
A new framework to accelerate Virtex-II Pro dynamic partial
self-reconfiguration

Christopher Claus1, Florian H. Müller1, Johannes Zeppenfeld1 and Walter Stechele1

1Technische Universität München
Lehrstuhl für Integrierte Systeme (LIS)

Theresienstrasse 90, 80333 München, Germany
{Christopher.Claus, Florian.Mueller, Zeppenfe, Walter.Stechele}@tum.de

Abstract

The Xilinx Virtex family of FPGAs provides the ability
to perform partial run-time reconf iguration, also known as
dynamic partial reconf iguration (DPR). Taking this con-
cept one step further, partial dynamic self-reconf iguration
becomes possible through the Internal Conf iguration Ac-
cess Port (ICAP). In this paper a framework for lowering
reconf iguration times using the combitgen tool [2] to re-
duce the overhead found within bitstreams, along with a
completely new, very simple and area eff icient ICAP con-
troller that is connected directly to the Processor Local Bus
(PLB) and is equipped with Direct Memory Access (DMA)
capabilities is presented. Using this PLB Master ICAP
controller, it is possible to reach the maximum practical
throughput that can be achieved with the ICAP interface
of Virtex-II Pro devices. Compared to an alternative real-
ization using the OPBHWICAP provided by Xilinx (a slave
attachment on the On-Chip Peripheral Bus), it is possible to
achieve improvements concerning reconf iguration times by
a factor of 20.

Keywords: dynamic partial self-reconfiguration,
ICAP, reconfiguration time

1. Introduction and Related work

Modern Systems on Chip (SoCs) are subject to rapid
changes concerning their functionality and other require-
ments. In order for them to react more flexibly to envi-
ronmental changes or new tasks, a simple method must be
found to allow such systems to adapt to their surroundings.
One possible concept for this builds on the assumption that
only those parts of the system (system components) affected

1-4244-0910-1/07/$20.00 c©2007 IEEE.

by the new tasks or environment must be updated. Follow-
ing this idea a little further, one can imagine that certain sys-
tem components could be replaced during run-time, while
the remaining, unaffected parts of the system remain fully
operational. A developer could use one chip for different
tasks and switch between them during run-time. Thus the
so called Dynamic Partial Reconfiguration (DPR) leads to
a fast and cost efficient application development. The Xil-
inx Virtex FPGA family additionally provides the possibil-
ity of dynamic partial self-reconfiguration, the use of which
is gaining importance for achieving faster reconfiguration
times. Much research is going on in this field e.g. Blodget
et al. [1], Donato et al. [4], Upegui et al. [10] and Williams
et. al. [11]. The Autovision system [3] deals with video
processing for future driver assistance systems, where hard-
ware accelerators (coprocessors) should be exchanged. The
following scenario should describe why it is necessary to
reduce the reconfiguration time. Using a frame input rate of
25 frames per second results in a maximum allowable time
of 40 ms to process one image. If the image processing
can be done in 35 ms, 5 ms are left over for reconfiguring
a coprocessor. Assuming a reconfiguration can be accom-
plished within this timeframe, no frames must be dropped.
The authors in [6] mention fairly high reconfiguration times
(6.2 seconds for a 35KB bitstream) if the bitstream is loaded
over the RS232 connection. With standard techniques and
tools available on the market it is possible to reconfigure
110 frames in 19.39ms on a Virtex-II Pro FPGA. Both of
these values are clearly to high, so a new method for re-
configuration had to be found. In section 2 Dynamic Partial
Self-Reconfiguration and the Internal Configuration Access
Port (ICAP) are described. Additionally an insight into
the Reconfiguration Flow being used and the combitgen
Tool [2] which is used to create optimized partial bitstreams
is given. Section 3 gives an overview of the system, in-
cluding subsection 3.4 in which the PLB Master ICAP Con-

troller that is used to achieve shorter reconfiguration times
is described. In addition, an example SoC is mentioned
which is used to verify the correctness of this approach.
Some experimental results, namely reconfiguration times
are discussed in section 4. Finally the paper is concluded
in section 5.

