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ABSTRACT
Three-dimensional geometric morphometric (3DGM) methods for

placing landmarks on digitized bones have become increasingly sophisti-
cated in the last 20 years, including greater degrees of automation. One
aspect shared by all 3DGM methods is that the researcher must desig-
nate initial landmarks. Thus, researcher interpretations of homology and
correspondence are required for and influence representations of shape.
We present an algorithm allowing fully automatic placement of correspon-
dence points on samples of 3D digital models representing bones of differ-
ent individuals/species, which can then be input into standard 3DGM
software and analyzed with dimension reduction techniques. We test this
algorithm against several samples, primarily a dataset of 106 primate cal-
canei represented by 1,024 correspondence points per bone. Results of our
automated analysis of these samples are compared to a published study
using a traditional 3DGM approach with 27 landmarks on each bone.
Data were analyzed with morphologika2.5 and PAST. Our analyses
returned strong correlations between principal component scores, similar
variance partitioning among components, and similarities between the
shape spaces generated by the automatic and traditional methods. While
cluster analyses of both automatically generated and traditional datasets
produced broadly similar patterns, there were also differences. Overall
these results suggest to us that automatic quantifications can lead to
shape spaces that are as meaningful as those based on observer land-
marks, thereby presenting potential to save time in data collection,
increase completeness of morphological quantification, eliminate observer
error, and allow comparisons of shape diversity between different types of
bones. We provide an R package for implementing this analysis. Anat
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INTRODUCTION

As the general theme of this volume is the application
of three dimensional geometric morphometrics (3DGM)
to functional morphology, there is little need to convince
most readers about the importance of morphological
studies to evolutionary and developmental biological
research. However, the utility of detailed morphological
information in such research has become increasingly
questioned (see Springer et al. [2013] comment on
O’Leary et al. [2013a, b]). Therefore, we emphasize that
patterns of phenotypic variation (including morphology)
among biological structures form the basis for under-
standing gene function (e.g., Morgan, 1911; Abzhanov
et al., 2006), developmental mechanisms (e.g., Harjun-
maa et al., 2012), ecological adaptation (e.g., Losos,
1990; Frost et al., 2003), and evolutionary history (e.g.,
Leakey et al., 1964; Ostrom, 1975; Gingerich et al.,
2001). Given its importance in a diverse set of biological
disciplines, we believe that morphological information
remains highly relevant to scientific discovery and
advancement.

Since the Modern Synthesis of Evolutionary Theory
was reached in the 1940s and evolution was appropri-
ately redefined in its most basic population–genetic con-
text, genomic approaches to studying evolution have
advanced dramatically. In part, this sea change is a
result of increasingly available data and improving com-
putational power. Ever more comprehensive and rapid
assessments of genetic variation have been possible as a
result (Venter et al., 2001). Since the late 1980s, large-
scale automated genomic analyses have flourished; a
great deal is now known about and can be inferred from
genotypic variation (McVean et al., 2005; Houle et al.,
2010). Genetic data are even accessible from remains of
extinct organisms such as subfossil lemurs (Orlando
et al., 2008) and Neandertals (Green et al., 2010).

The utility of morphology is now questioned, in part,
because the ability to analyze morphological data has
progressed much more slowly than the ability to analyze
genomic data. However, there is a call from some evolu-
tionary biologists for the collection and analysis of high-
dimensional phenotypic data (Houle et al., 2010) in an
analogous high-throughput and automated fashion. This
perspective proposes that the utility and information
content of genetic data will only reach its fullest extent
once data on associated phenotypes can be analyzed at
equivalent rates and scales. Ideally, increasing availabil-
ity of phenomic data would promote comprehension of
how the interaction between phenotypic variation and
the environment is mediated by the genome and how
selective pressures on the phenome are transferred to
the genome. Reflecting the perceived importance of such
data, the field of phenomics has recently been defined as

that endeavoring to acquire high-dimensional phenotypic
data on an organism-wide scale (Houle et al., 2010).
Although phenomics is defined in analogy to genomics,
the analogy is misleading in one respect. We can come
close to characterizing a genome completely but not a
phenome, as the information content of phenomes
dwarves genomes and is heavily influenced by the mode,
tempo, duration, and timing of its observation and quan-
tification (Houle et al., 2010).

By itself, variation in morphological structure (a com-
ponent of phenomic variation) has higher dimensionality
than variation in the genome, which makes it exponen-
tially more difficult to quantify in a meaningful way
(e.g., Boyer et al., 2011). This is not to say that signifi-
cant advances in analysis of morphology are impossible
or that the field of morphometrics has stagnated. As
emphasized and demonstrated by work in this volume,
new and more sophisticated approaches are being devel-
oped. More sophisticated statistical contexts (Nunn,
2011) are available thanks to improved computing power
and flexible open-source coding languages (Orme et al.,
2011; R Coding Team, 2012). Additionally, there is grow-
ing automation of shape quantification based on new
variations of methods for spreading semi-landmarks
over a 3D surface model (Bookstein, 1997; Bookstein
et al., 1999; Bookstein et al., 2002; Perez et al., 2006;
Harcourt-Smith et al., 2008; Mitteroecker and Gunz,
2009). However, 3D shape analyses are generally tied to
at least two-user determined landmarks (Polly and
MacLeod, 2008), and 3DGM analyses do not appear to
be very meaningful without four or more (Gunz et al.,
2005; Wiley et al., 2005). As a result, these approaches
continue to have many of the same limitations as mor-
phological studies from 30 to 40 years ago. Part of the
problem is sample size; in most cases the number of
measurements, and the sample sizes per study have
changed little (compare Berge and Jouffroy [1986] with
Boyer et al. [2013]—though statistical analyses are more
sophisticated in the more recent study, there are no sub-
stantial differences in measurement complexity or sam-
ple sizes in these two studies almost 30 years apart).
Other principal limitations to the current traditional
approach to morphological studies include: (1) subjectiv-
ity/observer-error in interpretation and measurement,
(2) time intensiveness for generating large datasets, (3)
sparse and potentially incomplete and/or biased repre-
sentation of specimen morphology and sample variation,
and (4) limited accessibility of information encapsulated
in morphology due to lack of widespread researcher
expertise. All restrictions stem from the necessity
that researchers must directly observe, interpret, and
actively measure (or mark) every specimen of a study.
These limitations likely at least partly explain why
genetic data currently provide a more statistically
powerful approach to certain evolutionary questions, and
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also why questions that can be addressed only by mor-
phology (e.g., what physical traits are functionally bene-
ficial for a certain behavior?) are often less thoroughly
examined or appear more controversial despite a long
history of analyses.

As discussed by MacLeod et al. (2010), in order to make
the study of morphology less of a “cottage industry” and
bring it to a new level of objectivity, standardization, effi-
ciency, and accessibility, we should seek more automation
in the determination of patterns of morphological similar-
ity and difference. Several researchers (Lohmann, 1983;
MacLeod, 1999; Polly and MacLeod, 2008; Sievwright and
MacLeod, 2012) have worked to develop techniques that
minimize assumptions involved in measuring shape simi-
larity. Initiatives for “automated taxonomy” exist (Weeks
et al., 1999; MacLeod, 2007) and have had some degree of
success. However, all of these automated approaches
require a “dimension reduction” in the initial analytical
stages, which still necessitates that researchers make a
decision, informed by their understanding of important
and “equivalent” morphological features, on how to make
that reduction. Most automated work has been carried
out on two-dimensional (2D) outlines or raster-
photographs. In such cases, the shape of an outline and
the images in a photograph are determined by how the
researcher orients the camera with respect to the speci-
men. Even when attempting the “same” view, two differ-
ent researchers may have systematic error with respect to
one another or different levels of random error in setting
up specimens for photography. Furthermore, many tech-
niques described as automated, including those for 2D
objects, still require direct interaction with the study
materials to determine at least one “corresponding point”
common to all the shapes of the study sample (see articles
in MacLeod, 2007).

Biomedical and neuroscience research pursued by
computer scientists has led to some successful auto-
mated quantification procedures in 3D (Styner et al.,
2006; Paniagua et al., 2012). However, these methods
have been designed with a limited range of variation in
mind and applied to monospecific samples. Whether
these methods would have meaningful success in a sam-
ple with more substantial shape diversity among homol-
ogous objects is unknown.

In order to begin testing the limits on the degree to
which (and the questions for which) shape analysis can be
automated toward a scientifically meaningful end, we pres-
ent a new fully automated algorithm for aligning and plac-
ing landmarks comprehensively on digital 3D models of
bones. We also provide an R package application to pro-
mote the testing of our algorithm and use by other
researchers. This method builds conceptually on a previ-
ously published approach (Boyer et al., 2011) where it was
shown that a superficially similar algorithm can (1) reason-
ably match corresponding points on different instances of
the same bone (represented by different individuals and
species), (2) estimate shape differences that allow classifi-
cation of shapes to species with accuracy comparable to, or
better than, user selected landmarks on the same speci-
mens, and (3) allow for the entertainment of different
“correspondence hypotheses” based on the morphocline (or
“path”) that is assumed to connect shapes in the dataset.
Operationally, the method of Boyer et al. (2011) finds sev-
eral hundred candidate alignments between conformally
flattened representations of two objects. Each initial

alignment is “improved” using a thin plate spline to align
automatically identified extremal points (points of high
local curvature—i.e., “type II landmarks”). These map-
pings are then applied to unflattened versions of the two
objects and a continuous Procrustes distance is computed
(Lipman and Daubechies, 2010). The mapping that results
in the minimum continuous Procrustes distance is treated
as the best mapping among the many candidate maps.
This minimum distance mapping was found to usually rep-
resent a biologically meaningful alignment according to cri-
teria 1 and 2 described above.

