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Abstract

The key purpose of the present work is to examine a fractional giving up smoking

model pertaining to a new fractional derivative with non-singular kernel. The

numerical simulations are conducted with the aid of an iterative technique. The

existence of the solution is discussed by employing the fixed point postulate, and the

uniqueness of the solution is also proved. The effect of various parameters is shown

graphically. The numerical results for the smoking model associated with the new

fractional derivative are compared with numerical results for a smoking model

pertaining to the standard derivative and Caputo fractional derivative.
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1 Introduction

These days, smoking is one of themajor health problems in the world.More than million

deaths in the world are caused due to the effect of smoking in different organs of human

body. A chance of heart attack is % more in smokers compared to the persons who are

not smoking. Smokers have a % higher incidence rate of lung cancer than that of non-

smokers. Bad breath, stained teeth, high blood pressure, coughing are the main effects

of short-term smoking. In recent years, mouth cancer, throat cancer, lung cancer, gum

disease, heart disease, stomach ulcers are the main threatening due to long-term smok-

ing. The life of smokers is  to  years shorter than that of non-smokers. Smoking kills

many individuals in their most active life according to the reports of WHO. Every scien-

tist, doctor and mathematician tries to control smoking for securing the life expectancy

of an individual. To give the best representation of cigarette smoking phenomena, mathe-

maticians tried tomake different effective smokingmodels. The different smokingmodels

were proposed by several authors; for example Erturk et al. [] investigated a giving up

smoking model associated with the Caputo fractional derivative, Zaman [] analyzed the

optimal campaign in the smoking dynamical system, Zaman [] studied the qualitative

response of dynamics of giving up smoking, Lubin and Caporaso [] discussed cigarette

smoking and lung cancer, Garsow et al. [] examined the mathematical description of the

dynamics of tobacco use, recovery and relapse, Sharomi and Gumel [] demonstrated the

curtailing smoking dynamics, Zeb et al. [] investigated a fractional giving up smoking
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model, Alkhudhari et al. [] analyzed the global dynamics of mathematical equations de-

scribing smoking, Khalid et al. [] explained the fractional mathematical model of giving

up smoking and many others.

Fractional calculus is applied in different directions of physics, mathematical biology,

fluid mechanics, electrochemistry, signal processing, viscoelasticity, finance and in many

more. In the branch of fractional calculus, fractional derivatives and fractional integrals

are important aspects. Recently, many researchers and scientists have analyzed issues in

this special branch [–]. Caputo [] introduced a fractional derivative which allows

the conventional initial and boundary conditions associated with the real world problem.

Baleanu et al. [] reported new advances in nanotechnology and fractional calculus and

related issues in their monograph. Kilbas et al. [] presented basic concepts of fractional

differential equations and their applications. Bulut et al. [] studied the differential equa-

tions of arbitrary order by making use of analytical techniques. Atangana and Alkahtani

[] examined the Keller-Segel model pertaining to a fractional derivative having non-

singular kernel. Atangana and Alkahtani [] studied a fractional non-homogeneous heat

model. Singh et al. [] explained a fractional biological population model. Kumar et al.

[] analyzed the local fractional Klein-Gordon equations. Singh et al. [] investigated

fractional coupled Burgers equations. Kumar et al. [] presented the numerical solution

of a differential-difference equation of arbitrary order having applications in nanotechnol-

ogy. Area et al. [] studied the fractional order ebola epidemicmodel. Carvalho and Pinto

[] analyzed a delay fractional ordermodel for the co-infection ofmalaria andHIV/AIDS.

Huang et al. [] studied a novel use of the fractional logistic map. Ma et al. [] reported

new results for multidimensional diffusion equations pertaining to local fractional deriva-

tive. Kumar et al. [] analyzed a logistic equation involving a new fractional derivative

having a non-singular kernel. Kumar et al. [] studied a modified Kawahara equation

pertaining to a fractional derivative with non-singular kernel.