2. Dynamic Partial Self-reconfiguration

In Virtex-II and Virtex-II Pro devices a configuration
frame represents the atomic unit which can be reconfigured.
A configuration frame is a 1 bit wide collection of bits that
reaches from top to bottom of the FPGAs configuration
memory. This has changed in Virtex-4 devices, but as the
paper focuses on reconfiguration times of Virtex-II Pro de-
vices, the Virtex-4 will not be further considered. Never-
theless, the framework can easily be adapted to Virtex-4 de-
vices with some slight modifications. Each of the FPGA’s
CLBs spans multiple configuration frames, 22 in the case
of an XC2VP30 FPGA. To change the functionality of a
system using dynamic partial reconfiguration, the set of
frames included within the bitstream must be written to
the configuration memory of the FPGA. In addition to the
frames containing data within the bitstream, there may be
some pad frames necessary to shift the last frame into the
configuration memory. This process is described more fully
in [16].

2.1. Internal Configuration Access Port
(ICAP)

The configuration architecture of the Virtex-II series is
explained in [12] and [17]. Details about the Internal
Configuration Access Port (ICAP) interface can be found
in [14], [15] and [16]. The ICAP Interface behaves just
like the SelectMAP Interface of the FPGA in slave mode,
which is well documented in [16]. The ICAP allows inter-
nal read and write access to the configurable FPGA logic.
Thus it allows self-reconfiguration of Virtex-II devices. The
ICAP interface consists of separate 8-bit data ports for read-
ing and writing, write and chip enables, a busy signal, and a
clock input. The ICAP is physically located in the lower
right corner of the Virtex FPGAs, and users must make
sure not to reconfigure the circuitry controlling the ICAP.
Thus the ICAP does not allow full reconfiguration of the
entire FPGA. In contrast to SelectMAP, ICAP does not sup-
port multiple modes. Beside the mode pins (M2, M1, M0)
that can be found in the SelectMAP Interface other pins are
missing too, such as DONE, INIT, and PROGRAM. The
SelectMAP CS pin has been renamed CE on the ICAP but
it provides exactly the same function. The Xilinx Embed-
ded Development Kit (EDK) provides a peripheral called
the OPBHWICAP which wraps the ICAP with additional

logic to read and write frames to a block ram (BRAM) [15].
The OPBHWICAP is connected to the On-Chip Peripheral
Bus (OPB) as a slave peripheral. The partial bitstream files
to update the configuration memory can be provided from
outside or inside the circuit. In this approach the partial
bitstreams are stored in the DDR SDRAM. Additionally,
the ICAP controller is connected to the Processor Local
Bus (PLB) as a master, using an in-house PLB IP Interface
(IPIF). An initial version of a PLB ICAP controller from
Xilinx can be found in [14].

2.2. Reconfiguration Flow

In this work the Early Access Partial Reconfiguration
(EAPR) flow is used. It was newly introduced by Xil-
inx and is installed via a special patch for ISE 8.2.01i.
This flow is also used in the Planahead Tool of Xilinx.
More detailed information can be found in the work of
Lysaght et. al. [9] and [5]. The EAPR flow is based on
the well known module-based reconfiguration flow which
is explained in [13]. The major difference between the
module-based reconfiguration flow and the EAPR flow is
that the EAPR flow allows nets in the base design to cross
through a partially reconfigurable region without the use
of a bus macro, as can be seen in Figure 1. Bus macros
are predefined units of logic and wiring that guarantee
the correct routing between the reconfigurable module and
the unchanged part of the system before and after the re-
configuration. Instead of using tristate buffer based bus
macros as recommended in [13], LUT-based bus macros
are utilized in this work which were introduced primarily
by Hübner et al. [7]. The nets that cross the reconfigurable
region from left to right and vice versa are mainly connec-
tions to the DDR SDRAM. Of course it would be possible
to simplify the layout for partial reconfiguration by placing
the reconfigurable module on the right side of the device,
but in this example the intent was to show that the EAPR
flow also works under more difficult conditions.