Despite its successes, the method presented by Boyer
et al. (2011) has several shortcomings: (1) since corre-
spondences used to determine shape differences are
purely pairwise and not transitive, there is an inconsis-
tent template for biological correspondence relating all
pairs of shapes in the dataset; (2) the conformal flatten-
ing procedure of the analysis limits its application to
“disc-type” shapes with an open end (like the tooth
crowns or ends of long bones of that dataset); and (3) the
MATLAB

VR
application for the analysis is difficult to

work with, lacks good visualization tools, and does not
yield output that can be widely employed in other ana-
lytical procedures.

We overcome these limitations in the new algorithm
presented here, which we have developed into an
R-package called auto3dgm. One of the most exciting
prospects of auto3dgm is its potential to help quantify
morphology more comprehensively and equably (if not
exhaustively). It has long been acknowledged that meas-
urements of select characters are less meaningful than
more comprehensive approaches:

“Direct determination of rate of evolution for whole
organisms, as opposed to selected characters of organ-
isms, would be of the greatest value for the study of
evolution. Matthew wrote, nearly a generation ago
(1914), ‘to select a few of the great number of struc-
tural differences for measurement would be almost
certainly misleading; to average them all would entail
many thousands of measurements for each genus or
species compared.’” (Simpson, 1944; p. 14)

“Another level of description -of entire surface
regions, or of volumetric elements, or of qualitative
aspects of structures rather than structures them-
selves- may in some instances be most meaningful
(Roth, 1984, 1991) and bring us closer to identifying
the biological processes of interest. Hence the appeal
and utility of methods of comparison that interpolate
between landmark points, such as D’Arcy Thomp-
son’s transformation grids” (Roth, 1993; p. 53)

Matthew’s implied perspective was that increasing the
number of measurements would be useful (though
impractical) and would approach a representation of the
“total taxonomic distance.” This taxonomic distance is
sometimes referred to as “morphological disparity” and
may allow meaningful discussion of the amount, rate
and pattern of evolution among a sample of species in
certain settings. A greater amount of morphological dif-
ference between corresponding and homologous struc-
tures can be hypothesized to relate to the amount of
evolutionary change that has occurred in the compared
taxa since they diverged from their common ancestor.
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This idea is reflected in the numerical taxonomy move-
ment (Sokal, 1966; Sneath and Sokal, 1973).

A wealth of careful, mathematically-rooted considera-
tion has been aimed at these premises over the years. It
has been effectively argued that it is actually impossible
to generate a generalized comprehensive view of the total
phenetic distance between specimens or taxa (Bookstein,
1980, 1994; MacLeod, 1999). In fact, Bookstein (1991,
1994) argues that morphometrics is purely about docu-
menting covariance among biological forms, stating that
morphometric methods are neither suited for “the compu-
tation of ‘magnitude’ of shape change nor for the cluster-
ing of individual specimens according to degree of
similarity of shape” (Bookstein, 1994; p. 205). MacLeod
(1999) explains the insufficiency of morphometrics in this
regard, saying: “All morphological disparity estimates
published thus far represent indices that are inextricably
tied to particular methods of morphological representa-
tion and particular scales of morphological assessment”,
that “it seems. . .unlikely that a generalized estimate of
‘morphological disparity,’. . .can ever be achieved.” and
finally that it is imperative that “the morphometrician
remembers the domain within which he/she operates is
strictly limited” (MacLeod, 1999; p. 134).

We do not suggest the method we present fundamen-
tally resolves any of these issues. It aids in the discussion
of morphological disparity because it is more objective
and comprehensive in its measurement of shape than
previous methods. Though Bookstein (1994) argues that
morphometrics must be applied after homology considera-
tions have taken place, we suggest that our method can
help identify an “operational homology” or “biological cor-
respondence” (Smith, 1990) more objectively.

Of the various types of homology discussed by evolu-
tionary biologists and paleontologists, it is relevant to
review at least three different types here: these include
transformational, operational, and taxic homology (Pat-
terson, 1982; Smith, 1990). It would seem that transfor-
mational homology is of primary importance in an
evolutionary sense. It is similar to Darwinian homology
(Simpson, 1961), in which features are considered
homologous among several taxa if they are equivalent
through “descent with modification” from the common
ancestor. This also matches Van Valen’s (1982) definition
of homology as “continuity of information” through evo-
lution. Of course, comprehension of transformational
homology is often fairly elusive, since the morphoclines
describing it can be expected to gain accuracy with a
more complete fossil record and a more accurate phylog-
eny of life (Van Valen, 1982).

Operational homology most generally appears to refer
to ontologies defining biological correspondence for the
sake of measurement, comparison among taxa, and/or as
a working hypothesis of transformational homology.
What MacLeod (2001; p. 3) describes as “geometric (or
morphometric) homology (sensu Bookstein, 1991)” of geo-
metric morphometrics can be considered as specific types
of operational homologies. In a way, Thompson (1942),
as also quoted by Roth (1993), reminds researchers not
to forget the distinction between operational homologies
and carefully tested hypotheses of transformational
homology:

“The morphologist, when comparing one organism
with another, describes the differences between them
point by point and "character" by "character" and he

falls readily into the habit of thinking and talking of
evolution as though it had proceeded on the lines of his
own descriptions, point by point, and character by char-
acter.” (Thompson, 1942; p. 1036)

Finally, taxic homology is equivalent to “synapomorphy”
or “symplesiomorphy” whereby similarity in morphological
form (usually referred to as a “character state”) of a trans-
formationally homologous feature exhibited by a taxo-
nomic sample of interest is thought to reflect the
inheritance of that “state” from a common ancestor.
Whether identified taxic homologies help elucidate phylo-
genetic relationships depends on whether particular char-
acter states have evolved numerous times and exhibit
homoplasy, as well as whether perceptions of transforma-
tional homology are correct. When discussing features on
a finer scale than whole bones or organs, hypotheses of
transformational homology are usually difficult to test.
When the data necessary for such tests are available (e.g.,
via a dense fossil record [Van Valen, 1982]) the results can
be surprising.

The empirical route to homology hypotheses is a
recursive one. Van Valen (1982) says that homology is
“more than similarity” which means that assessment of
shape similarity is involved. Shubin (1994) discusses
tests and evaluations of homology hypotheses, saying
homology is “only indirectly related to similarity” and
that “homologous features may be very dissimilar.” But
without an a priori phylogeny, how does one postulate
homology of dissimilar features? In many cases, opera-
tional homology hypotheses are qualitatively rooted in
geometric similarities even for matching dissimilar fea-
tures in two taxa. For skeletal elements, operational
homology (5topological correspondence) hypotheses are
established by researchers physically or conceptually
seriating features of specimens into morphoclines. The
correspondence among end-members of the morphocline
(the humeri of a whale and a bat—for instance) may be
un-interpretable next to each other, but will have more
definitive operational homologies if they are compared
through intermediate forms along a taxonomically rich,
seriated sample. Of course, this task is aided by informa-
tion beyond the geometry of isolated bones: the position
and orientation of the bone in the complete skeleton is
also known and used (i.e., cues from “type I” landmarks).
Different researchers may see and emphasize different
aspects of shape, and samples with different taxa will
suggest different morphoclines and possibly different
patterns of correspondence among end-members. As
Roth (1993; p. 53) says “The recognition, and operational
definition, of homologous points is a non-trivial problem
(Jardine, 1969; Smith, 1990), and one not necessarily
with unique solutions.” Furthermore, different skeletal
element sets from the same taxonomic sample may
seriate in morphoclines with different taxonomic order-
ings. For example, the calcaneus bone of a tarsier has
the most extreme form in comparison to any sample of
primate species, whereas the astragalus bone of tarsiers
can be described as roughly intermediate between that
of certain anthropoid and strepsirrhine primates. For a
given taxonomic sample, a consideration of which bones
arrange in morphoclines with similar orderings of taxa
(and thereby present congruent pictures of operational
homology) aids in formulating phylogeny hypotheses.
Cladistic parsimony analyses can be conceptually related
to this practice. Clearly, determination of operational
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homology is at least partly based on a qualitative consid-
eration of geometric similarity and morphoclines among
samples. Our automated procedure, which considers the
total surface of bones and the pattern of distances
between them, can be implemented toward this end.