In a very recent attempt, Caputo and Fabrizio [] propounded a novel fractional deriva-

tive having exponential kernel and in addition Losada and Nieto [] analyzed the prop-

erties of a newly presented fractional derivative. The classical fractional derivatives, espe-

cially the Caputo and Riemann derivatives, have their own limitation because their kernel

is singular. Since the kernel is employed to describe the memory effect of the physical sys-

tem, it is obvious that due to this weakness, both derivatives cannot precisely describe

the full effect of the memory. Therefore, we use the novel Caputo-Fabrizio (CF) fractional

derivative to study the giving up smoking model and explain this problem in a better and

more efficient manner.

The key objective of this work is to use the new fractional derivative in the giving up

smoking model and imparting the details of the exactness and uniqueness of the solution

by applying the fixed point theorem. The development of this article is as follows. In Sec-

tion , the CF fractional order derivative is discussed. In Section , the fractional smoking

model and approximate solution pertaining to novel CF fractional derivative is discussed.

In Section , the existence and uniqueness of system of solutions is proved with the aid of

the fixed point theorem. Results and discussion are given in Section . Lastly in Section ,

the concluding remarks are presented.

2 Preliminaries

In the present part, we give some definitions and properties of the fractional derivative as

suggested by Caputo and Fabrizio [].
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Definition . Suppose g ∈ H(a,b), b > a, ρ ∈ [, ]; then the newly presented Caputo

derivative of arbitrary order [] is given by

D
ρ
t

(

g(t)
)

=
M(ρ)

 – ρ

∫ t

a

g ′(x) exp

[

–ρ
t – x

 – ρ

]

dx, ()

whereM(ρ) is the normalization of the function satisfying the conditionM() =M() = 

[].

But, if g /∈ H(a,b) under this condition, the derivative is given follows:

D
ρ
t

(

g(t)
)

=
ρM(ρ)

 – ρ

∫ t

a

(

g(t) – g(x)
)

exp

[

–ρ
t – x

 – ρ

]

dx. ()

Remark  If σ = –ρ

ρ
∈ [,∞), ρ = 

+σ
∈ [, ], then equation () assumes the form

D
ρ
t

(

g(t)
)

=
N(σ )

σ

∫ t

a

g ′(x) exp

[

–
t – x

σ

]

dx, N() =N(∞) = . ()

Moreover,

lim
σ→



σ
exp

[

–
t – x

σ

]

= δ(x – t). ()

It is essential to have the anti-derivative associated with the new fractional derivative [].

Definition . Let  < ρ < . If g is a function, then the fractional integral of order ρ is

presented by

I
ρ
t

(

g(t)
)

=
( – ρ)

( – ρ)M(ρ)
g(t) +

ρ

( – ρ)M(ρ)

∫ t



g(s)ds, t ≥ . ()

Furthermore, the following result holds []:

( – ρ)

( – ρ)M(ρ)
+

ρ

( – ρ)M(ρ)
= , ()

which yieldsM(ρ) = 
–ρ

,  ≤ ρ ≤ .

In view of the above results, the authors of [] have given another form of the newly

presented Caputo derivative for the order  < ρ <  represented as

D
ρ
t

(

g(t)
)

=


 – ρ

∫ t



g ′(x) exp

[

–ρ
t – x

 – ρ

]

dx, t ≥ . ()

3 Model description and giving up smokingmodel with a fractional derivative

involving non-singular kernel

In this section, we examine the giving up smoking dynamics discussed by Erturk et al. [].

Suppose the overall population at time t is denoted by T(t). We separate the population

T(t) into five subgroups, potential smokers P(t), occasional smokers L(t), heavy smokers
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S(t), temporary quitters Q(t) and smokers who quit permanently R(t) specified by T(t) =

P(t) + L(t) + S(t) +Q(t) + R(t). The model is developed as follows:

dP

dt
= a( – P) – bPS,

dL

dt
= –aL + bPL – cLS,

dS

dt
= –(a + d)S + cLS + fQ, ()

dQ

dt
= –(a + f )Q + d( – e)S,

dR

dt
= –aR + edS.