2.3. combitgen

The combitgen tool generates optimized partial bit-
streams. It combines the advantages of existing re-
configuration flows, namely module-based, PartialMask
and difference-based, while avoiding their disadvantages.
Details and a comparison between these reconfiguration
flows can be found in [2]. The bitstream size is propor-
tional to the reconfiguration time, hence if superfluous data
is removed it is possible to reconfigure the device more
quickly. The module-based flow is based on the Partial-
Mask flow, which creates partial bitstreams consisting of
complete CLB columns. If only one frame is different be-
tween two toplevels inside a column, one can imagine that

Figure 1. Layout of an example re-
configurable system. No bus macros are
used to span the reconfigurable area. The
reconfigurable module is marked with a
rectangle.

this results in a huge overhead concerning the number of
frames in the partial bitstream.

With the Xilinx bitgen tools difference-based method
of generating partial bitstreams, which only writes those
frames which are actually different, n toplevel bitstreams
require n(n − 1) partial bitstreams. This originates from
the fact that the different frames between e.g. toplevel A
and B are not the same as between A and C. combitgen [2]
works around this problem by comparing each frame across
all toplevels, and marks it as having to be written for all
toplevel bitstreams if it is different between any two of
them. This way, the different frames of A and B or A and
C are just a subset of all marked frames. These frames are
then written from each toplevel bitstream into an associated
partial bitstream, which can be used to configure from any
other toplevel to this one. As a result, only n partial bit-
streams are needed for n toplevels. Another advantage of
combitgen [2] is its ability to exploit the so-called Multi
Frame Write (MFWR) method to minimize bitstream sizes,
thereby reducing reconfiguration times. The Xilinx bitgen

tool uses MFWR only for the intended purpose of writ-
ing identical frames to multiple locations in configuration
memory (for details about the configuration of Virtex-II FP-
GAs see [16]). When writing one or more unique frames,
bitgen simply writes the frame to the FDRI register and
then shifts it into the desired frame address. This shifting
normally occurs automatically when sequential frame ad-
dresses are written. However, a dummy pad frame must
be written in addition to the useful data in order to shift
in the last frame of a continuous range of frames. Since
each frame contains a fairly large amount of data (206 32-
bit words in an XC2VP30 FPGA), this can result in a hefty
overhead, especially when only a few frames need to be
written. The overhead necessary to issue an MFWR com-
mand (e.g. when only a single frame must be written) is
much lower in comparison, requiring only 13 32-bit com-
mand words per frame. When writing b 206

13
c = 15 or fewer

consecutive frames it is therefore more efficient to write
each frame individually using MFWR. Recapitulating these
facts, combitgen [2] uses the MFWR feature for writing
identical frames as well as for writing single frames in an
efficient manner. This process is automated by combitgen,
making it an excellent addition to the EAPR flow.

3 System Overview

A block diagram of an example system using the PLB
Master ICAP controller is shown in Figure 2.

Figure 2. Block diagram representing the ar-
chitecture of a reconfigurable system.

In this example system an OPB peripheral (Rec. module)
will be exchanged, which represents an adder or subtractor
depending on the configuration loaded. The layout of the
system is depicted in Figure 1. The partial bitstreams are
preloaded from a Compact Flash card to the DDR SDRAM
during initialization.

3.1. Reconfiguration times: a theoretical
consideration

After the design is placed and routed there are three
methods of reducing the reconfiguration time:

• reduce bitstream size

• optimize the way bitstreams are written to the
configuration memory (remove pad frames)

• optimize the bitstream transfer from memory to the
ICAP

The first possibility is to reduce the size of the partial
bitstreams. Unnecessary frames are removed by combit-
gen [2]. Secondly, the way in which partial bitstreams
are written to the configuration memory can be optimized.
Single frames are written with the Multiple Frame Write
(MFWR) feature as explained in section 2.3 and [2]. Fi-
nally, reconfiguration times can be reduced further by op-
timizing the bitstream transfer from memory to the ICAP.
This can be achieved using a PLB Master ICAP Controller,
which will be presented in section 3.4.

3.2. Maximum theoretical throughput

Based on the assumption that the ICAP can process in-
coming data every clock cycle, the maximum theoretical
throughput to the ICAP can be calculated by:

MTT =
IDIW

ClockPeriod
(1)

where IDIW is the ICAP Data Input Width (8 bits in
Virtex-II and Virtex-II Pro devices and 32-Bit in Virtex-4
Devices). MTT is the maximum theoretical throughput
that can be achieved were the ICAP is capable of processing
incoming data every clock cycle. Considering a clock pe-
riod of 10ns (100 Mhz) and the Virtex-IIs ICAP data input
width of 8-bits, a maximum theoretical throughput of 100
KBytes/ms would be possible.