Because auto3dgm determines feature correspondence
objectively (algorithmically) and more comprehensively,
it can assess morphological differences in a way that suf-
fers from less measurement sensitivity. This decreased
sensitivity makes the shape quantifications of one bone
or “part” more easily generalizable to other parts com-
pared to previous methods (as we will demonstrate with
an example). Ultimately, this should allow greater
insight into patterns in, and the generation of, morpho-
logical disparity through the evolutionary process.

MATERIALS AND METHODS

Institutional Abbreviations

AMNH, American Museum of Natural History, New
York, NY; CGM, Egyptian Geological Museum, Cairo,
Egypt; DPC, Duke Lemur Center Division of Fossil Pri-
mates, Durham, NC; GU, H.N.B Garhwal University,
Srinagar, Uttarakhand, India; IGM, Museo Geol�ogico del
Instituto Nacional de Investigaciones Geol�ogico-Mineras,
Bogot�a, Colombia; IRSNB, Institut Royal des Sciences
Naturelles del Belgique, Brussels, Belgium; KU, Kyoto
University, Kyoto, Japan; MCZ, Museum of Comparative
Zoology, Harvard University, Cambridge, MA; MNHN,
Mus�eum National d’Histoire Naturelle, Paris, France;
NMB, Naturhistorisches Museum Basel, Basel, Switzer-
land; NMNH, Smithsonian Institution National Museum
of Natural History, Washington, D.C.; NYCEP, New York
Consortium in Evolutionary Primatology, New York, NY;
SBU, Stony Brook University, Stony Brook, NY; SDNM,
San Diego Natural History Museum, San Diego, Califor-
nia; SMM, Science Museum of Minnesota, Minneapolis,
MN; UCM, University of Colorado Museum of Natural
History, Boulder, CO; UCMP, University of California
Museum of Paleontology, Berkeley, California; UK, Uni-
versity of Kentucky, Lexington, KY; UM, University of
Michigan, Ann Arbor, Michigan; USGS, U.S. Geological
Survey, Denver, Colorado.

Samples

We utilize four samples of surface meshes generated
from either microCT or laser scans to test auto3dgm.
Table 1 is a taxonomic list for each dataset with sample
sizes per genus (Supporting Information Tables 1–3 give
the specimen numbers for each sample). The first sam-
ple includes 106 calcaneal bones of 67 genera, and is the
exact sample used by Gladman et al. (2013). We test our
method by running the same analyses on this sample as
Gladman et al. (2013) and compare the results:
auto3dgm produces landmark datasets that can be ana-
lyzed in a manner identical to traditional user-collected
landmark datasets. The second sample is comprised of
80 astragali that we analyze and compare to a subset of
80 calcanei from the first sample. The third sample is 49
distal phalanges representing fossil and extant taxa: it
was selected to demonstrate the method on a bone with
a “different quality” of shape variation. Distal phalanges
are basically cone-shaped with fewer consistent “feature
points” than astragali or calcanei. Nonetheless, they

exhibit a range of forms from “blade-like” (falcular) to
“spatulate” (unguliform) (Fig. 1). Therefore, each bone is
less complex, but the range of variation across the sam-
ple remains substantial. The fourth sample also repre-
sents astragali and overlaps the second, but includes
additional specimens and species (Table 1). This sample
is used to demonstrate a semi-supervised alignment pro-
cedure of the R-package “Shape_Alignment” that can be
applied to samples that will not correctly align with the
fully automated procedure of auto3dgm.

Sample Processing

Very little pre-processing is required for auto3dgm. Sur-
face files should be in the Open file format (.off) and of suf-
ficient resolution to capture all surface features of interest.
It should be noted that the .off format is closely related to
more widely known Stanford Polygonal Mesh (.ply) format.
The free software MeshLab can be used to convert .ply
files to .off files, as well as batch converters (see http://
www.stat.duke.edu/�sayan/3DGM/index.shtml). If made
from CT scans, the surfaces must be carefully checked and
cleaned so they have no internal vertices. Virtually no
processing is required for laser-scan generated data aside
from smoothing the mesh.

The majority of surface files in our datasets were gen-
erated by microCT scanning. Details on both laser- and
microCT scanning parameters of the astragalus and cal-
caneus specimens have been reported on previously in
appendices and supplementary tables (Boyer and Seif-
fert, 2013; Boyer et al., 2013). The distal phalanx data-
set is new.

auto3dgm Input and Output Files

The method demonstrated here was developed by
Puente (2013) as a major component of a PhD thesis and
the mathematical details can be found there. Additional
technical articles focusing on mathematics are forthcom-
ing (Puente and Daubechies, in prep). The input files for
the routine are a set of surface mesh files in .off format.
The user must also supply a set of “low resolution” ver-
sions of the mesh files that will be used by the algorithm
to generate summary images. Downsampling of mesh
files can be accomplished with visualization programs
such as Meshlab (Cignoni et al., 2012), Avizo (Visualiza-
tion Sciences Group, 2009), and Geomagic (3D Systems
Inc., 2013).

The outputs include (1) an “alignment file,” which is a
“multi-surface”.off file that includes displays of user-
supplied low resolution renderings of all specimens
shown in the algorithm-determined optimal alignment
(Fig. 2); (2) an “MDS file,” which is another multi-
surface file that embeds the same aligned renderings of
specimens in a coordinate space determined by a multi-
dimensional scaling (MDS) analysis of the distance
matrix of aligned specimens (again for visualization pur-
poses) (Fig. 3); (3) a “scaled”.txt file with all of the coor-
dinate data for all specimens scaled to the same centroid
size, that can be loaded into, visualized, and analyzed in
morphologika2.5 (O’Higgins and Jones, 2006); (4) an
“unscaled”.txt file with all of the coordinate data for all
specimens at the scale of the original input files which
can also be analyzed in morphologika2.5; and (5) a folder
with copies of all the original input files, the coordinates
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of which have been multiplied by the rotation matrix
used in the final alignments.

The purpose of the alignment file is to check for errors
generated by the alignment algorithm. If errors are
found, we provide functions allowing for a semi-
supervised repair, though most likely such errors indi-
cate insufficient degrees of incremental variation in the
dataset (i.e., the morphological gaps between a single
specimen, or certain groups of specimens, and the rest of
the dataset are too large). The purpose of the MDS file
is to provide a quick view of the phenetic affinities sug-
gested by the matrix of continuous Procrustes distances
between specimens in the analysis. The morphologika2.5

file allows further analyses of the sample of shapes as
aligned by the method. Finally, the aligned versions of
the input files provide data for users who wish to stand-
ardize alignment before taking manual measurements
that are sensitive to orientation (like relief indices or
other topographic variables measured on teeth [Bunn
et al., 2011]), or who wish to use the images for figure
generation.

Pseudolandmarks and Alignment

In order to facilitate adoption of this method by
3DGM community, this protocol represents and aligns
pairs of surfaces with landmark-like feature points. We
say these are “landmark-like” because we represent each
bone with same number of points (in this study 1,024
points per bone are used, but the algorithm can be set to
use more or fewer), and by the final stage of the algo-
rithmic protocol each point has a fairly consistent biolog-
ical identity across all bones of the sample. Each of
these points is therefore analogous to an observer-placed
landmark. On the other hand, they are not identified
based on any of the criteria for determining type I, II, or
III landmarks (Zelditch et al., 2004), or even semi-
landmarks (Bookstein, 1997; Mitteroecker and Gunz,
2009), and therefore are dubbed “pseudolandmarks”
here. Other recent, fully automated algorithms (Boyer
et al., 2011) do not generate a globally consistent map-
ping of a set number of points across all specimens of a
dataset, and this limits their utility for certain
applications.

Major Computational Steps

There are at least four important ingredients to the
protocol. The first is re-sampling of surface coordinates
to a specified standard number of points (Fig. 4). This is
done using approaches that evenly spread points over
the surface (Eldar et al., 1997). Once a new sample of
bones with a standard number of evenly spread coordi-
nates has been generated, the algorithm attempts to
align each pair of bones using an iterative closest points
(ICP) procedure (Besl and McKay, 1992). We avoid incor-
rect local minima known to plague ICP by having our
algorithm assume that principal axes of variation will
tend to be homologous in some sense between bones.
After computing the principal axes of variation in points
for two surfaces, the algorithm attempts alignments
where the first principal axes are aligned in one of two
possible ways (Fig. 5). There are a total of eight ways to
align the first through third principal axes, and these

TABLE 2. Comparison between traditional 3DGM of 106 calcanei sample and FAA of this study. See Gladman
et al. (2013) for original manual analyses and definition of anatomical terms.

Comparison point 27 landmark—Manual analysis 1,024 landmark—Automated

PC 1% variance 35.9 34.7
PC 2% variance 13.6 13.6
PC 3% variance 9.5 6.7
PC 4% variance 6.7 4.6
Sum PC 1–4 64.9 59.6

PC 1 loadings Overall width/length proportions with
emphasis on distal elongation.

Overall width/length proportions with
emphasis on distal elongation.

PC 2 loadings Position of lateral peak of the peroneal
tubercle relative to both ectal and cuboid
facets.

(1) Dorsoplantar elevation of the ectal facet’s
distal margin relative to the calcaneus
body; (2) distinctiveness, but not position,
of peroneal tubercle.