In the above system () b indicates the contact rate between smokers who smoke occa-

sionally and potential smokers, a denotes the rate of natural death, c stands for the con-

tact rate between smokers who smoke occasionally and temporary quitters, f represents

the contact rate between temporary quitters who return back to smoking and smokers,

d indicates the rate of giving up smoking, ( – e) stands for the fraction of smokers who

temporarily give up smoking (at a rate d), e denotes the remaining fraction of smokers

who give up smoking forever (at a rate d).

Thus, in order to introduce the above effect into the mathematical representation, we

moderate the system by substituting the time-derivative by the newly introduced Caputo-

Fabrizio arbitrarily ordered derivative [] as given by

CF
D

ρ
t P = a( – P) – bPS,

CF
D

ρ
t L = –aL + bPL – cLS,

CF
D

ρ
t S = –(a + d)S + cLS + fQ, ()

CF
D

ρ
t Q = –(a + f )Q + d( – e)S,

CF
D

ρ
t R = –aR + edS.

These come with the initial conditions

P() = δ, L() = δ, S() = δ, Q() = δ and R() = δ. ()

4 Existence and uniqueness of a system of solutions of smokingmodel

Since our main goal is to investigate the numerical results predicted by the fractional

model based on the CF derivative we firstly start to investigate the existence and unique-

ness of the solutions. We examine the existence of the system of solutions by applying the

fixed point theorem. Employing the fractional integral operator due to Nieto and Losada

[] on equation (), we obtain

P(t) – P() = CF
I

ρ
t

{

a( – P) – bPS
}

,

L(t) – L() = CF
I

ρ
t {–aL + bPL – cLS},

S(t) – S() = CF
I

ρ
t

{

–(a + d)S + cLS + fQ
}

, ()
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Q(t) –Q() = CF
I

ρ
t

{

–(a + f )Q + d( – e)S
}

,

R(t) – R() = CF
I

ρ
t {–aR + edS}.

By using the notation presented by Nieto and Losada [], we get

P(t) – P() =
( – ρ)

( – ρ)M(ρ)

{

a
(

 – P(t)
)

– bP(t)S(t)
}

+
ρ

( – ρ)M(ρ)

∫ t



{

a
(

 – P(y)
)

– bP(y)S(y)
}

dy,

L(t) – L() =
( – ρ)

( – ρ)M(ρ)

{

–aL(t) + bP(t)L(t) – cL(t)S(t)
}

+
ρ

( – ρ)M(ρ)

∫ t



{

–aL(y) + bP(y)L(y) – cL(y)S(y)
}

dy,

S(t) – S() =
( – ρ)

( – ρ)M(ρ)

{

–(a + d)S(t) + cL(t)S(t) + fQ(t)
}

+
ρ

( – ρ)M(ρ)

∫ t



{

–(a + d)S(y) + cL(y)S(y) + fQ(y)
}

dy,

()

Q(t) –Q() =
( – ρ)

( – ρ)M(ρ)

{

–(a + f )Q(t) + d( – e)S(t)
}

+
ρ

( – ρ)M(ρ)

∫ t



{

–(a + f )Q(y) + d( – e)S(y)
}

dy,

R(t) – R() =
( – ρ)

( – ρ)M(ρ)

{

–aR(t) + edS(t)
}

+
ρ

( – ρ)M(ρ)

∫ t



{

–aR(y) + edS(y)
}

dy.

For clarity, we write

K(t,P) = a
(

 – P(t)
)

– bP(t)S(t),

K(t,L) = –aL(t) + bP(t)L(t) – cL(t)S(t),

K(t,S) = –(a + d)S(t) + cL(t)S(t) + fQ(t), ()

K(t,Q) = –(a + f )Q(t) + d( – e)S(t),

K(t,R) = –aR(t) + edS(t).

Theorem . The kernels K, K, K, K and K satisfy the Lipschitz condition and con-

traction if the following inequality holds:

 < a + βb ≤ .

