [19] is shown how 
we simulated Doppler parameters for a yaw steered 
attitude reference system like ERS-1. 

The requirements on orbital accuracy are important 

to analyze to find out whether the EETF4 can be used 
in practice. In [lo] (Section IIIA) the requirements 
for the orbital accuracy are analyzed for SEASAT by 
using the fact that different looks are misregistrated 
using an erroneous azimuth Doppler rate. Using this 
analysis on the example discussed later in Section 

IVB with a 5-look X-band SAR (Fig. 6), it can be 
shown that the azimuth Doppler rate has to be less 
than 0.065 Hz/s for a misregistration of the first 
and fifth look of 1/3 m (roughly 1/3 of a pixel). 
This corresponds to an accuracy of the speed of 
the satellite of 41 m d s .  If 1/8 m is required the 
speed has to be determined with an accuracy of 
15.4 mm/s. Fast delivery processing of predicted 
ERS-1 orbit data guarantees accuracy of the radial 
position less than 28.5 m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3a) and the accuracy of 
the along track speed roughly 1/1000 (by rule of 
thumb among orbit determination experts), which 
means about 28 mm/s. The precision is degraded at 
lower altitudes, hence, if real time processing using 
predicted orbits were required, the tracking had to be 
improved using appropriate Global Positioning System 
(GPS) systems (more measurements than in existing 
tracking systems) to cope with the drag problems 

at lower altitudes. If not real time processing were 
required, state-of-the-art precise orbit computation, 
e.g. [20], might overcome the problem of estimating 
the Doppler parameters. 

The Kepler elements and altitudes are given in 
Table I for the orbit used for simulation of Doppler 
parameters. We also see from the table that the 
altitude is approximately 500 km. In Tables 11 and 
I11 are given the Doppler parameters in (1 9)-(23) 
for X-band (A = 0.312 m) for yaw steering and 

no yaw steering, respectively. JERS-1 (1992) and 
RADARSAT (1995) are not yaw steered, but 
ERS-1 (1991) and ERS-2 (1995) are mechanically 
yaw steered, while Envisat's ASAR will be 
electronically yaw steered. If we talk about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS A R  
resolution of about 1 m, yaw steering will be very 
important to reduce the enormous range walk 
corresponding to the Doppler centroids in Table I11 
(about 858 m or 2145 pixels if we assume an 
integration time of 5 s). 

I l l .  FOURTH-ORDER EETF ALGORITHM 

An expression for the second order two- 
dimensional ETF including the Doppler centroid and 
the azimuth Doppler rate has previously been given in 
[ 1 11 without showing the calculations. Here we start 
with the point target response in the time domain and 
show how the point target response in the frequency 
domain (ETF) is calculated up to fourth order. We 
start with a general Fourier transform calculation and 
then calculate an analytical expression for the ETF in 
the fourth-order case. 

A. Two-Dimensional Fourier Transform Calculation 

The time domain point target response in general 
form can be written 

(30) 

where t, is the range time (fast time). The propagated 
distance of the SAR pulses is ct, in the pointing 
direction, ST, of the beam (see Fig. 1). aP,(tP,) is the 
azimuth phase function given by (14) which can be 
written in the fourth-order case (using (16) and (17)) 
in terms of the Doppler parameters 

@,(to) = 27r(ult, + :u2t2 + $u3t2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiu4t:) (31) 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@,.(tr - 2R(t,)/c) is the range phase function 
which also takes into account the range migration 
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R(t,), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand c is the 
simplicity omitted antenna gain function 
since it does not 
also omitted the 
time both in the 

in the ETF. We have 
at zero azimuth 

range phase 

(30) defined by 

Using (14) and (15), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F{x(t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- At)} = exp[jw 
complex constants, 
point response can 

the Fourier transform property 

the range Fourier transform of the 
then be written 

At]F{x(t)} and omitting 

To obtain the ETF 
transform to (33) d 

e apply the azimuth Fourier 

The integral in (35 can be solved by the principle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$(la) = t 2R(t,) (? - + - :) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW,t, (36) 

and find its station ry point t: that satisfies 4 

Then the ETF can be written 
I 
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be seen that t: is range 
at (15) and (18). In general, 

e.g. with Newton's 
41. However, this 

may require considerable computation since several 
iterations usually are required. In this work we find 
an analytical solution and show in Section IIIB how a 
fourth-order ETF is calculated. 

