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1 Introduction
Let q ≥ 3 be an integer. For any integer m and n, the two-term exponential sum G(k, h,m, n; q) is de�ned as

G(k, h,m, n; q) =
q−1∑
a=0

e
(
mak + nah

q

)
,

where as usual, e(y) = e2πiy, k and h are positive integers with k ≠ h.
Many scholars have studied various elementary properties of G(k, h,m, n; q) and obtained a series of

results. For example, from the A. Weil’s important work [2], one can get the general upper bound estimate∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
mak + na

p

)∣∣∣∣∣� √p,
where p is an odd prime, χ is any Dirichlet character mod p and (m, n, p) = 1.

Zhang Han and Zhang Wenpeng [3] proved the identity
p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + na

p

)∣∣∣∣∣
4

=
{
2p3 − p2 if 3 - p − 1,
2p3 − 7p2 if 3 | p − 1,

where p be an odd prime.
Zhang Han and Zhang Wenpeng [4] also obtained

p−1∑
m=0

∣∣∣∣∣
p−1∑
a=1

e
(
ma5 + na

p

)∣∣∣∣∣
4

=

3p3 − p2
(
8 + 2

(
−1
p

)
+ 4
(
−3
p

))
− 3p if 5 - p − 1,

3p3 + O
(
p2
)

if 5 | p − 1,
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where
(
*
p

)
= χ2 denotes the Legendre symbol mod p.

Some other relatedmean value papers can also be found in [5] - [13]. If someone is interested in this �eld,
please refer to these references. However, regarding the fourth power mean

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a

p

)∣∣∣∣∣
4

, (1)

it seems that it hasn’t been studied yet, at least so far we haven’t seen any related papers. We think one of
the reasons for this may be that the methods used in the past are not suitable for studying this situation, or
perhaps 4 is not a prime number, so it is di�cult to study (1).

In this paper we will use analytic methods and properties of quartic Gauss sums to study this problem
and solve it completely. That is, we will prove the following two results.

Theorem 1. Let p > 3 be a prime with p ≡ 3 mod 4, then we have

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a

p

)∣∣∣∣∣
4

=
{
2p2 (p − 2) if p = 12h + 7,
2p3 if p = 12h + 11.

Theorem 2. Let p be a prime with p ≡ 1 mod 4, then we have

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a

p

)∣∣∣∣∣
4

=



2p
(
p2 − 10p − 2α2

)
if p = 24h + 1,

2p
(
p2 − 4p − 2α2

)
if p = 24h + 5,

2p
(
p2 − 6p − 2α2

)
if p = 24h + 13,

2p
(
p2 − 8p − 2α2

)
if p = 24h + 17,

where α = α(p) =

p−1
2∑
a=1

(
a + a
p

)
is an integer satisfying the identity (state displayed identity ), where r is any

quadratic non-residue modp : see Theorem 4-11 in [16].

p = α2 + β2 ≡

 p−1
2∑
a=1

(
a + a
p

)2

+

 p−1
2∑
a=1

(
a + ra
p

)2

,

and r is any quadratic non-residue mod p.
From these two theorems we may immediately deduce the following:
Corollary. For any odd prime p, we have the asymptotic formula

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a

p

)∣∣∣∣∣
4

= 2p3 + O
(
p2
)
.

2 Several Lemmas
To prove our theorems, we �rst need to give several necessary lemmas. Hereafter, wewill usemany properties
of the classical Gauss sums, the fourth-order character mod p and the quartic Gauss sums. All of these
contents can be found in any ElementaryNumber Theory or Analytic Number Theory book, such as references
[1], [14] or [16]. These contents will not be repeated here. First we have the followings:

Lemma 1. If p is a prime with p ≡ 1 mod 4, and λ is any fourth-order character mod p, then we have

τ2(λ) + τ2
(
λ
)
= √p ·

p−1∑
a=1

(
a + a
p

)
= 2√p · α.
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Proof. In fact this is Lemma 2 of [15], so its proof is omitted.
Lemma 2. If p is a prime with p ≡ 1 mod 4, then we have the identity

p−1∑
m=1

(p−1∑
a=0

e
(
ma4 + a

p

))2(p−1∑
c=0

e
(
−mc4 − c

p

))
=
{(

2 + χ2(7)
)
p2 + 2pα if p ≡ 5 mod 8,(

2 + χ2(7)
)
p2 − 6pα if p ≡ 1 mod 8,

where χ2 =
(
*
p

)
denotes the Legendre’s symbol mod p.