PC 3 loadings (1) Proximal segment elongation,
shape/orientation of ectal facet,
(2) dorsal projection of dorsal heel.

Tradeoff between a prominent proximal
plantar heel process and an accentuated
angulation at the distal plantar tubercle.

PC 4 loadings Ectal facet position, curvature,
and orientation relative to long
axis of the calcaneus.

Proximal elongation and dorsal projection of
dorsal heel.

TABLE 3. Correlation (r) and Probability (P) between
manual and automated PCs

Manual

Absolute values of linear correlations (r)

Automated Pseudolandmarks

3DGM PC-1 PC-2 PC-3 PC-4
PC-1 0.96 0.16 0.09 0.07
PC-2 0.11 0.50 0.34 0.28
PC-3 0.15 0.64 0.03 0.18
PC-4 0.01 0.06 0.38 0.32

Manual

Probability of no correlation (P)

Automated Pseudolandmarks

3DGM PC-1 PC-2 PC-3 PC-4
PC-1 <0.0001 ns ns ns
PC-2 ns <0.0001 0.0004 0.0042
PC-3 ns <0.0001 ns ns
PC-4 ns ns <0.0001 0.0008
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eight possible alignments are our starting points for ICP.
They can be run simultaneously, and an approximation of
the global minimum Procrustes distance can be found
quickly (especially if a low number of pseudolandmarks are
used). Of course, a major advantage of the method is the
ability to include large numbers of data points on the sur-
face. To resolve the conflict between processing speed and
accuracy, our algorithm performs initial alignments with
highly down-sampled surfaces using several hundred
points (the exact number of pseudolandmarks is a user-
defined parameter). Next, more densely sampled surfaces
are rigidly transformed to match their down-sampled coun-
terparts, so that only the final “tweaking” of the alignment
has to be performed on the full-resolution surface file.

Since the best alignment is found by computing a Pro-
crustes distance, a Procrustes distance matrix is available
for computation of a minimum spanning tree (MST) for
the sample. The MST connects all cases in the dataset
using the shortest edge length possible and is a unique

solution, except in datasets where several cases are
exactly equidistant from each other. Though not all points
will be connected to their nearest neighbors in such a
tree, most or all connections represent a joining of nearest
neighbors for one of the cases involved. In datasets with
high degrees of shape diversity, it is virtually guaranteed
that between certain pairs of bones, the minimum Pro-
crustes alignment will be a biologically meaningless
arrangement. However, because the segments of the MST
connecting pairs are among the shortest in the distance
matrix, they are the most likely to be biologically mean-
ingful and/or precise alignments. Therefore, instead of
attempting to directly align pairs of shapes that have a
relatively large minimum Procrustes distance separating
them, alignments between such pairs are generated by
propagating alignments between intermediate shapes fol-
lowing connections of the MST, ultimately allowing very
different shapes to be aligned indirectly (Fig. 6).

Parameters That Must be Specified

Before the “automated part” of our algorithm can
begin, the user must choose values for three parame-
ters. Varying values of these parameters (see below),
improves fidelity, detail, and accuracy of alignment in
the one direction, and speed of calculation in the other.
It may be possible to determine optimal values for these
parameters in more or less general conditions by incre-
mentally modifying them, re-running analyses, and
checking the results. We have not yet done this system-
atically; however, replicate analyses with increasing
numbers of final pseudolandmark points yield increas-
ingly consistent results. Using the dataset of 116 teeth
of Boyer et al. (2011), we found that the coefficient of
determination (r2) between PC1 scores of replicated
analyses was 0.85 for 128 points, 0.92 for 200 points,
and 0.95 for 1000 points. On the other hand, the coeffi-
cients of determination between PC1 scores of the 128
and 1000 point analyses are 0.82–0.85, while those
between 200 and 1000 point analyses are 0.91–0.95. At
the very least, these preliminary checks show that
increasing the number of final points is desirable and
that the results of the method should not be considered
deterministic. We were able to determine that the loss
of identity between runs happens during the initial
step in which pseudolandmarks are spread over each
surface. If alignment and pseudolandmark propagation
procedures are rerun on the same pseudolandmark set,
results are identical for any pseudolandmark point
number. Whether manually re-collecting a set of tradi-
tional landmarks would yield better or worse correla-
tions is probably dependent on the observer and the
diagnostic precision of the landmarks collected.

The parameters to be set include (1) the number of
points used to represent shapes in the low resolution
version of the alignment; (2) the number of points to rep-
resent shapes in the high-resolution, or final version of
the alignment; and (3) the number of principal align-
ments (usually this number is set to the eight possible
combinations of the alignments along the first three
principal axes, but additional random principal align-
ments can be chosen). In the first three samples we eval-
uate in this study, we use the following pairs of point
numbers: Calcaneus dataset of 106 specimens: ini-
tial5150 points, final51,024 points, 8 principal

Fig. 1. Bones of the study. This study utilizes scan datasets of three

different types of bones. These datasets are chosen to challenge the

automatic alignment algorithm we present with a range of geometric

properties. The astragalus and calcaneus datasets are samples that

represent geometrically complex bones with seemingly modest sam-

ple variance, while the distal phalanges are geometrically more simple

bones with apparently large inter-bone variance. Analyses include one

on a sample of 106 calcanei that is compared with a traditional 3DGM

analysis using 27 landmarks by Gladman et al. (2013); one on a sam-

ple of 80 calcanei and 80 taxon-matched astragali in a single “mixed-

bone” analysis; and one on a sample of 49 distal phalanges (Table 1).
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alignments; paired calcaneus and astragalus datasets:
initial5 256 points, final51,024 points, 12 principal
alignments; distal phalanx dataset: same as for paired
astragalus and calcaneus. In the fourth dataset we use
far fewer points in order to generate problematic align-
ments: initial5 32, final564, 8 principal alignments.

Fixing Errors in the Alignment Protocol

Because it is sometimes the case that at least one
specimen is mapped into the MST with an incorrect
alignment, it is important to provide options for correct-
ing the problem.

1. Usually such problems stem from insufficient number
of initial points (first parameter above). Thus, the first
step is to try re-running the initial steps of the algo-
rithm with slightly greater numbers of points per file.
However, the problem can also stem from the lack of
an adequately similar partner shape in the dataset
(from the perspective of its orientation and articula-
tion in the skeleton). This shape represents an “island
shape” for which the best geometric alignment (that
with the smallest Procrustes distance) to any other
shape is a biologically “incorrect” alignment. This
property does not guarantee a bad alignment in the
final stage of the algorithmic protocol since it may not

connect to its nearest neighbor in the MST, but usu-
ally a bad alignment is expressed nonetheless. How-
ever, it is possible that there are still some shapes in
the sample with which the island shape(s) will cor-
rectly align. We do not currently have an automated
protocol for discovering such shapes, if they exist. We
have implemented two different protocols for fixing
alignment problems. If there is a single misaligned
shape: We allow the user to display the results of
direct alignments of the island shape to each of the
other shapes in the sample using the function
branch_pw_distances.r in the R-package. If there are
n specimens in the sample, this function creates n2 1
multi-surface mesh files. There is one file for every
corresponding pair between the island shape and the
remaining shapes. Even if n is very large, these can
be visually scanned quickly to find a correct align-
ment. Tiling the multiple files in Meshlab or Aviso is
one possible way of quickly arriving at the correct
alignment when n is large. If the user finds a shape to
which the island shape correctly aligns, the MST is re-
calculated without the island shape, the global align-
ment of the remaining shapes is double-checked, and
the island shape is connected to the new MST through
its successfully aligning partner. The analysis is then
completed in the usual way. If there are multiple
specimens with which the island shape correctly

Fig. 2. Example of bones in an alignment file. One of the outputs of

the fully automated alignment algorithm is a 3D mesh file that shows

all the specimens of the sample aligned. This allows the researcher to

quickly survey the results to determine if he/she should proceed with

shape analyses based on the implied correspondence. Sometimes

one or more bones may be misaligned. If this results the researcher

will catch it at this stage: we present several strategies for correcting

such misalignments. The “numbering direction indicators” are mesh

objects that show where the #1 bone in the spreadsheet is located.

The arrow points down column #1, and numbering proceeds down

rows. This allows the researcher to match bones in the alignment file

with a spreadsheet containing any metadata on the surface files (like

taxonomic information).
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aligns, the user can choose which to use as the con-
necting shape, though it seems logical to choose that
with the smallest Procrustes distance to the island
shape. The pairwise output files from branch_pw_dis-
tances.r orders the shape correspondences by their
Procrustes distance. The ordering of correspondence
will be in the name of the files for clarity.