The Fourier transform of the transmitted signal in 
the first factor in (38) for the specific case of a linear 
FM chirp is given by (again using the stationary phase 
approximation) 

Fr{exp[-j;b2t;]} =Crexp [jg] (39) 

where b, is the range chirp rate and Cr is a complex 
constant due to the stationary phase approximation. 
The transmitted range signal of the ETF in (38) (the 
first factor) can in principle be of arbitrary form, 
hence this algorithm also can use a general range 
chirp replica. We processed an ERS-1 SAR image 

with a second-order EETF [14] with and without 
replica and observed a degradation in range resolution 
when the linear FM chirp was used instead of the 
replica. 

B. Calculation of Fourth-Order ETF 

Now we calculate the fourth-order ETF (ETF4) for 
a SAR in orbit around the rotating Earth. Assuming a 
fourth-order model and using (15), (37) can be written 

- 2 - + (cl + 2c2ta + 3c3t,2 + 4c4t,3) - w, = 0. (7 :) 
The method to solve (40) is discussed in Appendix B. 
Inserting the solution in (70) into (36) and using (15) 
and (18) yields 

. (2  + r) - wat:, 

The fourth-order ETF is then given by inserting (41) 
into (38) 

(42) 

where C, can very well be approximated to be a 
constant although it is slightly varying over the 
variables of interest. To summarize: Given the range 
dependent Doppler parameters, a l ,  %, a3, a4, in (19) 
and (21)-(23) the fourth-order ETF can be evaluated 
for a given pair of frequencies, (w,,~,), by using (18), 
(41), (42), (63)-(65), and (70). It may be noted that 
for a given pair of range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand azimuth frequencies 
(w,,~,),  a solution of a cubic equation has to be 
evaluated. However, the solution is given explicitly 
and no iteration is needed. The ETF includes the 
so-called secondary range compression (SRC) which 



is easily shown in the second-order case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 1 1, 141, For 
large Doppler centroid variations smaller blocks may 
be necessary for the EETF, however, this is also the 
case for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASRC algorithm as mentioned in [24]. 

C. Calculation of Range Variant Fourth-Order Phase 
Corrections 

If the Doppler parameters were independent of 
location in a SAR scene, that is space invariant, 
the same ETF could be used over all of the scene. 
However, in real SAR data the parameters have to 
be updated as indicated in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. If large blocks 
are processed with the same filter, phase corrections 
have to be calculated to account for the errors which 
have been introduced in the data on both sides of the 
center of a block. This approach speeds up the ETF 
algorithm as shown in Sections IIID and IVB, but also 
takes care of the phase preservation. 

We first approximate the q-parameter in (64). We 

assume that the term wr/c is small compared with 

2.rrlX. Then (64) can be approximated 

4 = 41 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA92wa (43) 

where 

(45) 

We have approximated (64) to be independent of the 
range frequency. Then (64) can be written 

y1 (c 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 c2 % c3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 c4) = y-+ y-w-. 
(46) 

For example, for an S-band system and assuming a 
range bandwidth of 300 MHz, the term wr/c is less 
than 0.8 percent of the term 27r/X and less than 0.3 
percent for X-band. The stationary point solution is 
then given by using (70) 

(47) 

Likewise, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe stationary point solution for a different 

set of Doppler parameters in a given range distance 
from the middle of a block is 

We also approximate (41) and having (18) in mind 

47r 

x $@;) = --(clt,: + C 2 ( t 3 2  + c3(t;)3 + c4(t,:)4) -W& 

(49) 

Then the phase correction in a given range distance 
from the middle of a range compressed block is given 
by the difference of (49) and equation (49) calculated 
at the stationary point given by (48) 

A$EETF4(Wa;R9Rm) = $(t:;Rm>- (50) 

where we also indicate the range dependency. Since 
the phase function in (49) is range dependent, (50) 
must be estimated for each range position R around 
the block center R, of a range compressed block. The 
fourth-order ETF together with the phase corrections 

in (50) we call the fourth-order EETF or simply 
EETF4. The phase corrections in (50) are multiplied 
with the range compressed data prior to inverse 
azimuth fast Fourier transform zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(FFT) (see Fig. 5). To 
evaluate (50), equations (43)-(49) have to be used. 