3.3. Maximum practical throughput

In reality it is not possible for the ICAP in Virtex-II and
Virtex-II Pro devices to process new data every clock cy-
cle, and indeed when the ICAP is clocked with frequen-
cies above 50 MHz (100 MHz in Virtex-4 devices) it is
necessary to respect the ICAPs handshaking (busy) signal.
This signal indicates whether the ICAP has accepted the
incoming data or not. In Figure 3 the BUSY_ICAP sig-
nal is shown recorded from a reconfiguration sequence us-
ing the PLB ICAP controller. It can be seen that ICAP is

busy quite often which is indicated by the handshaking sig-
nal BUSY_ICAP. Thus the maximum theoretical through-
put cannot be achieved. The maximum practical throughput
of ICAP in Virtex-II Pro devices is in the range of 94% to
96% of the maximum theoretical throughput as can be seen
in Table 2.

3.4. PLB ICAP Controller

The PLB Master ICAP controller provides the interface
necessary to transfer bitstreams to and from the ICAP. In
order to avoid unnecessary overhead, the ICAP controller
is equipped with DMA capabilities, which allow the con-
troller to access bitstream data directly from the main mem-
ory. Not only does this minimize the amount of data which
must be transferred, it also reduces the load on the CPU. Af-
ter receiving the memory address and length of a bitstream
from the controlling processor, the Master ICAP controller
begins bursting in the required bitstream data directly from
main memory. Incoming data is stored within a FIFO, from
where it can be fed one byte at a time into the ICAP. ICAP
handshaking is also respected to allow for operation at the
native bus speed (usually 100MHz in a system). As most
of the data found within the bitstream header (e.g. de-
sign name, target device, date, etc.) is superfluous, com-
bitgen [2] can be used to automatically generate a stripped-
down version of the bitstream, allowing the data stored in
memory to be sent directly to the ICAP while simultane-
ously reducing the amount of data that must be transferred.
The modified bitstreams therefore begin with the sync word
(0xAA995566). In order to further reduce the complexity
of the ICAP controller (and thereby its size), the bitstreams
stored in memory are padded to multiples of 128 bytes, al-
lowing fixed burst lengths regardless of the actual size of
the bitstream. In order to be accessible to the PLB Mas-
ter ICAP controller, all bitstreams must be stored in main
memory before they can be used to reconfigure the FPGA.
Since a Compact Flash card was used for non-volatile bit-
stream storage, any required bitstreams are preloaded into
main memory when the system boots. This is necessary
because loading the bitstream data directly from the Com-
pact Flash card would slow down the whole reconfiguration
process. Once the bitstreams have been placed in memory, a
start signal can be sent to the ICAP controller to initiate a re-
configuration. Currently this signal is provided by pressing
an external push-button switch. In future designs this sig-
nal will be sent along with the bitstreams memory address
and size via the Device Control Register (DCR) bus directly
to the ICAP controller. The controller then requests the bit-
stream data from memory and forwards it to the ICAP as de-
scribed above. Once implemented, reading frames from the
ICAP will proceed in a similar manner, except that frames
will be accessed one at a time and stored internally within

Figure 3. Waveforms of the PLB ICAP controller using a 100 Mhz clock obtained from Chipscope

the ICAP controller rather than being written out to main
memory. The CPU will then be able to read the frame data
directly from the ICAP. This readback of configuration data
is not implemented yet but forms a part of the future work.

4. Experimental Results

In this section the results obtained when comparing the
ordinary OPBHWICAP and unmodified bitstreams from
Xilinx with the PLB Master ICAP module and bitstreams
created with combitgen [2] are presented. In all of the de-
signs the partial bitstreams are stored in the DDR SDRAM.