2. If there are multiple island shapes, a more involved
protocol is required, because there may be several
groups of consistently aligned shapes (Fig. 7). The
general problem is that the analysis may return a
result in which certain branches are internally con-
sistent, but are misaligned with respect to other such
branches. It is therefore necessary to have a protocol
allowing the user to chop apart these branches and
stick them back together in a way that ensures a
globally consistent alignment. The work-flow
described below is provided by the example file
“alignFix.r” and is available on the first author’s web-
site. Documentation that accompanies “alignFix.r”
guides the user through a sample problematic dataset
(our dataset 4). Users should then be able to edit the
code of “alignFix.r” to suit their datasets.
a. Observe misaligned regions using alignment and

map files (Fig. 7A and B) together.

a.i. If only one misaligned file is observed, follow
the procedure described above.

a.ii. If more than one misaligned file is observed:
a.ii.1. Record the names of the misaligned
files.
a.ii.2. View the MDS graph showing the
MST connections on points labeled by the
file they represent.

b. Using the MST displayed in the map image, figure
out how many “groups” of misaligned files exist, and
how many specimens in each group, and record this
information.
b.i. Specify all “groups greater than 2” (three or

more files that are correctly aligned to each
other, but not to surrounding shapes) as
“groups to analyze separately,” since a MST
will need to be re-computed within each group.

c. For “b.i.,” a separate alignment analysis is run on
each group of three or more that were internally
consistent and all the necessary information is
saved (Fig. 7C).

d. Now the user must decide how to “re-connect” the
separate sub-groups.
d.i. First attempt to analyze all of the shapes in

non-connected segments of the MST. For

Fig. 3. MDS and MST embedding file. This second output is of the

same file type as that in Figure 2. It is however, less essential,

because it is not useful for visualizing alignments and the data it

presents can be re-calculated by the user later. The file simply dis-

plays the bones of the sample with their centroids embedded in the

coordinate space of an MDS analysis result that is run on the pairwise

distance matrix as determined via the MST. The MST is also shown.

The point of this file is to give researchers a quick look at the cluster-

ing of their specimens.
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example, with four groups (A, B, C, and D), it
is possible that only one will end up connect-
ing to the other three through the MST. If
both A, C and D connect to B in the original
analysis, and are misaligned with respect to
B, it is possible that with B excluded, A, C
and D will align correctly. If this is true, skip
to “d.iv.1” of this description. If not, go to
number “d.ii.”

d.ii. For cases in which the set of non-connecting
groups is still an incorrect alignment, the
non-connecting groups should be compared in
a pairwise fashion. For instance A–C, A–D,
and D–C should each be analyzed separately.
It is possible that some of these will have
overall correct alignments. If more than two
of these are correct, a decision will have to
made on which two to merge, since it has
already been demonstrated that all three can-
not be. We would suggest merging the two
that result in the biggest difference in the
number of specimens represented in the final
two groups, since this makes the subsequent
task of searching for a correct alignment
between groups that are not correct via their
MST easier. At this stage, the goal should be

to merge as many isolated groups together as
possible in order to reduce computational
demand in the next steps. Ultimately, the
user can decide which groups to merge.

d.iii. After managing the isolated but internally con-
sistent segments of the original MST (groups A,
C, and D above), the user needs to find a
“correct” connection between the isolated groups
that were misaligned with respect to each other
through the original MST. Some remnant of the
original MST will still be preserved, which can
be called the “base tree” (group B in our exam-
ple). Attempting to reconnect the isolated groups
to the base tree using the minimum distance
pair will likely generate misalignments, since the
MST connections were wrong in the original
analysis. However, as MST connections often
only represent nearest neighbors for one of the
two connected cases, there is still a possibility
that one of the cases involved in the incorrectly
aligning connection between the base tree and
another segment was not connected to its nearest
neighbor. This makes it important to look at the
minimum distance pairs of the isolated groups
and the base tree.

d.iv. Assuming the minimum distance pair is still a mis-
alignment, a protocol for checking alignments
between particular shapes in each group must be
implemented. This again utilizes the function
branch_pw_distances.r.
d.iv.1. The user has the option to check all align-

ments. The output is n x m “summary align-
ment files” in which n is the number of
specimens in one group and m is the number
in the other group being searched. Each file
shows one shape from the group with n with
one of the m specimens of the second group
(Fig. 7E). The output files are labeled accord-
ing to minimum Procrustes distance, so that
the first compared specimens are nearest
neighbors. The user can then easily identify
the correctly aligning pair that also has the
minimum Procrustes distance (since there
may be more than one correctly aligning pair).

d.iv.2. This process should be repeated for all seg-
ments that could not be merged. If there were
three remaining segments (e.g., a base tree B,
an A–C group and D), there will likely be an
option of whether to link each tree to one of
two others. We would suggest this linking be
done using the option that minimizes the Pro-
crustes distance between the linking pair.

d.iv.3. The user can also opt to only compare spe-
cific specimens from one group to specific
specimens in the other.

d.iv. Finally, all groups are re-aligned using a tree that
represents each separate MST connected along
user-specified pathways in “d.iv.2” This should
result in correct alignments for all bones in the
sample (Fig. 7G).

If the user determines that successful alignments
between groups of island shapes are impossible, there are
two options: (1) remove any island shape groups from the
analysis (particularly if their inclusion does not directly

Fig. 4. Down-sampling meshes prior to analysis. The algorithm is run

on point clouds represented by a standard number of points specified

by the researcher. These points are chosen by the algorithm randomly

picking a point on the surface, and then picking another point that is far-

thest from the first point, then by picking a third point whose position on

the surface maximizes the sum distance between it and the two existing

points, and so on until the specified number of points is achieved.

260 BOYER ET AL.



address the main questions of the analysis); or (2) add
more shapes with the hope of bridging distances between
island shapes.

Getting the Code for Running Analyses

The R package we developed is called auto3dgm. At the
time of publication auto3dgm has been submitted to CRAN
for review, and should ultimately be accessible from their
repositories. Until then, auto3dgm can be downloaded at
www.dougmboyer.com or http://www.stat.duke.edu/�sayan/
3DGM/index.shtml. The sample/instructional file for fixing
misaligned shapes, alignFix.R, is not part of the R-package
itself and will not be available on CRAN. It can, however,
be downloaded from the personal websites mentioned
above. Documentation for the packages can be found at
these sites as well.

Comparison to Results From Traditional
Landmarks

In order to maximize our ability to compare and con-
trast shape information provided by our pseudoland-
marks with traditional geometric morphometric

datasets, we used the same sample and performed the
same analyses on the pseudolandmarked dataset as
Gladman et al. (2013) conducted using 27 landmarks
and traditional 3DGM techniques.

First, the 3D pseudolandmark coordinate-scaled output
file from our algorithm was imported into morphologika2.5.
We then ran a General Procrustes Analysis (GPA) with
reflections enabled, followed by a Principal Components
Analysis (PCA) with “Full Tangent Space Projection”
checked for Calculation Options and “Eigenvalues” and
“PC Scores” checked for Printing Output Options. The
results were saved as a .csv file that included the PCA out-
put, along with the raw Procrustes distance data in the
form of 3D coordinates for each landmarked individual. In
morphologika2.5, the cloud of 1,024 landmarks was visual-
ized and the morphospace of the PC axes was explored. In
the traditional 3DGM analysis of this sample, Gladman
et al. (2013) added wireframes to the landmarks in order to
directly visualize shape changes. Due to the number of
pseudolandmarks used by auto3dgm, wireframes are cur-
rently impractical, but shape changes can easily be
observed from transformations of the densely packed pseu-
dolandmarks. All Principal Components (PCs) were exam-
ined in morphologika2.5 by tracking changes in the cloud of

Fig. 5. Principal alignments to improve ICP searches. The best

alignment between two bones is almost impossible to find using an

ICP approach without any good initial guesses. The problem with sup-

plying an initial guess is that usually this means user intervention is

required. Our algorithm supplies at least eight initial guesses without

user intervention. It does this by computing the first three principal

axes of variance and uses these axes as starting alignments for ICP.

The principal axes along which the smallest continuous Procrustes

distance between two shapes is found is almost always correct if the

shapes are similar. This is a computationally rapid way of solving a

complex problem. The algorithm performs better on samples with

many incrementally intermediate shapes (see text and Fig. 4). Red

lines on calcaneal surfaces represent principal axes of point variance.

Shapes on left have yet to be aligned, while shapes on the right have

been aligned so that their principal axes match.
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Fig. 6. Method for successfully aligning disparate shapes. (A) the

result of applying our version of ICP to two similar shapes. (B) the

incorrect result that emerges when applying our ICP directly to two

dis-similar shapes. In the first stage of the analysis, a pairwise dis-

tance matrix is calculated using “direct matches” (even potentially

incorrect ones as in B) between all shapes. That distance matrix is

used to compute a MST. Because the MST connects only the most

similar shapes, these connected pairs almost always represent correct

alignments as in “A.” (C) These connections therefore define a path of

intermediates that can be used to figure out the correct alignment

between different shapes. (D) The MST route is shown graphically.
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3D landmarks between the extreme regions of morpho-
space on each axis. The amount and nature of variation
represented by these axes in the 1,024 pseudolandmark
dataset was then compared with results from the 27 user-
determined landmarks of the Gladman et al. (2013)
analyses.