Proof We start with the kernel K. Let P and P be two functions, then we assess the fol-

lowing:

∥

∥K(t,P) –K(t,P)
∥

∥ =
∥

∥–a
{

P(t) – P(t)
}

– b
{

P(t) – P(t)
}

S(t)
∥

∥. ()
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By using the triangular inequality on equation (), we have

∥

∥K(t,P) –K(t,P)
∥

∥ ≤
∥

∥a
{

P(t) – P(t)
}
∥

∥ +
∥

∥b
{

P(t) – P(t)
}

S(t)
∥

∥

≤
{

a + b
∥

∥S(t)
∥

∥

}
∥

∥P(t) – P(t)
∥

∥

≤ {a + bβ}
∥

∥P(t) – P(t)
∥

∥ ≤ γ
∥

∥

(

P(t) – P(t)
)
∥

∥. ()

Taking γ = a + βb where the β = S(t) are bounded functions, then we get

∥

∥K(t,P) –K(t,P)
∥

∥ ≤ γ
∥

∥P(t) – P(t)
∥

∥. ()

Hence, the Lipschitz condition is satisfied for K, and if additionally  < (a + βb) ≤ , then

it is also a contraction for K.

Similarly the second, third, fourth and fifth cases satisfy the Lipschitz condition given

as follows:

∥

∥K(t,L) –K(t,L)
∥

∥ ≤ γ
∥

∥L(t) – L(t)
∥

∥,

∥

∥K(t,S) –K(t,S)
∥

∥ ≤ γ
∥

∥S(t) – S(t)
∥

∥,

∥

∥K(t,Q) –K(t,Q)
∥

∥ ≤ γ
∥

∥Q(t) –Q(t)
∥

∥,

∥

∥K(t,R) –K(t,R)
∥

∥ ≤ γ
∥

∥R(t) – R(t)
∥

∥.

()

On consideration of the aforesaid kernels, equation () becomes

P(t) = P() +
( – ρ)

( – ρ)M(ρ)
K(t,P) +

ρ

( – ρ)M(ρ)

∫ t



(

K(y,P)
)

dy,

L(t) = L() +
( – ρ)

( – ρ)M(ρ)
K(t,L) +

ρ

( – ρ)M(ρ)

∫ t



(

K(y,L)
)

dy,

S(t) = S() +
( – ρ)

( – ρ)M(ρ)
K(t,S) +

ρ

( – ρ)M(ρ)

∫ t



(

K(y,S)
)

dy, ()

Q(t) =Q() +
( – ρ)

( – ρ)M(ρ)
K(t,Q) +

ρ

( – ρ)M(ρ)

∫ t



(

K(y,Q)
)

dy,

R(t) = R() +
( – ρ)

( – ρ)M(ρ)
K(t,R) +

ρ

( – ρ)M(ρ)

∫ t



(

K(y,R)
)

dy.

Now, we present the following recursive formula:

Pn(t) =
( – ρ)

( – ρ)M(ρ)
K(t,Pn–) +

ρ

( – ρ)M(ρ)

∫ t



(

K(y,Pn–)
)

dy,

Ln(t) =
( – ρ)

( – ρ)M(ρ)
K(t,Ln–) +

ρ

( – ρ)M(ρ)

∫ t



(

K(y,Ln–)
)

dy,

Sn(t) =
( – ρ)

( – ρ)M(ρ)
K(t,Sn–) +

ρ

( – ρ)M(ρ)

∫ t



(

K(y,Sn–)
)

dy, ()

Qn(t) =
( – ρ)

( – ρ)M(ρ)
K(t,Qn–) +

ρ

( – ρ)M(ρ)

∫ t



(

K(y,Qn–)
)

dy,

Rn(t) =
( – ρ)

( – ρ)M(ρ)
K(t,Rn–) +

ρ

( – ρ)M(ρ)

∫ t



(

K(y,Rn–)
)

dy.
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The initial conditions are given as follows:

P(t) = P(),

L(t) = L(),

S(t) = S(), ()

Q(t) =Q(),

R(t) = R().