Proof. First applying trigonometric identity

q∑
m=1

e
(
nm
q

)
=
{
q if q | n,
0 if q - n,

(2)

we have

p−1∑
m=1

(p−1∑
a=0

e
(
ma4 + a

p

))2(p−1∑
c=0

e
(
−mc4 − c

p

))

=
p−1∑
m=0

(p−1∑
a=0

e
(
ma4 + a

p

))2(p−1∑
c=0

e
(
−mc4 − c

p

))

=
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
m=0

e
(
m
(
a4 + b4 − c4

)
+ a + b − c

p

)

= p
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4 mod p

e
(
a + b − c

p

)

= p
p−1∑
a=0

p−1∑
b=0

a4+b4≡0 mod p

e
(
a + b
p

)
+ p

p−1∑
a=0

p−1∑
b=0

a4+b4≡1 mod p

p−1∑
c=1

e
(
c(a + b − 1)

p

)

= p − p
p−1∑
a=0

a4+1≡0 mod p

1 + p2
p−1∑
a=0

p−1∑
b=0

a4+b4≡1 mod p
a+b≡1 mod p

1 − p
p−1∑
a=0

p−1∑
b=0

a4+b4≡1 mod p

1. (3)

Let λ be a fourth-order character mod p, if p ≡ 5 mod 8, then note that λ(−1) = −1 we have

−p
p−1∑
a=0

a4+1≡0 mod p

1 = 0. (4)

Noting the identity λχ2 = λ and

B(m) =
p−1∑
a=0

e
(
ma4
p

)
= χ2(m)

√p + λ(m)τ(λ) + λ(m)τ
(
λ
)
. (5)

Applying (5) and Lemma 1 we have

p
p−1∑
a=0

p−1∑
b=0

a4+b4≡1 mod p

1 =
p−1∑
a=0

p−1∑
b=0

p−1∑
m=0

e
(
m
(
a4 + b4 − 1

)
p

)

= p2 +
p−1∑
m=1

(p−1∑
a=0

e
(
ma4
p

))2

e
(
−m
p

)
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= p2 +
p−1∑
m=1

(
2χ2(m)

√pα − p + 2λ(m)√pτ(λ) + 2λ(m)√pτ
(
λ
))
e
(
−m
p

)
= p2 + 2pα + p − 2√pτ2(λ) − 2√pτ2

(
λ
)
= p2 + p − 2pα. (6)

It is clear that the congruences a4 + b4 ≡ 1 mod p and a + b ≡ 1 mod p imply that ab
(
2a2 + 3ab + 2b2

)
≡

0 mod p and a + b ≡ 1 mod p. So we have

p2
p−1∑
a=0

p−1∑
b=0

a4+b4≡1 mod p
a+b≡1 mod p

1 = p2
p−1∑
a=0

p−1∑
b=0

ab(2a2+3ab+2b2)≡0 mod p
a+b≡1 mod p

1

= 2p2 + p2
p−1∑
a=1

p−1∑
b=1

2a2+3ab+2b2≡0 mod p
a+b≡1 mod p

1 = 2p2 + p2
p−1∑
a=1

p−1∑
b=1

2a2+3a+2≡0 mod p
b(a+1)≡1 mod p

1

= 2p2 + p2
p−1∑
a=0

(4a+3)2≡−7 mod p

1 = 2p2 + p2
p−1∑
a=0

a2≡−7 mod p

1 =
(
3 +
(
7
p

))
· p2. (7)

If p ≡ 1 mod 8, then noting that λ(−1) = 1 we have

−p
p−1∑
a=0

a4+1≡0 mod p

1 = −4p. (8)

Applying (5), Lemma 1 and note that τ(λ)τ
(
λ
)
= p we have

p
p−1∑
a=0

p−1∑
b=0

a4+b4≡1 mod p

1 =
p−1∑
a=0

p−1∑
b=0

p−1∑
m=0

e
(
m
(
a4 + b4 − 1

)
p

)

= p2 +
p−1∑
m=1

(p−1∑
a=0

e
(
ma4
p

))2

e
(
−m
p

)

= p2 +
p−1∑
m=1

(
3p + 2χ2(m)

√pα + 2λ(m)√pτ(λ) + 2λ(m)√pτ
(
λ
))
e
(
−m
p

)
= p2 + 2pα − 3p + 2√pτ2(λ) + 2√pτ2

(
λ
)
= p2 − 3p + 6pα. (9)

Combining (3), (4), (6)-(9) we have the identity

p−1∑
m=1

(p−1∑
a=0

e
(
ma4 + a

p

))2(p−1∑
c=0

e
(
−mc4 − c

p

))
=
{(

2 + χ2(7)
)
p2 + 2pα if p ≡ 5 mod 8,(

2 + χ2(7)
)
p2 − 6pα if p ≡ 1 mod 8.