4.1. Reconfiguration times

As explained in section 3 a simple OPB-Peripheral is
reconfigured. In Table 1, results from measuring the re-
configuration times in software are presented. In this case
the xtime.h library and the OPBHWICAP from Xilinx are
used. The same timing results can be obtained when us-
ing an opb timer hardware module. Compared to the bit-
streams that are created by the conventional flows, a decent
improvement of bitstream size can be achieved when using
combitgen [2]. The first column shows the creation method
of the bitstream. The second column contains the partial
bitstream size in bytes. The number of data frames in the
partial bitstream is depicted in column three. This number
does not include the pad frames that must be written us-
ing the conventional (non-MFWR) method. The time in ms
to partially reconfigure the device is shown in column four
and finally the calculated throughput in KBytes/ms is de-
picted in column five. As can be seen, combitgen was not
able to achieve an appreciable improvement compared to
the difference-based flow. In this case, the first three frames
were written in a row with MFWR for single frames. The

following 18 frames were also written in a row, using the
conventional method instead.

BS creation Size # of data reconfig. throughput
method in byte frames times (ms) (KB/ms)

EAPR 92445 110 19.39 4.77

Difference- 19966 21 4.18 4.77
based

combitgen 19290 21 4.03 4.78

Table 1. Reconfiguration times using the orig-
inal OPBHWICAP and opb timer from Xil-
inx [15]

However, if more than two reconfigurable modules were
to be used, the difference-based flow would not be appli-
cable any more. The average throughput which can be
achieved with the OPBHWICAP is nearly 5 KB/ms. Com-
pared to this, see the results with the ICAP Controller in
Table 2.

BS creation Size # of data reconfig. throughput
method in byte frames times (ms) (KB/ms)

EAPR 359168 806 3.75 95.77

Difference- 62208 69 0.653 95.26
based

combitgen 58240 69 0.614 94.85

Table 2. Reconfiguration times using the new
PLB Master ICAP Controller

Here the time was also measured in software. Interrupts
thrown by the PLB Master ICAP indicate the end of a write
process. The difference in bitstream size in Table 1 and Ta-
ble 2 results from varying reconfiguration area constraints.
The reconfigurable module itself is the same. As already
explained in section 3.3 it is not possible to achieve the
maximum theoretical throughput of 100KB/ms due to the
ICAP’s busy signal. A calculated average of 95 KBytes/ms
is the maximum practical throughput that can be achieved.
However, compared to the OPBHWICAP the throughput
can be increased by a factor of 20. Table 3 depicts some es-
timated results comparing the EAPR results when using the
OPBHWICAP controller and the combitgen results when
utilizing the PLB ICAP controller. In the first column the
partial bitstream creation method is stated, followed by a
column containing the size of the corresponding partial bit-
stream in bytes. These values are derived from Table 1. The
third column shows which ICAP controller is used. The
fourth column contains the measured throughput of the cor-
responding ICAP controller. These values are derived from
the results in Table 1 and Table 2. The last column contains
the estimated reconfiguration times.

BS creation Size ICAP measured tp rec. time
method in byte version (in KB/ms) (est. in ms)

EAPR 92445 OPB- 4.77 19.38
HWICAP

combitgen 19290 PLB- 94.85 0.20
ICAP

Table 3. Comparison between EAPR results
with OPBHWICAP and combitgen results
with PLB ICAP

In this simple design the reconfiguration time can be re-
duced by a factor of 96.9, just by using combitgen and the
PLB ICAP controller. Of course the main improvement is
caused by the PLB ICAP controller but combitgen delivers
an additional factor that further reduces the reconfiguration
time. Using the PLB Master ICAP the bus is no longer the
bottleneck of the system. Instead, the ICAP input width of
the Virtex-II and Virtex-II Pro devices is the limiting fac-
tor. The Virtex-4 family comes with an ICAP input width
of 32 bits, which would reduce the reconfiguration times by
an additional factor of 4 assuming that the transfer of bit-
streams from main memory to the input FIFO of the PLB
ICAP Controller remains fast enough. Preliminary obser-
vations of the bus load indicate that this would be the case.

4.2. Synthesis results

In this section the synthesis results of the PLB Master
ICAP Controller are presented. The development platform

used is the XUP Virtex-II Pro Development System with an
XC2VP30 FPGA from Digilent. In Table 4, the synthesis
results of the PLB Master peripheral are shown.