Gladman et al. (2013) also used analyses of “generic”
means for cluster analyses in their study of the 106 cal-
canei sample. They felt that averaging the few individu-
als for each genus helped control for any extreme
variation that might otherwise dominate the small sam-
ples being used to represent extant genera. We repli-
cated their approach with the pseudolandmark
coordinates here. Extant genera represented by more
than one individual were averaged into a single genus
representative (Table 1). As in Gladman et al. (2013),
fossil individuals were not averaged together in the
analyses. Altogether the dataset was reduced from 106
individuals to 67 generic representatives (Table 1).

In order to generate generic means, the matrix of 3D
coordinate Procrustes output data (generated in morpholo-
gika2.5) was imported into PAST statistical software (Ham-
mer et al., 2001, 2006). In PAST, all individuals of a single
genus were highlighted and averaged using the “Evaluate
Expression” function in the “Transform” menu. “Mean (of
current column)” was selected in the “Evaluate
Expression” menu and then “Compute” in order to change
all highlighted rows to the same averaged values. Only one
of these newly averaged rows was kept in the dataset to
represent a given genus. This technique can be done man-
ually by averaging each X, Y, and Z value separately for
each landmark for members of each genus, although with
increasingly larger datasets this becomes untenable. Once
averaging of the dataset was complete, cluster analyses
were run within PAST and then compared with the generic
mean analyses of Gladman et al. (2013).

Mixed Bone Analysis

It has been suggested that traditional 3DGM methods
could be used to “pool information” from more than one
structure (Rohlf, 2002). However, the meaning of results
from such an approach could be questioned, since the
weight of each structure added will depend on the user’s
choice of landmarks, as well as the number of landmarks
used to represent each bone. Furthermore, since there is
no basis for collecting equivalent landmarks across bone
types, it has never been possible to include multiple
bone types in the same 3DGM analysis using the same
landmark template. Our approach with auto3dgm, based
on spreading landmarks evenly and selecting alignments
based on overall geometric similarity, provides a poten-
tial solution to this problem and allows simultaneous
analysis of multiple types of bones. There are many
questions that can be addressed if shape variation can
be compared between bone types. For instance, one
might wish to ask whether the astragalus has less
shape diversity than the calcaneus, due to the former
articulating with a greater number of bones and lacking
muscular attachments as exhibited by the latter. One
might also be interested in investigating whether the
degree of overall shape variation is associated with
stronger phylogenetic signal (Nunn, 2011) or stronger
functional signals. We performed such a “mixed bone”
analysis on a sample of 80 astragali and 80 calcanei

representing the same taxa (although sometimes com-
posed of different specimens) and we compare intrinsic
levels of overall shape variation.

The basic goal of such an analysis (given the questions
above) is to provide a quantitative criterion for compar-
ing size-standardized shape variation between two
bones. Since regions on the surface of a calcaneus do not
“biologically correspond” in any way to regions on the
surface of the astragalus (except in the sense of articu-
lating facets), there is no need to determine a biologi-
cally meaningful regional correspondence between them.
Therefore, only the most efficient geometric alignment
must be established (i.e., the alignment that minimizes
the Procrustes distance). However, in a mixed bone anal-
ysis, astragali will not only be compared with calcanei,
they will also be compared with other astragali. Thus,
for some bones in the sample, there is a biologically sig-
nificant alignment that must be discovered before com-
parisons can be finalized.

To establish a globally transitive pseudolandmark
coordinate dataset for a mixed bone sample, we first ran
auto3dgm on the calcaneus and astragalus datasets sep-
arately to produce two sets of globally consistent pseudo-
landmark datasets. We then performed searches for the
alignment and correspondence between an astragalus
and calcaneus that exhibited the minimum Procrustes
distance among all such pairs in the combined dataset
using the branch_pw_distance.r function. In the second
step, we were only concerned with distances since no
details about the alignment mattered biologically. Once
we found the mixed bone pair with the smallest geomet-
ric distance separating them, we used that pair to link
the MSTs of the initial analyses, creating a mixed-bone,
global-correspondence, 3D pseudolandmark dataset. This
dataset was imported into morphologika2.5 and proc-
essed with GPA followed by PCA on the entire sample of
80 calcanei and 80 astragali, and then on three sub-
samples (the 80 calcanei alone, the 80 astragali alone,
and a combined sample of only 40 astragali and taxon-
matched 40 calcanei), with results exported as a .csv
file, and final analyses performed in PAST like other
analyses above.

Procrustes distance matrices for each sample were
compared. In particular, we compared the mean and
standard deviation for between-bone distances in these
different samples, as an estimate of disparity. Distances
between each bone of a sample and the mean bone for
that sample were used in t-tests comparing calcaneus to
astragalus and each of these single bone samples to the
combined samples (Table 4).

We used the first two axes of the PCAs in plots and
correlation analyses. The goal was to assess how analyz-
ing two different bones together affected the patterns of
variance and co-variance of the resulting PC’s. We also
used PC scores from the combined sample of 160 bones
as another way of comparing disparity between the cal-
caneus and astragalus: After scaling PC scores to the
percentage of total sample variance each represents, we
plotted the PC scores, measured the area encompassed
by the convex hull surrounding data on each element
separately, and compared the values for these elements.

We also computed phylogenetic signal on PC scores,
as well as on Procrustes distances from the mean. Phylo-
genetic signal was calculated using caper (Orme et al.,
2011) in R, and a tree based on v3 of the primate dataset
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from 10k Trees (Arnold et al., 2010). Testing for phyloge-
netic signal (Pagel’s k) required using generic means of
the sample and reduced the sample size from 80 individ-
uals to 43 genus-averaged individuals. Species means
were also used for correlation tests.

RESULTS

Alignment Success

Alignment for the calcaneal dataset of 106 bones was
successfully accomplished with a low resolution initial
alignment of 150 points, and eight principal alignments
(Supporting Information Fig. 1). The final high-
resolution surface alignment was based on 1,024 points.
Successful alignment for the calcaneal dataset of 80
bones was accomplished with a low-resolution initial

alignment of 256 points, eight initial positions based on
all possible combinations along three principal axes, and
a high-resolution final surface alignment based on 1,024
points. Successful alignment for the astragalar dataset
of 80 bones was accomplished with a low-resolution ini-
tial alignment of 256 points, 12 initial alignments, and a
high-resolution final surface alignment based on 1,024
points (Supporting Information Fig. 2).

The distal phalanx dataset was aligned using a low-
resolution initial alignment of 256 points, 12 initial
alignments, and a high-resolution final surface align-
ment based on 1,024 points (Supporting Information
Fig. 3). One specimen, UCMP 217919 (a fossil of
unknown taxonomic affinities), had an incorrect align-
ment to its connecting shape in the MST (a tarsier sec-
ond digit grooming claw, USNM 196477). We identified
a correct alignment with SMM P77.33.517, a claw of

Fig. 7. Schematic of alignFix protocol. (A) Visual inspection of initial

alignment reveals several specimens are misaligned. (B) MSTshows mis-

aligned specimens (shown in red) can be found on two branches. (C)

MST is broken into three components representing the base tree (in

which all alignments are good), and Branches A and B (the misaligned

specimens). (D) Unsupervised alignment protocol is performed on origi-

nally unconnected branches A and B to determine if global alignment

exists for those specimens when base tree specimens are excluded from

consideration. Here, we show a successful global alignment. If no such

alignment exists, then Branches A and B should be treated separately as

if they had been a set connected to each other, as each was to the base

tree. (E) All misaligned specimens are compared with all specimens in the

Base Tree to find the appropriate attachment point (i.e., a pair with a cor-

rect alignment). Several example alignments from this exhaustive process

are shown here. Pairwise comparisons are visually inspected by the user

to find an acceptable alignment with the lowest Procrustes distance

between the two specimens. (F) The designated pair serves as the con-

nection (dotted line) for Branch A1B to the Base Tree. (G) Recomputed

global alignment using the user determined tree in E reveals all speci-

mens to now align correctly.
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Plesiadapis churchilli. This is not to say these two
bones are very similar. It simply shows that it is usu-
ally possible to establish correct alignments for every
bone in the sample without manually registering them
to each other.

Comparison to Results from Traditional
Landmarks

For the PCA of output from auto3dgm on individual
specimens (N5 106, with no genus-level averaging), the

Fig. 7. (Continued)
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first four PC axes account for 59.6% of the total variance.
This is very close to that explained in the analysis of the
same sample using 27 landmarks by Gladman et al. (2013)
(Table 2). Generally speaking, major clades were well sep-
arated when plotted in morphospace, as in Gladman et al.
(2013) (Fig. 8). Examination of the 3D landmark cloud in
morphologika2.5, and the general distribution of speci-
mens in the scatter plots of the PCA morphospace, indi-
cates that PC1 (34.7%) is mostly associated with the
overall length and width proportions of the calcanei, with
some emphasis on the distal elongation. The distally elon-
gated and narrow-bodied calcanei of omomyiforms and
some strepsirrhines dominate one extreme of the PC1
axis, while the distally shorter and wide hominoid calcanei

fall on the opposite extreme. This pattern matches well

that found by Gladman et al. (2013). Regressing PC1

scores based on manually positioned landmarks against

the PC1 scores from analysis of auto3dgm output showed

high correlations (Table 3). Other axes were more mod-

estly correlated or lacked significant correlations.
Variation found in PC2 (13.6%) captured some aspects

of the “flexing” of the calcaneus described by Gladman
et al. (2013), although the distribution of the taxa within
this PC is not identical to the original description. This
PC most notably varies in the position of the distal mar-
gin of the ectal facet relative to the body of the calca-
neus, either raised dorsally off of the body or sunken
plantarly. The hominoids are found on one extreme, with
ectal facets that sit atop of the calcaneal body, while pla-

tyrrhines are the most consistent examples of calcanei
with ectal facets depressed into the body. Although more
difficult to observe directly from the cloud of pseudoland-
marks in morphologika2.5, there also seems to be varia-
tion in the magnitude, although not the position, of the
peroneal tubercle captured in this axis.