Now, we present the difference between the successive terms in the following manner:

φn(t) = Pn(t) – Pn–(t) =
( – ρ)

( – ρ)M(ρ)

(

K(t,Pn–) –K(t,Pn–)
)

+
ρ

( – ρ)M(ρ)

∫ t



(

K(y,Pn–) –K(y,Pn–)
)

dy,

ψn(t) = Ln(t) – Ln–(t) =
( – ρ)

( – ρ)M(ρ)

(

K(t,Ln–) –K(t,Ln–)
)

+
ρ

( – ρ)M(ρ)

∫ t



(

K(y,Ln–) –K(y,Ln–)
)

dy,

ξn(t) = Sn(t) – Sn–(t) =
( – ρ)

( – ρ)M(ρ)

(

K(t,Sn–) –K(t,Sn–)
)

+
ρ

( – ρ)M(ρ)

∫ t



(

K(y,Sn–) –K(y,Sn–)
)

,

()

χn(t) =Qn(t) –Qn–(t) =
( – ρ)

( – ρ)M(ρ)

(

K(t,Qn–) –K(t,Qn–)
)

+
ρ

( – ρ)M(ρ)

∫ t



(

K(y,Qn–) –K(y,Qn–)
)

dy,

ςn(t) = Rn(t) – Rn–(t) =
( – ρ)

( – ρ)M(ρ)

(

K(t,Rn–) –K(t,Rn–)
)

+
ρ

( – ρ)M(ρ)

∫ t



(

K(y,Rn–) –K(y,Rn–)
)

dy.

It is worth noticing that

Pn(t) =

n
∑

i=

φi(t),

Ln(t) =

n
∑

i=

ψi(t),

Sn(t) =

n
∑

i=

ξi(t), ()

Qn(t) =

n
∑

i=

χi(t),

Rn(t) =

n
∑

i=

ςi(t).
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Step by step but surely we assess

∥

∥φn(t)
∥

∥ =
∥

∥Pn(t) – Pn–(t)
∥

∥

=

∥

∥

∥

∥

( – ρ)

( – ρ)M(ρ)

(

K(t,Pn–) –K(t,Pn–)
)

+
ρ

( – ρ)M(ρ)

∫ t



(

K(y,Pn–) –K(y,Pn–)
)

dy

∥

∥

∥

∥

. ()

Employing the triangular inequality, equation () reduces to

∥

∥Pn(t) – Pn–(t)
∥

∥ ≤
( – ρ)

( – ρ)M(ρ)

∥

∥

(

K(t,Pn–) –K(t,Pn–)
)
∥

∥

+
ρ

( – ρ)M(ρ)

∥

∥

∥

∥

∫ t



(

K(y,Pn–) –K(y,Pn–)
)

dy

∥

∥

∥

∥

. ()

As the kernel satisfies the Lipchitz condition, we have

∥

∥Pn(t) – Pn–(t)
∥

∥ ≤
( – ρ)

( – ρ)M(ρ)
γ‖Pn– – Pn–‖

+
ρ

( – ρ)M(ρ)
γ

∫ t



‖Pn– – Pn–‖dy, ()

then we get

∥

∥φn(t)
∥

∥ ≤
( – ρ)

( – ρ)M(ρ)
γ

∥

∥φn–(t)
∥

∥ +
ρ

( – ρ)M(ρ)
γ

∫ t



∥

∥φn–(y)
∥

∥dy. ()

Similarly, we get the following results:

∥

∥ψn(t)
∥

∥ ≤
( – ρ)

( – ρ)M(ρ)
γ

∥

∥ψn–(t)
∥

∥ +
ρ

( – ρ)M(ρ)
γ

∫ t



∥

∥ψn–(y)
∥

∥dy,

∥

∥ξn(t)
∥

∥ ≤
( – ρ)

( – ρ)M(ρ)
γ

∥

∥ξn–(t)
∥

∥ +
ρ

( – ρ)M(ρ)
γ

∫ t



∥

∥ξn–(y)
∥

∥dy,

∥

∥χn(t)
∥

∥ ≤
( – ρ)

( – ρ)M(ρ)
γ

∥

∥χn–(t)
∥

∥ +
ρ

( – ρ)M(ρ)
γ

∫ t



∥

∥χn–(y)
∥

∥dy,

∥

∥ςn(t)
∥

∥ ≤
( – ρ)

( – ρ)M(ρ)
γ

∥

∥ςn–(t)
∥

∥ +
ρ

( – ρ)M(ρ)
γ

∫ t



∥

∥ςn–(y)
∥

∥dy.