Number of Slices: 98 out of 13696 0%
Number of Slice Flip Flops: 94 out of 27392 0%
Number of 4 input LUTs: 185 out of 27392 0%
Number of BRAMs: 2 out of 136 1%
Minimum period: 3.788ns (Maximum Frequency: 264.023MHz)

Table 4. Device Utilization and timing sum-
mary of the PLB Master ICAP Controller on a
Virtex-II Pro (2vp30ff896-7) excluding the PLB
IPIF

Having demonstrated the performance gain possible with
the PLB Master ICAP Controller, now the synthesis results
based on the Xilinx XUP Virtex-II Pro Development Sys-
tem with an XC2VP30 FPGA are presented. Results for the
original Xilinx OPBHWICAP are shown in Table 6, those
for the PLB Master peripheral in Tables 4 and 5, with and
without the PLB IPIF respectively. Although the additional
slices required by the IPIF push the PLB Master ICAP’s to-
tal area requirement above that of the OPB ICAP controller,
this is considered a small price to pay for the greatly im-
proved performance. In Table 5 the synthesis results of the
modified PLB IPIF are depicted.

Number of Slices: 223 out of 13696 1%
Number of Slice Flip Flops: 347 out of 27392 1%
Number of 4 input LUTs: 326 out of 27392 1%
Minimum period: 4.135ns (Maximum Frequency: 241.815MHz)

Table 5. Device Utilization and timing sum-
mary of the modified PLB IPIF on a Virtex-II
Pro (2vp30ff896-7)

Compared to this see the synthesize results of the OPB-
WHICAP including the OPB IPIF in Table 6.

Number of Slices: 112 out of 13696 0%
Number of Slice Flip Flops: 154 out of 27392 0%
Number of 4 input LUTs: 177 out of 27392 0%
Number of BRAMs: 1 out of 136 0%
Minimum period: 3.985ns (Maximum Frequency: 250.916MHz)

Table 6. Device Utilization and timing sum-
mary of the OPBHWICAP Controller on a
Virtex-II Pro (2vp30ff896-7) including the OPB
IPIF

Of course a Master attachment to the PLB occupies more
slice resources but as shown in the tables above the imple-

mentation of the PLB Master ICAP Controller and the PLB
IPIF is still very resource efficient.

5. Conclusion and further work

In this paper a new ICAP controller with a master attach-
ment to the PLB, allowing for reconfiguration of Virtex-II
devices independently of the CPU at speeds very close to
the theoretical maximum was presented. In addition sev-
eral methods were described to reduce the reconfiguration
overhead in partial bitstreams, thereby further reducing re-
configuration times. Future work includes extending the
PLB Master ICAP controller to allow for readback, as well
as providing it with an interface to the Device Control Reg-
ister bus. Adaptions to other architectures, such as the 32-
bit data port width of the Virtex-4 ICAP, would require mi-
nor additional changes. It is planned to implement a generic
version of the PLB ICAP Controller so that it can also be
used in Virtex-4 devices. Two ICAPs and a 32-bit data
port width in Virtex-4 or Virtex-5 devices should enable
a calculated maximum practical throughput of up to 800
KBytes/ms. Bitstream compression could be used to load
the configuration data more quickly into the input FIFO of
the PLB Master ICAP Controller. The compression could
also be used to lower the load on the PLB Bus. One possi-
ble approach to this would be using a real-time decompres-
sion module such as that described in [8]. In addition it is
planned to reconfigure complex modules in more advanced
systems e.g. reconfigure hardware coprocessors for image
processing in the Autovision system [3].

6. Acknowledgements

This work is supported by the German Research Foun-
dation DFG (Deutsche Forschungsgemeinschaft) in the fo-
cus program No. SPP1148. We want to thank the Institute
for Information Processing Technology (Institut für Tech-
nik der Informationsverarbeitung - ITIV) in Karlsruhe, es-
pecially professor J. Becker and M. Hübner for their great
support in the field of dynamic partial reconfiguration. Ad-
ditionally we want to thank Brandon Blodget, Jeff Mason
and Tobias Becker for their support on the EAPR Flow and
ICAP. Finally we want to thank Xilinx for providing devel-
opment boards for our research activities.