The variation found in PC3 (6.7%) also resembles
some of the “flexing” that has been previously described,
although it also includes new variation not recognized in
the previous traditional analyses. On the extremes for
this PC axis are the hominoids (excluding hylobatids),
which have a pronounced proximal plantar heel process
and a dorsal bowing of the body of the calcaneus (giving
an un-flexed appearance). At the other extreme are most
of the colobines (excluding only Colobus), which have no
proximal plantar heel process and have a more promi-
nent plantar bowing (flexed appearance) caused, in part,
by a more prominent angulation of the body at the distal
plantar tubercle. The tradeoff in this axis is between an
unflexed calcaneus driven by the presence of a plantar
heel and a flexed calcaneus driven by a heightened angle
at the distal plantar turbercle.

Finally, similar to PC3 above, PC4 (4.6%) also contrib-
utes to variation at the distal plantar tubercle. However,
unlike the variation in PC3, the distal plantar tubercle
in PC4 only gets larger or smaller in size, and there are
no clear changes in the angulation at the tubercle. This
PC exhibits variation most notably in the amount of
proximal segment elongation and the position of the dor-
sal heel relative to the ectal facet. While PC1 contained
aspects of distal elongation within the larger length and
width proportional changes of the calcaneus, PC4 is spe-
cifically associated with the elongation of the proximal
segment of the calcaneus, measured from the ectal facet
to the end of the tuber. Additionally, at the extreme of
the PC where the proximal segment is shortest, the dor-
sal heel is near level with the ectal facet, while at the
elongated proximal extreme the heel is sub-level to the
ectal facet. The fossil euprimates lie at the extremes for
this variation, with omomyiforms exhibiting very low
amounts of proximal elongation and the adapiforms in
this sample with some of the highest levels.

Cluster analyses of the genus-averaged sample pro-
vide another way to compare the results of the analyses
of auto3dgm generated pseudolandmarks to the results
of the traditional landmark analyses reported by Glad-
man et al. (2013). Though there are many differences
when comparing the two analyses by their various
dendrograms, there are broad similarities as well (Figs.
9–11). Dendrograms for traditional landmark analysis
can be viewed in Gladman et al. (2013: their Figures 9
and 10; pp. 384–386). We detail comparisons for the
Neighbor-Joining (NJ) trees here, and note that similar
results are obtained from comparisons between the
UPGMA and Wards trees (although these latter two
clustering algorithms will not be discussed further).

Similarities between the NJ tree based on Gladman et
al.’s (2013) landmarks and that based on our pseudoland-
mark dataset (Fig. 9) include the clustering of adapiforms
near the taxon chosen as the tree root, Marcgodinotius
indicus. Additionally, extant strepsirrhines and omomyids
also cluster together in both analyses. Within this cluster
there are more detailed similarities: Lepilemur1Ourayia
(SDNM 60933) and Omomyid indet. (AMNH 29164)1
Washakius insignis (AMNH 88824) form two pairs of
nearest neighbors, which form a unitary cluster with

TABLE 4. Descriptive statistics for three distance
matrices from mixed bone analyses

Full distance matrix

N 5 3,120 Calc. Ast. Mix

Mean 0.18 0.19 0.29
Max 0.40 0.37 0.54
Min 0.05 0.06 0.05
SD 0.06 0.05 0.11

Dev. from Mean

N 5 80 Calc. Ast. Mix

Mean dev. 0.13 0.13 0.21
Max 0.25 0.27 0.31
Min 0.07 0.07 0.16
SD 0.04 0.03 0.03

t-test (on Dev.) df t P

Ast. vs. Calc. 158 0.50 0.62
Ast. vs. Mix 158 15.16 <0.0001
Calc. vs. Mix 158 14.81 <0.0001

The “Full distance matrix” section uses all 3,120 pairwise
distances among the 80 bones in each sample. “Dev. from
Mean” represents the distance between the mean bone of
the sample and each of the 80 bones comprising it. Thus
the number of distances is the same as the sample size. The
t-tests compare means between the samples of deviations.
“Mix” represents the results of analysis of 40 astragali with
40 taxon-matched calcanei. We do not present the results
for the full 160 bone dataset here because the differences in
sample size would complicate the meaning of differences in
computed statistics relative to the other samples.
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Teilhardina (IRSNB 16786-03) and Omomys (UM 98604)
in both analyses. Eulemur, Hapalemur, and Lemur form a
cluster in both analyses. Varecia is external to all mem-
bers of the strepsirrhine1 omomyiform group except
Daubentonia. All indriids are adjacent to each other.
Anthropoids form a unitary cluster separate from non-
anthropoids in both analyses, and hominid and pitheciine
genera form unitary clusters with respective members of
their clades alone (i.e., monophyletic clusters).

Major differences include Daubentonia falling outside
of all clusters and occupying the position closest to the
root in the auto3dgm based analyses, whereas in Glad-
man et al. (2013) it clusters with other strepsirrhines.
Adapiforms form a unitary cluster with strepsirrhines
and omomyiforms in the auto3dgm-based results,
whereas in Gladman et al. (2013), adapiforms formed a
unitary cluster basal to all other clusters (in the position
of Daubentonia in the auto3dgm-based analysis). In
Gladman et al. (2013), the strepsirrhine1 omomyiform

cluster and the anthropoid cluster group more closely to
each other than either does to the adapiform cluster.
Though indriids are adjacent in both analyses, they do
not form a unitary cluster in the auto3dgm-based analy-
sis, and Propithecus groups with Avahi, rather than
with Indri as in Gladman et al. (2013). In the auto3dgm
based analysis, adapiform fossils cluster cleanly by
assigned genus with four Cantius, two Smilodectes, and
two Notharctus fossils forming three sets of unitary clus-
ters, while in Gladman et al. (2013) these specimens are
more mixed. Atelids form a unitary cluster in auto3dgm
based analysis; in Gladman et al. (2013), they are only
adjacent. Hylobatids do not cluster near other hominoids
in auto3dgm based analysis, whereas hominoids form a
unitary cluster in Gladman et al. (2013). Proteopithecus
(DPC 24776) clusters at the base of a grouping composed
primarily of platyrrhines in auto3dgm-based analysis,
whereas it clusters at the base of, and exclusively with,
Fayum parapithecid fossils in Gladman et al. (2013).

Fig. 8. Shape space of our analysis and comparison to a traditional

3DGM analysis. (A) PCA plot of principal component scores 1 and 3

for data from Gladman et al. (2013) based on 27 landmarks of the cal-

caneus in a sample of 106 bones. (B) PCA plot of principal component

scores 1 and 3 for the same sample, but as represented by 1,024

pseudolandmark points generated by the algorithm presented here.

Both datasets, including our automated output, and that from Glad-

man et al. (2013) were analyzed with morphologika2.5. One of the ben-

efits of the output of our algorithm is that it can be analyzed as if it

were observer-collected data with traditional statistical software.
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Fig. 9. Neighbor Joining tree. To explore phenetic affinites implied

by pseudolandmarks in the calcaneal dataset we averaged coordinate

data from individual specimens into species means as described in

the text and then performed three types of clustering algorithms, just

as was also done by Gladman et al. (2013) for a 27 landmark tradi-

tional dataset. The NJ tree requires specification of a root to which

nearest neighbors are attached. Fossils were not averaged. Therefore

stars and specimen numbers represent individual fossils. These analy-

ses were carried out in PAST (Hammer et al. 2001, 2006).

Fig. 10. UPGMA tree. To explore phenetic affinities implied by pseudolandmarks in the calcaneal data-

set we averaged coordinate data from individual specimens into genus means as described in the text

and then performed three types of clustering algorithms, just as was also done by Gladman et al. (2013)

for a 27 landmark traditional dataset. Fossils were not averaged. Therefore stars and specimen numbers

represent individual fossils. These analyses were carried out in PAST (Hammer et al. 2001, 2006).
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Generally speaking, auto3dgm based results were less
precise when it comes to interpretable clusters of platyr-
rhines, cercopithecoids, and hominoids compared with
the results of Gladman et al. (2013).