This proves Lemma 2.
Lemma 3. If p is a prime with p ≡ 3 mod 4, then we have the identity

p−1∑
m=1

(p−1∑
a=0

e
(
ma4 + a

p

))2(p−1∑
c=0

e
(
−mc4 − c

p

))
=
(
2 − χ2(7)

)
p2.

Proof. If p = 4h + 3, then χ2(−1) = −1 and τ(χ2) = i
√p, i2 = −1. For any integer m with (m, p) = 1, we

have
p−1∑
a=0

e
(
ma4
p

)
= 1 +

p−1∑
a=1

(
1 + χ2(a)

)
e
(
ma2
p

)
=
p−1∑
a=0

e
(
ma2
p

)
= χ2(m)τ(χ2) (10)
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and

−p
p−1∑
a=0

a4+1≡0 mod p

1 = 0. (11)

From (10), (11) and the method of proving Lemma 2 we have

p−1∑
m=1

(p−1∑
a=0

e
(
ma4 + a

p

))2(p−1∑
c=0

e
(
−mc4 − c

p

))
=
(
2 − χ2(7)

)
p2.

This proves Lemma 3.
Lemma 4. If p is a prime with p ≡ 1 mod 4, then we have the identity

p−1∑
m=1

(p−1∑
a=0

e
(
ma4 + a

p

))2(p−1∑
c=0

e
(
−mc4 − c

p

))(p−1∑
d=1

e
(
−md4 − d

p

))

=



p
(
2p2 − 22p − χ2(7)p − 4α2 + 6α

)
if p = 24h + 1,

p
(
2p2 − 10p − χ2(7)p − 4α2 − 2α

)
if p = 24h + 5,

p
(
2p2 − 14p − χ2(7)p − 4α2 − 2α

)
if p = 24h + 13,

p
(
2p2 − 18p − χ2(7)p − 4α2 + 6α

)
if p = 24h + 17.

Proof. From identity (2) we have

p−1∑
m=1

(p−1∑
a=0

e
(
ma4 + a

p

))2(p−1∑
c=0

e
(
−mc4 − c

p

))(p−1∑
d=1

e
(
−md4 − d

p

))

=
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=1

p−1∑
m=0

e
(
m
(
a4 + b4 − c4 − d4

)
+ a + b − c − d

p

)

= p
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

p−1∑
d=1

e
(
d(a + b − c − 1)

p

)

= p2
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p
a+b≡c+1 mod p

1 − p
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

1. (12)

It is clear that the congruences a4 + b4 ≡ c4 + 1 mod p and a + b ≡ c + 1 mod p imply that (a − 1)(b −
1)
(
2a2 + 3ab + 2b2 − a − b + 1

)
≡ 0 mod p. So we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p
a+b≡c+1 mod p

1 =
p−1∑
a=0

p−1∑
b=0

a4+b4≡(a+b−1)4+1 mod p

1

=
p−1∑
a=0

p−1∑
b=0

(a−1)(b−1)(2a2+2b2+3ab−a−b+1)≡0 mod p

1

= 2p − 1 +
p−1∑
a=0

p−1∑
b=0

2a2+2b2+3ab−a−b+1≡0 mod p
a≠1, b≠1

1
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= 2p − 1 +
p−1∑
a=0

p−1∑
b=0

2a2+2b2+3ab−a−b+1≡0 mod p

1 − 2
p−1∑
a=0

a2+a+1≡0 mod p

1

= 2p − 1 +
p−1∑
a=0

p−1∑
b=0

(4a+3b−1)2≡−7b2+2b−7 mod p

1 − 2
p−1∑
a=2

a3≡1 mod p

1

= 2p + 1 +
p−1∑
a=0

p−1∑
b=0

a2≡−7b2+2b−7 mod p

1 − 2
p−1∑
a=1

a3≡1 mod p

1

= 2p + 1 +
p−1∑
b=0

(
1 +
(
−7b2 + 2b − 7

p

))
− 2

p−1∑
a=1

a3≡1 mod p

1

= 3p + 1 +
(
7
p

) p−1∑
b=0

(
(7b − 1)2 + 48

p

)
− 2

p−1∑
a=1

a3≡1 mod p

1

= 3p + 1 +
(
7
p

) p−1∑
b=0

(
b2 + 48
p

)
− 2

p−1∑
a=1

a3≡1 mod p

1

= 3p + 1 −
(
7
p

)
− 2

p−1∑
a=1

a3≡1 mod p

1, (13)

where we have used the identity
p−1∑
b=0

(
b2 + 48
p

)
= −1.