()

�

On consideration of the above results, we may present the subsequent theorem.

Theorem . The fractional giving up smoking model () has a system of solutions under

the conditions that we can find t such that

( – ρ)

( – ρ)M(ρ)
γ +

ρ

( – ρ)M(ρ)
γt ≤ .

Proof Here we have considered that the functions P(t), L(t), S(t), Q(t) and R(t) are

bounded. Additionally, we have proven that the kernels satisfy the Lipschitz condition,
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hence on consideration of the results of equation () and equation () and by employ-

ing the recursive method, we derive the succeeding relation as follows:

∥

∥φn(t)
∥

∥ ≤
∥

∥P()
∥

∥

[(

( – ρ)

( – ρ)M(ρ)
γ

)

+

(

ρ

( – ρ)M(ρ)
γt

)]n

,

∥

∥ψn(t)
∥

∥ ≤
∥

∥L()
∥

∥

[(

( – ρ)

( – ρ)M(ρ)
γ

)

+

(

ρ

( – ρ)M(ρ)
γt

)]n

,

∥

∥ξn(t)
∥

∥ ≤
∥

∥S()
∥

∥

[(

( – ρ)

( – ρ)M(ρ)
γ

)

+

(

ρ

( – ρ)M(ρ)
γt

)]n

, ()

∥

∥ϕn(t)
∥

∥ ≤
∥

∥Q()
∥

∥

[(

( – ρ)

( – ρ)M(ρ)
γ

)

+

(

ρ

( – ρ)M(ρ)
γt

)]n

,

∥

∥ςn(t)
∥

∥ ≤
∥

∥R()
∥

∥

[(

( – ρ)

( – ρ)M(ρ)
γ

)

+

(

ρ

( – ρ)M(ρ)
γt

)]n

.

Therefore, the system of functions () exists and is smooth. However, to show that the

above functions are a system of solutions of the system of equations (), we assume

P(t) – P() = Pn(t) – Bn(t),

L(t) – L() = Ln(t) –Cn(t),

S(t) – S() = Sn(t) –Dn(t), ()

Q(t) –Q() =Qn(t) – En(t),

R(t) – R() = Rn(t) – Fn(t).

Therefore, we have

∥

∥Bn(t)
∥

∥ =

∥

∥

∥

∥

( – ρ)

( – ρ)M(ρ)

(

K(t,P) –K(t,Pn–)
)

+
ρ

( – ρ)M(ρ)

∫ t



(

K(y,P) –K(y,Pn–)
)

dy

∥

∥

∥

∥

≤
( – ρ)

( – ρ)M(ρ)

∥

∥

(

K(t,P) –K(t,Pn–)
)
∥

∥

+
ρ

( – ρ)M(ρ)

∫ t



∥

∥

(

K(y,P) –K(y,Pn–)
)
∥

∥dy

≤
( – ρ)

( – ρ)M(ρ)
γ‖P – Pn–‖

+
ρ

( – ρ)M(ρ)
γ‖P – Pn–‖t. ()

On using this process recursively, it yields

∥

∥Bn(t)
∥

∥ ≤

(

( – ρ)

( – ρ)M(ρ)
+

ρ

( – ρ)M(ρ)
t

)n+

γ n+
 α. ()
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Now taking the limit on equation () as n tends to infinity, we get

∥

∥Bn(t)
∥

∥ → .

Similarly, we get

∥

∥Cn(t)
∥

∥ → ,
∥

∥Dn(t)
∥

∥ → ,
∥

∥En(t)
∥

∥ →  and
∥

∥Fn(t)
∥

∥ → .