D. Implementation 

The flow diagram of the algorithm is shown in 
Fig. 5. A block of raw data is two-dimensionally 

Fourier transformed by using 2D FFTs. Then the 
two-dimensional filter, which is the complex conjugate 
of the fourth-order ETF given in (42), is multiplied 
by the Fourier transformed raw data. Then an inverse 
range FFT is applied and then the phase corrections 
given by (50) are multiplied by the data. It should be 
noted that the effect of (50) is to perform the azimuth 
compression perfectly for all azimuth lines within the 
block. Furthermore, neighboring range blocks are 
concatenated perfectly and the phase preservation is 
taken care of. Due to these phase corrections many 
azimuth lines can be processed from each block 
which makes the algorithm fast (see example in IVB). 
The final step is an inverse azimuth FFT. The flow 
diagram in Fig. 5 shows implementation of processing 
for 1 block of data. The number of samples in the 
block in range is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, = 2048 and in azimuth Na, = 
8192. 

IV. SIMULATION EXAMPLES 

A. Analysis of Azimuth Compression 

We show here that a fourth-order ETF may be 
necessary to achieve high image quality and that a 
second-order ETF becomes inadequate for processing 
SAR images with resolution around 1 m and several 
looks. The azimuth filter is dependent on all Doppler 
parameters, so an analysis of the azimuth impulse 
response shows us which Doppler parameters are 
necessary to satisfy a given image quality. The 
behavior of the impulse response is analyzed with a 
quite high PRF (50 kHz) in order to get many samples 
in the mainlobe and in one sidelobe. 

range frequency in (38), HEwn(O,w,), where ETFn 
means ETFn of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. The azimuth phase history, 

We use a one-dimensional ETF with zero 
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Fig. 4. 3-look azimuth S-band signal for yaw steering 
compressed with ETF4 (solid) and ETF2 (short-dashed). 

Integration time for each look is 2.7 s. 

u4 be small. (a4 cannot be 0, see (70)). For 1-look 
X-band (A = 0.032 m) the curves for ETF4 and ETF2 
(not shown) are practically equal, however, for 3 looks 
the degradation is substantial for ETF2. It is obvious 
that a second-order ETF is not sufficient to give a 
satisfactory 3-1ook point target response. The peak 
intensity loss if 1.33 dB and the resolution broadening 
is 12.8 percent. The azimuth resolution is 1.17 m 
when look integration time is 0.9 s. The sidelobes are 
also smeared. 

In Fig. 3 are shown 1-look responses for ETF2, 
ETF3, and ETF4 for S-band (A = 0.094 m) with no 
yaw steering. Note that the integration time for an 
S-band SAR is three times that of an X-band SAR 
at the same resolution. Even for 1-look there is a 
small degradation when the fourth Doppler parameter 
is omitted (ETF3). The degradation is quite large 
using the ETF2 algorithm. This is due to the third 
Doppler parameter which is much larger than for yaw 
steering (compare Tables 11 and 111). We see that the 
sidelobes are quite asymmetrical and the response 
is skewed. The response of ETF2 in Fig. 2 is also 
weakly skewed due to a significant value of the third 
Doppler parameter for yaw steering. 

In Fig. 4 the 3-look responses are shown for 
S-band for a yaw steered SAR. The ETF2 curve is 
degraded and unacceptable in comparison with the 
ETF4 response. Note that the look bandwidth is the 
same for Figs. 3 and 4, hence, the total bandwidth 
is three times larger in Fig. 4 than in Fig. 3. The 
degradation of the ETF2 response in Fig. 4 would be 
even worse if the SAR were not yaw steered. 