If p = 24h + 13 or p = 24h + 1, then a3 ≡ 1 mod p has three solutions. So from (13) we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p
a+b≡c+1 mod p

1 = 3p − 5 −
(
7
p

)
. (14)

If p = 24h + 5 or p = 24h + 17, then a3 ≡ 1 mod p has one solution. So from (13) we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p
a+b≡c+1 mod p

1 = 3p − 1 −
(
7
p

)
. (15)

If p = 8h + 5, then applying (5), Lemma 1 and noting that τ(λ)τ
(
λ
)
= −p we have

p
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

1 =
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
m=0

e
(
m
(
a4 + b4 − c4 − 1

)
p

)

=
p−1∑
m=0

(p−1∑
a=0

e
(
ma4
p

))2(p−1∑
b=0

e
(
−mb4
p

))
e
(
−m
p

)

= p3 +
p−1∑
m=1

(
3p − χ2(m)τ2(λ) − χ2(m)τ2

(
λ
))

×
(
χ2(m)

√p + λ(m)τ(λ) + λ(m)τ
(
λ
))
e
(
−m
p

)
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= p3 + 9p2 + 4pα2 + 2pα. (16)

If p = 8h + 1, then applying (5), Lemma 1 and noting that τ(λ)τ
(
λ
)
= p we have

p
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

1 =
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
m=0

e
(
m
(
a4 + b4 − c4 − 1

)
p

)

=
p−1∑
m=0

(p−1∑
a=0

e
(
ma4
p

))2(p−1∑
b=0

e
(
−mb4
p

))
e
(
−m
p

)

= p3 +
p−1∑
m=1

(
3p + 2χ2(m)

√pα + 2λ(m)√pτ(λ) + 2λ(m)√pτ
(
λ
))

×
(
χ2(m)

√p + λ(m)τ(λ) + λ(m)τ
(
λ
))
e
(
−m
p

)
= p3 + 17p2 + 4pα2 − 6pα. (17)

Combining (12), (14) - (17) we have the identity

p−1∑
m=1

(p−1∑
a=0

e
(
ma4 + a

p

))2(p−1∑
c=0

e
(
−mc4 − c

p

))(p−1∑
d=1

e
(
−md4 − d

p

))

=



p
(
2p2 − 14p − χ2(7)p − 4α2 − 2α

)
if p = 24h + 13,

p
(
2p2 − 22p − χ2(7)p − 4α2 + 6α

)
if p = 24h + 1,

p
(
2p2 − 10p − χ2(7)p − 4α2 − 2α

)
if p = 24h + 5,

p
(
2p2 − 18p − χ2(7)p − 4α2 + 6α

)
if p = 24h + 17.

This proves Lemma 4.
Lemma 5. If p is a prime with p ≡ 3 mod 4, then we have the identity

p−1∑
m=1

(p−1∑
a=0

e
(
ma4 + a

p

))2(p−1∑
c=0

e
(
−mc4 − c

p

))(p−1∑
d=1

e
(
−md4 − d

p

))

=
{
p2
(
2p − 6 + χ2(7)

)
if p = 12h + 7,

p2
(
2p − 2 + χ2(7)

)
if p = 12h + 11.

Proof. Noting (11) and χ2(−1) = −1, from the methods of proving Lemma 4 we can easily deduce Lemma
5.

3 Proofs of the theorems
Now we prove our main results. First we prove Theorem 2. If p = 24h + 1, then from Lemma 2 and Lemma 4
we have

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a

p

)∣∣∣∣∣
4

=
p−1∑
m=1

(p−1∑
a=0

e
(
ma4 + a

p

))2(p−1∑
c=0

e
(
−ma4 − c

p

))(p−1∑
d=1

e
(
−md4 − d

p

))

+
p−1∑
m=1

(p−1∑
a=0

e
(
ma4 + a

p

))2(p−1∑
c=0

e
(
−ma4 − c

p

))
= p

(
2p2 − 22p − χ2(7)p − 4α2 + 6α

)
+ 2p2 + χ2(7)p2 − 6pα
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= 2p
(
p2 − 10p − 2α2

)
. (18)

Similarly, if p = 24h + 5, then from Lemma 2 and Lemma 4 we have

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a

p

)∣∣∣∣∣
4

= 2p
(
p2 − 4p − 2α2

)
. (19)

If p = 24h + 13, then we have

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a

p

)∣∣∣∣∣
4

= 2p
(
p2 − 6p − 2α2

)
. (20)

If p = 24h + 17, then we have

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a

p

)∣∣∣∣∣
4

= 2p
(
p2 − 8p − 2α2

)
. (21)

Now Theorem 2 follows from (18) - (21).
Similarly, from Lemma 3, Lemma 5 and the methods of proving Theorem 2 we can also deduce Theorem

1. This completes the proofs of all of our results.
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