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In this article we propose a new fractional derivative without singular kernel. We 
consider the potential application for modeling the steady heat-conduction prob-
lem. The analytical solution of the fractional-order heat flow is also obtained by 
means of the Laplace transform.  
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Introduction 

Fractional derivatives with singular kernel [1], namely, the Riemann-Liouville  
[2, 3], Caputo [4, 5], and other derivatives, see [6-8] and the references therein, have nowa-
days a wide application in the field of heat-transfer engineering.  

More recently, the fractional Caputo-Fabrizio derivative operator without singular 
kernel was given [1, 9-12]: 
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where ( )νℑ  is a normalization constant depending on (0 1).ν ν< <   
Following eq. (1), Losada and Nieto [10] suggested the new fractional Caputo-Fa-

brizio derivative operator [11, 12]: 
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where  (0 1)ν ν< <  is a real number and ( ) 2/(2 ).ν νℑ = −   
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Equations (1) and (2) represent an extension of the Caputo fractional derivative with 
singular kernel. However, an analog of the Riemann-Liouville fractional derivative with sin-
gular kernel has not yet been formulated. The main aim of the article is to propose a new frac-
tional derivative without singular kernel, which is an extension of the Riemann-Liouville frac-
tional derivative with singular kernel, and to study its application in the modeling of the frac-
tional-order heat flow.  

Mathematical tools  

The Riemann-Liouville fractional derivative of fractional order ν of the function T(x) 
is defined [1]: 

 ( ) 1 d ( )D ( ) d
(1 ) d ( )

x
RL

a
a

TT x
x x

ν
ν

λ λ
ν λ

+ =
Γ − −∫  (3) 

where a x≤  and (0 1)ν ν< <  is a real number.  
Replacing the function 1/( ) (1 )x νλ ν− Γ +  by ( ) exp{[ /(1 )]( )}/(1 ),xν ν ν λ νℜ − − − −  

we obtain a new fractional derivative given by:  
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where a x≤ ,  (0 1)ν ν< <  is a real number, and ( )νℜ  is a normalization function depending 
on ν such that (0) (1) 1.ℜ =ℜ =   

Taking 1/ 1,ψ ν= −  with 0 ,ψ< < +∞  eq. (4) can be re-written: 
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where ( ) ( 1) [1/( 1)],ψ ψ ψℵ = + ℜ +  and ( ) exp[ ( )/ ]/ .xλ λ ψ ψΠ = − −   
With the help of the following approximation to the identity [9, 13]: 
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where 1ν →  (or 0ψ → ), eq. (4) becomes: 
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When 0ν →  (or ψ → +∞ ), eq. (4) can be written: 
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Taking the Laplace transform of the new fractional derivative without singular ker-
nel for the parameter a = 0, we have:  
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where 
0
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L x sx x x sξ ξ ξ= − =∫  represents the Laplace transform of the function 
ξ(x), [14].  
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We now consider: 
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where ( )
0D ( ) ( ) and [ ( )] ( ).T x x L x xν = Ξ Ξ = Ξ   
Taking the inverse Laplace transform of eq. (10) we obtain:  
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If 0 1ν< <  and ( ) 1νℜ = , then eqs. (4) and (11) can be written:  
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respectively.  

Modelling the fractional-order steady heat flow  

The fractional-order Fourier law in 1-D case is suggested: 

 ( )
0D ( ) ( )K T x H xν = −  (14) 

where K is the thermal conductivity of the material and H(x) – the heat flux density.  
The heat flow of the fractional-order heat conduction is presented: 

 H(x) = g (15) 

where g is the heat flow (a constant) of the material.  
By submitting eq. (13) into eq. (14), and taking the Laplace transform, it results: 
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which leads to:  
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Taking the inverse Laplace transform of eq. (17), we obtain:  
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where C is a constant depending on the initial value T(x). 
The corresponding graphs with different orders { }0.3,  0.6,  1ν =  are shown in fig. 1.  
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Conclusion 

In this work a new fractional-order operator with-
out singular kernel, which is an analog of the Rie-
mann-Liouville fractional derivative with singular ker-
nel, was proposed for the first time. An illustrative ex-
ample for modelling the fractional-order steady heat 
flow was given and the analytical solution for the gov-
erning equation involving the fractional derivative 
without singular kernel was discussed.  

Nomenclature 
( )
0D ν  – fractional derivative without singular kernel, [–] 

H(x) – heat flux density, [Wm–2] 
K – thermal conductivity, [Wm–1K–1] 

L(•) – Laplace transform, [–]  
T(x) – temperature distribution, [K] 
x – space co-ordinate, [m]
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Figure 1. The plots of T(x) with the 
parameters ν = {0.3, 0.6, 1}, C = –1,  
g = 2, K = 3, and ℜ(ν) = 1 
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