B. Simulated Point Target Responses 

In order to test the 2-D fourth-order EETF we 
simulated raw data point targets with the parameters 
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Fig. 5. Flow diagram for EETF algorithm. Shaded regions in 

compressed image correspond to wasted data due to size of 
two-dimensional filter. 

1% 
range 

given in Table IV. Due to memory limitations only the 
raw data of one look were simulated and processed 
with EETF4. Different processed looks were written 
to file and added incoherently when all looks had 
been processed. It was possible to run the EETF4 
algorithm with two matrices of size 2048 x 8192 
complex samples in single precision on an HP9000 
computer. The algorithm needed about 280 MBytes of 
virtual memory. 

In Fig. 6 are shown one half of two blocks with 
nine 5-look point target responses (X-band). The 
block boundary between the range blocks is indicated 
in the figure, where one of the point targets is located. 

TABLE IV 

Sar Simulation Parameters 

I w-center frequency I 9.6GHz I 

One point target is located in the middle of each of 
the blocks. The calculated range resolution is 0.92 m 
and the aximuth resolution is 1.17 m with window 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW(w) = 0.7 + 0.3 cos(w/Bp), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABp is the 
processed bandwidth and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw the angular frequency in 
either azimuth or range. With this window function, 
the calculated azimuth resolution is 1.24 pixels and 
the range resolution 1.23 pixels. In Table V the most 
usual image quality attributes for point responses 
are given for each of the Iooks and for the 5-look 
image (average of all looks). The quality attributes 
are estimated as average of the 9 point targets in 
Fig. 6. We see that the measured azimuth resolution 
for the 5-1ook image is 1.22 pixels which is very 
close to the calculated value of 1.24 pixels. The 
corresponding values for the range resolution are 
1.30 and 1.23. Since the algorithm does not vary the 
range cell migration correction within one block, 
the slightly increased range resolution may be the 
consequence. Peak amplitudes are estimated as 
the ratio of maximum and minimum amplitude of 
the 9 point targets for each of the looks (1-5) and 
for all looks averaged (5-look). We also see that 
peak amplitudes of the responses of the outer looks 
(look 1 or look 5) are below the peak amplitude of 
the center look (look 3) ,  but only 0.038 dB. The 
peak variation is larger for the outer looks than for 
the center look. We see that for look 5 the peak 

Fig. 6. 5-look point target responses for X-band processed with fourth-order EETF. Azimuth and range resolution approximately 1 m. 
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TABLE V 
Measured Image Quality Attributes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I Look 1 1 Look 2 ILook3 ILook4 

Az. res. (pixels) 1.226 1.219 1.217 1.220 

3 stdev zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaz. res (pixels) 0.004 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.004 0.002 0.003 .. , 

Ra. res (pixels) 1.297 1.301 1.303 1.300 
3 stdev ra. res (pixels) 0.121 0.034 0.003 0.050 

3 stdev ISLR (dB) 0.424 0.231 0.206 0.217 
Peak amplitude 22878.8 22937.8 22962.7 22927.9 

Peak variation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(dB) 0.213 0.066 0.009 0.009 

ISLR (dB) -15.638 -15.738 -15.714 -15.754 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Note: The azimuth resolution (az.res.), range resolution (ra.res), integraded side lobe level ratio (ISLR) and peak amplitude are 

averaged over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 point :argets. Three standard deviations (stdev) of the quality attributes are shown. Peak variation is the ratio of 

Look 5 

1.227 

0.004 

1.297 
0.140 

-15.703 
0.357 

22862.9 

0.249 

5-look 

-15.809 

0.123 

is slightly above the 
y set for operational SAR 
-look image has a peak 
hich could be accepted. 
for the outer looks is 

roximation of (64) yielding 
that the approximation is 
azimuth frequencies, which 

be more degraded than 

y over a block in range 
cause a loss in intensity 
peak variation for a 3-look for the outer lo 

The measured integrated 
gures in Table V are 
usually set at ground 

ge direction was 2048 
was processed. The 

was 1100 pixels (in range) 
into account range migration 

tput pixels is 2048 - 462 - 
idered to be quite efficient 

r operational ERS-1 
stations the number of 
1300 for a 2048-point FFT. 