Hence existence is verified. �

Now, we prove the uniqueness of a system of solutions of equation ().

Let there exist another system of solutions of (), P(t), L(T), S(t),Q(t) and R(t); then

P(t) – P(t) =
( – ρ)

( – ρ)M(ρ)

(

K(t,P) –K(t,P)
)

+
ρ

( – ρ)M(ρ)

∫ t



(

K(y,P) –K(y,P)
)

dy. ()

Applying the norm on equation (), we get

∥

∥P(t) – P(t)
∥

∥ ≤
( – ρ)

( – ρ)M(ρ)

∥

∥K(t,P) –K(t,P)
∥

∥

+
ρ

( – ρ)M(ρ)

∫ t



∥

∥

(

K(y,P) –K(y,P)
)
∥

∥dy. ()

By employing the Lipschitz conditions of the kernel, we have

∥

∥P(t) – P(t)
∥

∥ ≤
( – ρ)

( – ρ)M(ρ)
γ

∥

∥P(t) – P(t)
∥

∥ +
ρ

( – ρ)M(ρ)
γt

∥

∥P(t) – P(t)
∥

∥. ()

It gives

∥

∥P(t) – P(t)
∥

∥

(

 –
( – ρ)

( – ρ)M(ρ)
γ –

ρ

( – ρ)M(ρ)
γt

)

≤ . ()

Theorem . The system of equations () has a unique system of solutions if the following

condition holds:

(

 –
( – ρ)

( – ρ)M(ρ)
γ –

ρ

( – ρ)M(ρ)
γt

)

≥ . ()

Proof If the condition () holds, then

∥

∥P(t) – P(t)
∥

∥

(

 –
( – ρ)

( – ρ)M(ρ)
γ –

ρ

( – ρ)M(ρ)
γt

)

≤ , ()

then we have

∥

∥P(t) – P(t)
∥

∥ = .
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Then we get

P(t) = P(t). ()

Proceeding in the same way, we have

L(t) = L(t),

S(t) = S(t),

Q(t) =Q(t),

R(t) = R(t).

()

Therefore, we verified the uniqueness of the system of solutions of equations (). �

5 Numerical results and discussions

In this portion, we discuss the numerical simulations of the solutions of system of equa-

tions () as a function of time for distinct values of ρ . The numerical results are obtained by

an iterative perturbation method and the Padè approximation []. We utilize the values

of the parameters a = ., b = ., c = ., d = ., e = . and f = .. The initial con-

ditions are given by P() = ., L() = ., S() = ., Q() = . and

R() = .. Figures -, P(t), L(t), S(t), Q(t) and R(t) are investigated with respect to

different values of ρ . Besides Figure  the displacement for smoking model is shown when

ρ = . From Figure  we can observe that the number of potential smokers (P) increases

with time and as the value of ρ decreases the number of potential smokers (P) decreases.

From Figure  we can see that the number of occasional smokers (L) increases with time

and as the value of ρ decreases, the number of occasional smokers (L) decreases. From

Figure  we can analyze that the number of heavy smokers (S) decreases with time and as

the value of ρ decreases the number of heavy smokers (S) increases. From Figure , we can

observe that the number of temporary quitters (Q) initially increases with time and with

increasing the values of ρ , but after some time the behavior is opposite. From Figure  we

can observe that the number of permanent quitters (R) increases with time and as the

Figure 1 The plots for the potential smokers P(t)

vs. time t in days for distinct values of ρ .
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Figure 2 The plots for the occasional smokers

L(t) vs. time t in days for distinct values of ρ .

Figure 3 The plots for the heavy smokers S(t) vs.

time t in days for distinct values of ρ .

Figure 4 The plots for the temporary quitters

Q(t) vs. time t in days for distinct values of ρ .
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Figure 5 The plots for the permanent quitters

R(t) vs. time t in days for distinct values of ρ .

Figure 6 The displacement for the smoking

model when ρ = 1.

