
A New FPGA/DSP-Based Parallel
Architecture for Real-Time Image
Processing

I
n this article, we present a new reconfigurable parallel architecture oriented to video-rate
computer vision applications. This architecture is structured with a two-dimensional (2D)
array of FPGA/DSP-based reprogrammable processors Pij. These processors are inter-

connected by means of a systolic 2D array of FPGA-based video-addressing units which allow
video-rate links between any two processors in the net to overcome the associated restrictions in
classic crossbar systems such as those which occur with butterfly connections. This architecture
has been designed to deal with parallel/pipeline procedures, performing operations which handle
various simultaneous input images, and cover a wide range of real-time computer vision
applications from pre-processing operations to low-level interpretation. This proposed open
architecture allows the host to deal with final high-level interpretation tasks. The exchange of
information between the linked processors Pij of the 2D net lies in the transfer of complete images,
pixel by pixel, at video-rate. Therefore, any kind of processor satisfying such a requirement can be
integrated. Furthermore, the whole architecture has been designed host-independent.
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17071 – Girona, Catalonia, Spain

E-mail: {jbatlle,joanm,pere}@eia.udg.es
2ESAII, Polytechnical University of Catalonia,

C/Pau Gargallo, 5-08028 Barcelona,

Catalonia, Spain

E-mail:amat@esaii.upc.es

Introduction

Computer vision presents us with a widefield of

research incorporating a great amount of data and,

consequently, requires a high level of processing

capacity, mainly in parallel computing. Stated simply,

computer vision can be separated into three main

levels. The first one, the lower level, deals with pixel-

operation functions such as differences between images

and neighborhood filtering.
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At the intermediate level, we kept in mind tasks such

as segmentation, motion estimation and feature extrac-

tion or matching, all of which need pipelined processes.

At the upper level of computer vision we deal with

interpretation. This function usually requires Artificial

Intelligence tools as well as previous knowledge of the

environment.

The challenge of pipelining these three levels in real-

time can be undertaken using parallel architectures.

Table 1 shows a well-known classification presented

by Sima [1] in which the most representative groups of

families are shown.

This table identifies some of the major families which

represent key junctures in the evolution of parallelism

oriented to image processing. To date, these premises

are still quite valuable.

A great deal of work on parallelism has been carried

out over the past decade. However, most approaches,

even the most recent ones, have been based on a handful

of historical architectures. In view of this, we should

mention the systems based on a net of interconnecting

modules which process the whole image by local

operation on a pixeled neighborhood [2–6]. These

architectures are generally based on geometric paralle-

lism operating in a single instruction, multiple data

(SIMD) mode. Moreover, pipelined systems and systolic

nets of processors are based on multiple input processes

whose outputs constitute the inputs of the next opera-

tion [7, 8], scanning the whole image and processing

it piece by piece. Thirdly, pyramidal systems compute

complex operations by using the divide and conquer

paradigm [9, 10]. These architectures are frequently used

on multi-scalar or recursive operations such as image

grabbing at different resolution levels. Furthermore,

there are some architectures which are internally

organized without taking into account the image

structure or their operations [11–13]. Multiple instruc-

tions, multiple data (MIMD) architectures, such as

digital signal processors (DSPs), permit the design of

several types of parallelism. Finally, hypercube proces-

sors combine the advantages of pyramidal structures

and meshed nets [14,15].

Since architectures for real-time image processing

need to manage a large amount of data and work within

real-time requirements, the use of parallelism is a

fundamental part of most of these systems. An interest-

ing project considering specific architectures for paralle-

lism was carried out by Raman and Clarkson [16]. Their

article describes a parallel architecture composed of

several specific, non-identical modules which can work

concurrently with only one shared memory.

Another interesting proposal was presented by Young

[17], a DSPs-based structure which computes in parallel

to solve tasks with a high computational cost, as in real-

time image processing. He gives a few examples using

several DSPs from Texas Instruments, but most

specifically the C40. Srinivasan and Govindaraj [18]

have also used these devices (DSPs) in multi-processor

networks. To increase the process speed, they split the

original image into several independent blocks. Each

Table 1. A parallel machine classification applied to computer vision systems, proposed by Sima et al. [1]

Parallel
architectures

Data-parallel
architectures

Vectorial

Associative and neuronal

SIMDs

Systolic

Function-parallel
architectures

Pipeline processors

Instruction level VLIWs

(ILPs) Superscalar processors

Thread-level
MIMDs

Distributed memory MIMD
(multicomputers)

Process-level Shared memory MIMD
(multiprocessors)
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block is then processed concurrently by the DSPs. They

also use Texas Instruments DSPs, in this case the C25.

Other projects, like Chen and Jen [19], show a special

processor for video signals. This processor is composed

of several functional units which work in parallel.