from each block 
which is 486 s 
462 so the num 
486 = 1100. Th 

5. The range chirp was 

in Table I1 might be 

h lines (using 2048-point range 
for a 5-look X-band SAR with 

m is efficient and 

the difference of the overlapping regions [27]. A 
measure for the goodness of phase preservation is 
the mean of this phase difference and its standard 
deviation. Of course, there exist no real raw data for 
the kind of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS A R  analyzed, however, simulation of raw 
data from existing SAR images could be done. We 
don't assess the phase preservation properties of the 
EETF4, however, we tested the phase preservation 
in real ERS-1 data using the EETF2 algorithm 
which is designed in the same way as EETF4. With 
offset 100 pixels in range and azimuth we achieved 
mean less than 0.001", standard deviation 2.4" and 
no discontinuities between different blocks. As a 
comparison (although the offset was not specified) in 
[27] a standard deviation of 7" was achieved using the 
range-Doppler algorithm. We expect that the EETF4 
algorithm also is phase preserving with high quality. 

V. CONCLUSIONS 

A new fast algorithm, called EETF4 tailored for 
spaceborne SAR processing, has been developed, 
implemented, and tested. It was tested for a realistic 
case with respect to orbit geometry, swath width 
and SAR parameters. The need for fourth-order 
azimuth phase history has been demonstrated for 
3-look X-band and 1-look S-band at approximately 
1 m resolution. It has been shown that the EETF4 
algorithm may be used to process point target 
responses for a 5-look X-band S A R  with a quality 
satisfying the requirements usually set for operational 
processing. The algorithm is expected to have good 
phase preservation properties. 

APPENDIX A. STATIONARY PHASE APPROXIMATION 

The principle of stationary phase can be found in 
e.g. [25, p. 744-7511 where it was applied in optics. 
Here we review very briefly the principle as described 
in [26, pp. 142-1461. We want to find the spectrum of 
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a signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs(t) on the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s(t> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= aw exp[jf(t)l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(52) 

where t is the time variable, a(t) is the complex 
envelope and f ( t )  is the phase of the signal. Then we 
have to solve the Fourier transform 

S(w) = a(t) exp[-j(wt - f ( t ) ) ]  dt (53) .c 
where w is the angular frequency. To get a more 
convenient form of the solution of (53) than in [26] 
we define the phase function in (53) as 

$(t) = -wt + f ( t ) .  (54) 

Under the assumption of a sufficient large bandwidth 
time product of the signal s(t) and a smooth 
envelope function a(t), the spectrum in (53) can be 
approximated 

There is one real solution to the equation in (60) if 
q2 + p3 2 0 and 3 real solutions if q2 + p3 < 0. The 
solution in the first case [17] is given by (Kardanische 
formula) 

and if q2 + p3 < 0 the 3 solutions are given by 

Lsl y-, = 2fiCOS 

where sgn is the sign function and 
t* satisfies 

$'(t*) = 0. 

APPENDIX B. CALCULATION OF 
ETF 

[ j  ($(t*) + $sgn[j~(t*)])] 

To find the solution of third-order equation in (40) 

(55) 

the stationary point 

(56) 

FOURTH-ORDER 

we rewrite it on the form 

at: + /3t; + rt, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = 0 

where 

a = 4c4 p = 3C3, 

Wa y = 2c2, 6 = 

Equation (57) can be solved by defining a new 
variable y (see e.g. [17]) by 

P t , =y - - .  
3a 

Equation (57) can then be written 

y3 + 3py + 2q = 0 

where 
p=-") 2 + Y  

9 a  3a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s 

6 a 2  2a 
+-. 

Inserting (58) into (61) and (62) yields 

834 

y-2 = -2 f i cos  - + - [; 4 

~ 
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yp3 = -2J-pcos - - - [: 91 
where 

(69) 
-4 cos4 = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d 7  

The selection of solution in (66)-(68) is simple since 
the solution must be within the time interval for a 
given look. It turns out that the two other solutions 
are far from the time interval corresponding to a given 
look and are not physically meaningful. Selecting the 
first solution in (65) as an example and inserting (65) 
into (59) yields 

t ; = y l - - .  c3 
4% 
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