Table 1 Comparison between standard derivative, Caputo fractional derivatives and

Caputo-Fabrizio fractional derivative for the potential smokers P(t)

t Standard derivative

(ρ = 1)

Caputo derivative

(ρ = 0.95)

Caputo-Fabrizio derivative

(ρ = 0.95)

1 0.6124398619 0.6126334075 0.6124401378

2 0.6218771047 0.6216116071 0.6214032210

3 0.6312904730 0.6303312432 0.6303433323

4 0.6406487116 0.6388461359 0.6392336738

5 0.6499205647 0.6471669258 0.6480474489

value of ρ decreases the number of permanent quitters (R) decreases. From Figure  we

can determine the displacement for the smoking model when ρ = .

Tables - present the comparative study between the standard derivative, Caputo

derivatives and Caputo-Fabrizio derivative. It can easily be observed from Tables - that

the Caputo-Fabrizio fractional derivative shows the new nature compared to the standard

derivative and Caputo fractional derivative. The graphical representations show that the

model depends notably on the fractional order. Figures - and Tables - show the clear

difference at different values of ρ . The model describes a new characteristic at the frac-

tional values of ρ that was unobserved when modeling at ρ = .
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Table 2 Comparison between standard derivative, Caputo fractional derivatives and

Caputo-Fabrizio fractional derivative for the occasional smokers L(t)

t Standard derivative

(ρ = 1)

Caputo derivative

(ρ = 0.95)

Caputo-Fabrizio derivative

(ρ = 0.95)

1 0.2416136687 0.2416475729 0.2416146612

2 0.2432477561 0.2432024968 0.2431675083

3 0.2449020824 0.2447359790 0.2447386087

4 0.2465764697 0.2462618874 0.2463278099

5 0.2482707411 0.2477865184 0.2479349601

Table 3 Comparison between standard derivative, Caputo fractional derivatives and

Caputo-Fabrizio fractional derivative for the heavy smokers S(t)

t Standard derivative

(ρ = 1)

Caputo derivative

(ρ = 0.95)

Caputo-Fabrizio derivative

(ρ = 0.95)

1 0.1026239640 0.1025641835 0.1026437765

2 0.09937450414 0.09948799415 0.09956153608

3 0.09646354464 0.09680263691 0.09678199000

4 0.09382300970 0.09440789173 0.09424677174

5 0.09138482355 0.09222574223 0.09189751483

Table 4 Comparison between standard derivative, Caputo fractional derivatives and

Caputo-Fabrizio fractional derivative for the temporary quitters Q(t)

t Standard derivative

(ρ = 1)

Caputo derivative

(ρ = 0.95)

Caputo-Fabrizio derivative

(ρ = 0.95)

1 0.03376048059 0.03377405752 0.03374711339

2 0.03464368108 0.03460575042 0.03458444010

3 0.03531175962 0.03521909598 0.03523042414

4 0.03582687433 0.03568394356 0.03573835831

5 0.03625118333 0.03606106299 0.03616153544

Table 5 Comparison between standard derivative, Caputo fractional derivatives and

Caputo-Fabrizio fractional derivative for the permanently quitters R(t)

t Standard derivative

(ρ = 1)

Caputo derivative

(ρ = 0.95)

Caputo-Fabrizio derivative

(ρ = 0.95)

1 0.02113719363 0.02107624005 0.02112963057

2 0.02400835647 0.02369345384 0.02385493816

3 0.02674146144 0.02611744835 0.02645645955

4 0.02935448146 0.02839320512 0.02894960428

5 0.03186538945 0.03055013348 0.03134978188

6 Concluding remarks

In this paper, the smoking model is analyzed with the Caputo-Fabrizio derivative and

makes use of the utilities of fractional calculus. To demonstrate the existence and unique-

ness of a system of solutions the fixed point theorem is discussed. By employing an itera-

tive perturbation method the special solution is obtained for the fractional order model.

To present the effect of fractional order some numerical simulations are performed. By

simulation it is clear that when ρ tends to  the CF derivative shows a more interesting be-

havior. Hence, it can be concluded that the newly fractional derivative is very important

for modeling real world problems.
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