However, each unit in turn specializes in one kind of

computation (arithmetic unit, multiplicative unit, dis-

crete cosine transform unit, and so forth). Another

project by Wu et al. [20], presents a co-processor built of

several basic modules interconnected by means of a

programmable network.

The article by Turton et al. [21] is interesting since

they attempt to apply genetic algorithms to computer

vision studies. To take advantage of this kind of

algorithm they had to use parallelism and decided on

parallel algorithms genetic (PAG), specifically the Fine

Grained version, which suggests that it is better to work

with a larger number of simple processors than with

only a few complex processors. Finally, the studies by

Bertozzi and Broggi [22] describe a stereo vision system

for obstacle and lane detection. The kernel of this

system is a parallel architecture called Paprica 3 which is

composed of 256 processing elements (PEs) which work

in an SIMD manner. We found that the GIOTTO

system, an architecture proposed by Cucchiara [23] used

in robotics applications, was similar to the previous

work. This is also a parallel computer based on an

SIMD reduced-size array processor with a novel

organization of the memory sub-system. Several of

these architectures are modular, which means that the

system can be extended with more PEs or basic cells,

depending on the application desired.

As far as our DSP/FPGA-based parallel architecture

is concerned, this article is organized as follows. Firstly,

in Section 3, the architecture and its performance are

discussed in general. Analog I/O video signal devices as

well as the systolic crossbar are briefly described in

Section 4. Section 5 presents the architecture of the

elemental processors and its hardware implementation.

A brief overview concerning the control and synchro-

nization of the whole architecture, as well as commu-

nications with the host, is presented in Section 6.

Finally, conclusions and further work are presented.

The Proposed Architecture

Figure 1 presents our new architecture, which can cope

with the majority of problems which crop up in real-time

computer vision application, mainly when dealing with

more than one RGB camera simultaneously.

The most important features of this proposed architec-

ture can be summarized as follows:

K Each processor Pij operates on an input image

supplied by any one of the other processors

belonging to the net and supplies a new output

image to be processed by the next module.

Figure 1. The proposed architecture which constitutes a configurable parallel computer.
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K The data BUS between processors have been designed

for byte-by-byte transmission, that is pixel by pixel.

K A set of digital video multiplexors (dvij) allows

parallel and pipeline connections between

processors depending on the final application.

K Since only video-sync information and enable/

disable control signals are considered, an FPGA-

based processor (Pro1) controls the architecture.

K Processors are independent and perform different

image-processing functions. Each processor controls

its own memory module. The same function can be

paralleled as many times as needed.

K RGB images can be used as input/output.

K All the processors can operate as a switch, allowing

the image to pass through without any inconvenience.

In such cases, the video input is transferred straight

away to the output of the module.

We placed a processor (Pro1) in the overall control of

the whole cell architecture, while another processor

(Pro2) was in charge of communications with the host.

Finally, a matrix of elemental processors [Pij] intercon-

nected through a crossbar built with video-addressing

processors called dvij to deal with the initial stages of the

computing process was used. This crossbar construction

allows for all sorts of interaction among the basic

processors [Pij] which can send or receive images pixel

by pixel using a digital 8-bits BUS. Through Pro2, this

BUS is used to send information to the main host as well.

In the following, each module of the architecture will be

described in further detail, pointing out which kind of

devices have been or will be used in future implementation.

Video Transmission

Analog input/output video signal

As mentioned before, multiple RGB input/output

signals are possible when dealing with parallel

processing of various input images. As examples of

probable applications requiring multiple parallel input

images, we tested for three-dimensional (3D) image

processing, tracking, and object recognition.

In this architecture, every A/D module incorporates a

Philips TDA8709A converter and an LM1881 synchron-

ism extractor. These synchronizational signals are

supplied to Pro1, the processor controlling the basic

processors making up the net. The D/A conversion is

performed using TDA8702 devices.

The systolic crossbar

The video-addressing units [dvij] alone constitute a 2D

net of FPGAs (see Figure 2) with the purpose of taking

care of video-transmission through the various basic

processors [Pij] in the main architecture.

In such a net, we can differentiate between the input/

output units addressing a 3� 8 video BUS from the rest

of the units addressing an 8-bit video BUS.

Figure 2. Systolic network of dv units which drives the video signal through the architecture.

Figure 3. A simplified architecture of the I/O buses for a
video-addressing cell [dvij].
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For the implementation of the dvij crossbar cells we

opted for an Altera FPGA model FLEX

10K100ARC240-2. Figure 3 shows a simple sketch

giving an idea of the number of I/O pins needed. The

program and control word is 10 bits in size, four of

which are used to select any one of the 12 configurations

possible shown in Figure 4.

If an architecture with 64 elemental processors is to be

connected, then the 6 remaining bits will be used to

identify the position (x,y) of the selected cell [dvij] from

among the 64 possibilities.