References

[1] B. Blodget, S. McMillan, and P. Lysaght. ”A Lightweight
Approach for Embedded Reconfiguration of FPGAs”. Date,
01:10399, 2003.

[2] C. Claus, F. H. Müller, and W. Stechele. ”Combitgen: A
new approach for creating partial bitstreams in Virtex-II Pro

devices”. Workshop on reconf igurable computing Proceed-
ings (ARCS 06), pages 122–131, March 2006.

[3] C. Claus, F. H. Müller, J. Zeppenfeld, and W. Stechele. ”Us-
ing Partial-Run-Time Reconfigurable Hardware to acceler-
ate Video Processing in Driver Assistance System”. In Pro-
ceedings of the Design, Automation and Test in Europe Con-
ference (DATE07), Nice, France, April 2007.

[4] A. Donato, F. Ferrandi, M. Redaelli, M. D. Santambro-
gio, and D. Sciuto. ”Caronte: A Complete Method-
ology for the Implementation of Partially Dynamically
Self-Reconfiguring Systems on FPGA Platforms”. Field-
Programmable Custom Computing Machines Proceedings
(FCCM 2005), 00:321–322, 2005.

[5] N. Dorairaj, E. Shiflet, and M. Goosman. ”PlanAhead Soft-
ware as a Platform for Partial Reconfiguration”. Xcell Jour-
nal, 55:68–71, 2005.

[6] R. J. Fong, S. J. Harper, and P. M. Athanas. ”A Versatile
Framework for FPGA Field Updates: An Application of Par-
tial Self-Reconfiguation”. rsp, 00:117 pp, 2003.

[7] M. Hübner, T. Becker, and J. Becker. ”Real-time LUT-
based network topologies for dynamic and partial FPGA
self-reconfiguration”. Proceedings of the 17th symposium
on Integrated circuits and system design (SBCCI 04), pages
28–32, 25-29 April 2004.

[8] M. Hübner, M. Ullmann, F. Weissel, and J. Becker. ”Real-
Time Configuration Code Decompression for Dynamic
FPGA Self-Reconfiguration”. Proceedings of the 18th In-
ternational Parallel and Distributed Processing Symposium
(IPDPS’04) - Workshop 3, 04:138b, June 21-24 2004.

[9] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridge-
ford. ”Enhanced architectures, design methodologies and
CAD tools for dynamic reconfiguration on XILINX FP-
GAS”. In Proceedings of the 16th International Conference
on Field Programmable Logic and Applications (FPL06),
Madrid, Spain, August 2006.

[10] A. Upegui and E. Sanchez. ”On-chip and On-line Self-
Reconfigurable Adaptable Platform: the Non-Uniform Cel-
lular Automata Case”. Proceedings of the 20th IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS06), page 4 pp, 25-29 April 2006.

[11] J. W. Williams and N. Bergmann. ”Embedded Linux as
a Platform for Dynamically Self-Reconfiguring Systems-
on-Chip”. Proceedings of the International Conference
on Engineering of Reconf igurable Systems and Algorithms,
ERSA’04, pages 163–169, June 21-24 2004.

[12] Xilinx, Inc. ”XAPP151: Virtex Series Configuration Archi-
tecture User Guide”. v1.7, 20th October 2004.

[13] Xilinx, Inc. ”XAPP290: Two Flows for Partial Re-
configuration: Module Based or Difference Based”. v4.0,
9th September 2004.

[14] Xilinx, Inc. ”XAPP662: In-Circuit Partial Reconfiguration
of RocketIO Attributes”. v2.4, 26th May 2004.

[15] Xilinx, Inc. ”OPB HWICAP (v1.00.b) Product Specifi-
cation”. pages 1–13, 4th March 2005.

[16] Xilinx, Inc. ”UG012: Xilinx Virtex-II Pro and Virtex-II Pro
X FPGA User Guide”. v4.0, 23 March 2005.

[17] Xilinx, Inc. ”XAPP138: Virtex FPGA Series Configuration
and Readback”. v2.8, 11th March 2005.