The power of the FPGA used allows control tasks to

be carried out on a local level, that is, two or more

grouped devices [dvij] could, if necessary, collaborate

independently from the general architecture BUS.

Figure 5 shows a time diagram with some examples of

video multiplexing tasks. The nomenclature used is as

follows:

K clk_pixel: A pixel synchronization signal which reacts

to the FPGA by means of a rising scale.

K control: 4 bits of the control BUS which select one of

the 12 multiplexing options.

K in_port: Input BUS to the device (8 bits).

K out_port: Output BUS to the next processor (8 bits).

K up_port: 8 I/O bits from the upper row of processors.

K down_port: 8 I/O bits from the lower row of

processors.

Figure 5 also shows the time consumption for repro-

gramming any one of the 12 video-multiplexing options

for an individual cell dvij. The timing shows the

following operations:

Previous period to T1:

K The 4 first bits of the 10-bits control word indicate that

we have selected the video-addressing function-1

represented in Figure 3. This option allows the

digital signal to pass through the selected dvij cell

from left to right.

K In in_port we have the gray level of the input byte;

for example, 10 h.

K In out_port we have the same 10 h value.

K up_port and down_port are in three-state level.

At instant T1:

K The value of the entering byte changes from 10 to 20h.

At instant T2:

K The value of the input byte 20 h is available at the

output pin ‘‘out_port’’.

Figure 4. Different options for video multiplexing.

Figure 5. Some examples of multiplexing and its time consumption.
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At instant T3:

K The value of the entering byte changes from 20 to

30 h.

At instant T4:

K The value of the input byte 30 h is available at the

output pin ‘‘out_port’’.

At instant T5:

K A change in the control signal produces the new

function-6 configuration of the video-addressing cell

to that represented in Figure 3.

The current prototype integrates the FPGA FLEX10-

K250A.

The facility of programming such cells dvij using

VHDL can be seen from the program sample in

Figure 6, which shows how to manage the first three

video-addressing functions of the 12 possibilities from

Figure 4.

Finally, in Figures 7 and 8, some schematic examples

are presented to indicate the possibilities of intercon-

necting the processors using the FPGA-based crossbar.

The Basic Processors Cells Pij

As can be seen in Figures 7 and 8, the proposed

architecture allows the linkage of an unlimited number

of processors compatible with I/O requirements of the

video-addressing cells [dvij]. However, as mentioned

before, and with the goal of facilitating the program-

ming task, we suggest the use of identical processors.

Figure 9 shows the developed architecture for the

basic processor cell which is composed of the following

modules:

K A ping-pong memory.

K A P1 processor mainly oriented to computational

functions.

K A P2 processor basically addressed to communications

and low-level image processing tasks.

In the current prototype, P1 is a DSP TMS320C51

device chosen for its high computational capabilities. As

far as P2 is concerned, it will be in charge of initial

loading program functions, intercommunications with

the rest of the architecture and memory management.

The addressing needs suggest the use of an FPGA device

like the Altera series FLEX which will give computa-

tional support to the DSP as well.

The cell itself constitutes a powerful tool oriented to

real-time image processing. As far as the P2 control

signals are concerned, a 3-bit BUS was used: a video-

synchronism bit and two binary bits to control the four

functions: enable, disable, program load and execution.

Figures 10 and 11 show two basic examples of low-

level parallelism. In Figure 10, processor P1 computes

with the data stored in M2 while P2 loads the input

image into M1. In Figure 11, processor P1 deals with the

input image at video rate and provides an output image

to the next cell. Figure 12 shows the first hardware

prototype of the basic cell (Pij). Figure 13 shows the first

parallel architecture with two basic cells and the I/O

RGB interfaces.
Figure 6. VHDL software oriented to program the video-
addressing cells.
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To end this section, we would like to present an

example of how this basic cell (Pij) can be pro-

grammed. The developed application consists

of loading a frame into the M1 memory and

reading the previous frame from the M2 memory.

Figure 14 shows a chart of the VHDL program.

Figure 15 shows the code program. In summary, the

DIV block is a simple frequency divider, while the

RAMCTRL block is in charge or read/write memory

operation.

Control, Synchronization and Communication Tasks

Processor Prol – control and synchronization of the whole

architecture

This processor is in charge of control and synchroniza-

tional tasks. Its principal functions can be summarized

as follows:

K to supply external video-sync. signals for the video

cameras,

Figure 7. Pipeline and parallel operations.

Figure 8. Pipeline and parallel operations.
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K to supply the sync. signals for the D/A converters,

K to deal with the sync. signals provided by the A/D

converters,

K to maintain control over the Pro2 processor charged

with host communications,

K the 2D crossbar programs one of the 12 video-

addressing functions permitted for the dvij units

(Figure 4),

K the basic Pij cells enable/disable initial loading

functions and video-sync. signals supply (Figure 9).

Processor Pro2 – communication with the host

The Pro2 processor manages Pij program loading using

its own internal dual-port memory as a shared address

and communication with the host. As we suggested for

any desired specification, this processor should provide

host-independent features, although in the current

prototype, only a PCI protocol was used. An FPGA

Altera FLEX10K100A was used, mainly for its ability

to be easily programmed with a 32/64-bit PCI interface.

Application and Conclusions

We have presented a highly versatile parallel architec-

ture which allows dealing with high-level real-time

image processing routines. The hardware has been

designed to work co-operatively with a host, leaving

the host free to deal with the final steps concerning scene

understanding and interpretation tasks. The 2D FPGA-

Figure 9. The proposed architecture for the basic processor
cell [Pij].

Figure 10. Another basic example of parallelism.

Figure 11. A basic example of parallelism.

Figure 12. First hardware prototype of the basic cell (Pij).
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based crossbar allows interconnecting the basic cells [Pij]

which, in turn, allow a free flow of pipelining and

parallelism with no restrictions concerning the number

of linked processors or the number of parallel input

images to be dealt with at the same time. The first

prototype was used as an embedded computer vision

system to implement real-time underwater imaging

procedures for the AUV GARBI developed in our

Lab (Figure 16). It is well known that the images of the

sea bottom suffer from poor light and high noise. As a

result, computational time is the most important

parameter to be optimized when dealing with autono-

mous navigation. Keeping underwater imaging in mind,

our main purpose was to perform in real-time opera-

tions such as undersea pipe tracking. As can be

imagined, taking parameters from such an image would

not be an easy task. The proposed architecture can

perform a great deal of real-time computation from pre-

processing steps until final interpretation levels.

The pipeline is detected using two parallel plane laser

beams and a video camera oriented to the sea bottom.

Since the aim of this application is to show how the

board can be programmed, an easy example dealing

with the obtained image when projecting two laser

beams over a cylindrical object will be presented in

Figure 17. The lengths of both lines change with the

modification of the distance between the robot and the

pipe. Left–right movements of the underwater vehicle

with respect to the pipeline can be detected by the

location of the lines inside the image.

In the presented application, real-time image proces-

sing tasks are performed by FPGA, while the DSP

computes parameters like angular displacement and the

distance between. In fact, thresholding the image of the

projection of the laser beams is the most important step

in obtaining the parameters used in tracking control.

Moreover, a matrix filter passes over the image and the

parameters are extracted from the result. From an

architectural point of view, the process is conformed by

the modules executed by the FPGA presented in Figure

18 and described as follows:

K BINARY does threshold tasks. The binary image is

shown in Figure 19.

K FILMAX3 performs a 2D matrix filter.

Figure 14. VHDL program for read/write memory operations.

Figure 13. First parallel architecture with two basic cells and
the I/O RGB interfaces.
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K CSERIE2 does the communication protocol RS232

with the external devices, like PC.

K C_SERIE_N controls the input data flow from the

PC, communication being done using the serial port.

K CONTROL_SERIE collects the signals to be sent

through serial port and sends them to the previous

block.

K DSPCTRL does the communication function with

the DSP.

K GETOPTI is a buffer for initialization data. The

information taken from the image processing is

compared with the pre-set one.

K R_CONTROL2 processes the binary image. It

computes the distance between the lines appearing

in the binary image, the position of the center of the

first line and detects if one of the lines has

disappeared from the image.

The system compares the information obtained

by processing the image with the pre-set values for

the optimum distance to be maintained between the

robot and the pipeline. The DSP is used as a

complementary processor for computation of

the displacement angle and the distance between Figure

20 shows the implemented software in C-language

for DSP.

Figure 15. Code program for read/write memory operations.

Figure 16. The GARBI underwater robot.

Figure 17. Images taken by the camera from 2m.
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This processor is capable of dealing with noise,

segmentation, edge detection, correlation, FOE detec-

tion and perspective transformation at video rate with

minimal delay of a few frames. As far as further

hardware work is concerned, the FPGA FLEX10-

K250A will be used to implement the 2D crossbar net,

since only a low number of individual dvij cells can be

integrated using a single chip. As further work, the

powerful processor DSP TMS320C62x will be used

mainly because its facilities are oriented to mathematical

computing. This processor is able to perform instruc-

tions at 5 ns, an invaluable feature when dealing with

filtering, FFT operations and so forth. Furthermore, its

1-Mbit internal RAM will allow optimization of the

external memory resources. Another important feature

is its reduced size compared with its power, a useful

characteristic when dealing with embedded systems to

be located inside small autonomous underwater vehicles

and other mobile robots.
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