Mixed Bone Analysis

Because all bones are first scaled to the same unit
centroid size (the square root of the sum of squared dis-
tances of all landmarks to the centroid of the object),
there is a theoretical maximum distance that can accu-
mulate between any pair of bones, and therefore also
among all pairs of bones of a given sample size. None-
theless, the Procrustes distance for any pair of bones
and a sample of any size can also approach zero, mean-
ing that shape diversity can be compared by looking at
the mean and variance of distances in the distance
matrix.

Interestingly, we found that the mean inter-specimen
distance and standard deviation were virtually identical
for the calcaneal dataset and astragalus dataset treated
separately. On the other hand, the mixed samples (both
the full 160 specimen sample, and reduced 80 specimen
sample—with 40 of each bone type) showed significantly

higher mean distance and distance variance (Table 4).
That is, results indicate what might be expected intui-
tively—that there is greater shape diversity in samples
containing two kinds of bones than samples containing
one kind of bone. Plotting principal component scores
reveals obvious taxonomic and phylogenetic clustering
(Fig. 12).

Comparing phylogenetic signal shows consistently
(though not significantly) higher estimates of Pagel’s
lambda in principal component scores of the calcaneus
dataset for PCs 1–2 as calculated from both the separate
and combined datasets (Table 5). The only exception is
that the distance-from-combined-sample-mean dataset
(“mix MD” in Table 5) for the astragalus had a value of
lambda that was higher and more similar to lambda val-
ues of the calcaneus datasets. There was extensive corre-
lation among species mean astragalar and calcaneal PC
scores if they came from the single, mixed bone PCA,
while if separate PCA’s were run on the two bones, cor-
relations between astragalar and calcaneal PC scores
were less frequently significant (Tables 6 and 7). After
plotting the PC scores for all bones of the mixed-bone
analysis (Fig. 12A), with PC2 scaled to represent the
appropriate total fraction of sample variance

Fig. 11. Wards tree. To explore phenetic affinities implied by pseudolandmarks in the calcaneal dataset

we averaged coordinate data from individual specimens into genus means as described in the text and

then performed three types of clustering algorithms, just as was also done by Gladman et al. (2013) for a

27 landmark traditional dataset. Fossils were not averaged. Therefore stars and specimen numbers repre-

sent individual fossils. These analyses were carried out in PAST (Hammer et al. 2001, 2006).
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(PC15 61.2% of total variance, PC257.6%), we com-
puted the plot area of the calcaneus to be 35% larger
than that of astragalus. This is somewhat surprising
given that results of the distance matrix comparisons
(Table 4) could be taken to suggest that they should be
equally disparate.

DISCUSSION

Comparisons with Conventional 3DGM

We found the degree of similarity between auto3dgm
based analyses and those performed on the same sample
by Gladman et al. (2013) to be surprising. Compared
with our analysis using 1,024 automatically determined
points, the carefully selected 27 landmarks used by
Gladman et al. (2013) showed similar loadings of shape
variance on its PC axes, similar variance breakdown on
the first several PCs, and even a strong correlation
between some of the principal component scores (Table
3). The traditional landmark analysis consolidated
slightly more variance in its first 4 PCs, though the dif-
ferences are more pronounced on PCs 3 and 4. Because
there are more PCs for the automated analyses than for
the manual one (two orders of magnitude more), it
makes sense that the automated method should have a
steeper drop-off.

Our automated approach appears more sensitive to
errors caused by noise in the surface mesh. This intui-
tively makes sense and is supported by consideration of
some of the clustering “errors” and/or differences
between the automated and manual methods. The rela-
tively poor sorting of platyrrhines, hominoids, and cerco-
pithecoids by our automated analysis can be attributed
to cases that do not represent mean values, but are the
only exemplars of their genus. In particular, the vast
majority of catarrhine species in our sample are repre-
sented by single specimens, whereas most of our platyr-
rhines and strepsirrhines are represented by at least
two individuals. A single Colobus (AMNH 27711) breaks
up an otherwise consistent platyrrhine cluster. Though
observation of this specimen does not suggest mesh-
defects, the bone’s lack of any peroneal tubercle projec-
tion is anomalous when compared with the prominent
peroneal tubercles of all other cercopithecoids in the
sample. The lack of a projecting tubercle may give this
bone overall length to width proportions that better
match the more slender platyrrhines than the more
robust cercopithecoids. Perhaps the use of a single point
in the 27 landmark analysis to represent the peroneal
region reduces the effect of this feature’s variance on the
pattern of morphological affinities (a feature represented
by �100 points in the automated analysis). Similar prob-
lems with other specimens likely indicate that having
multiple specimen samples is more important generally
with our automated approach.

Aside from anomalous individuals, broken specimens
and faulty meshes can be expected to “fool” the analysis.
A likely example of this is Leontopithecus joining a fossil
parapithecid (DPC 20576) among a cluster otherwise
represented by cercopithecoids. The fossil is not well pre-
served in its distal aspect, which likely accentuates the
appearance of a strongly sloping lateral border as seen
in the callitrichine. It should also be noted however, that
Gladman et al. (2013) found that among sampled, extant
platyrrhines, Leontopithecus has the strongest morpho-
logical affinities to cercopithecoids. Both our auto3dgm

Fig. 12. Mixed bone analyses. (A) PCA plot (PC’s 1 and 2) of the

mixed bone analysis. MST’s were established for each bone type

independently using our FAA in the way described above with 1,024

pseudolandmark correspondence points for each set. Then we

exhaustively computed the minimum Procrustes distance between

every pair of astragalus and calcaneus. We used that pair with the

smallest distance to connect the calcaneal to the astragalar MST and

allow the template to extend between two bones. Then we were able

to run GPA and PCA on the mixed bone analysis. (B) PCA plot (PC’s 1

and 2) for the calcaneus when no astragali are included. C, PCA plot

(PC’s 1 and 2) for the astragalar dataset when no calcanei are

included. The star represents the Fayum anthropoid Proteopithecus.

Note that the there is good phylogenetic correlation with and between

bones on the same axes whether the analyses are done on mixed or

single bone samples. This is demonstrated quantitatively in Tables 6

and 7.
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analyses and those of Gladman et al. (2013) suggest
morphological affinities uniting Fayum fossil parapithe-
cids with cercopithecoids.

Comparisons of Morphological Diversity Among
Parts (Mixed Bone Analysis)

Our analyses revealed that the astragalus and calca-
neus reflect almost identical amounts of shape variation

(similar “disparity” as measured with 1,024 evenly dis-
tributed points and using the raw distance matrix. See
Table 4). This appears to be a meaningful result since the
mixed bone samples (which we believe should express
greater shape variation) do, indeed, exhibit significantly
greater average distances between shapes. However, it is
in some contrast to the results that show the calcaneus to
take up 35% more plot area than the astragalus. While we
acknowledge that this preliminary approach is somewhat
crude since it does not account for the variance

TABLE 5. Phylogenetic signal in astragalus and calcaneus shape data based on automated analysis of 1,024
pseudolandmarks

Phylogenetic signal

Astragalus Calcaneus

Variable Lambda (CI) P(0) P(1) Variable Lambda (CI) P(0) P(1)

mix PC1 0.884 (0.578, NA) <0.0001 0.13 mix PC1 1.0 (0.924, NA) <0.0001 1
mix PC2 0.861 (0.623, NA) <0.0001 0.06 mix PC2 1.0 (0.919, NA) <0.0001 1
mix PC3 0.871 (0.638, NA) <0.0001 0.06 mix PC3 1.0 (0.954, NA) <0.0001 1
mix MD 1.0 (0.855, NA) <0.0001 1 mix MD 1.0 (0.949, NA) <0.0001 1
sep PC1 0.862 (0.641, NA) <0.0001 0.05 sep PC1 1.0 (0.945, NA) <0.0001 1
sep PC2 0.995 (0.856, NA) <0.0001 0.89 sep PC2 1.0 (0.942, NA) <0.0001 1
sep PC3 0.846 (0.339, 0.985) 0.003 0.01 sep PC3 1.0 (0.845, NA) <0.0001 1
sep MD 0.990 (0.769, NA) <0.0001 0.91 sep MD 1.0 (0.929, NA) <0.0001 1

“Mix” preceding the variable name indicates that the data were the result of the sequential GPA and PCA on a “mixed”
sample of 160 astragali and calcanei. “MD” stands for mean distance and values represent the continuous Procrustes dis-
tance of each specimen from the mean shape. P(0/1) stands for the probability of lambda being zero or one.

TABLE 6. Correlations between PC scores of astragalus and calcaneus, and correlations between PC scores of
mixed and separate bone analyses

Between bone correlations (comparisons within separate and mixed analyses)

Sep. Ast. Sep. Ast.

Calc. 1 2 3 MD Calc. 1 2 3 MD

1 0.86 20.17 20.13 – 1 <0.0001 ns ns –
2 20.08 0.86 0.05 – 2 ns <0.0001 ns –
3 20.16 20.02 0.02 – 3 ns ns ns –
MD – – – 0.57 MD – – – <0.0001

Mix. Ast. Mix. Ast.
Calc. 1 2 3 MD Calc. 1 2 3 MD
1 0.68 0.86 0.57 – 1 <0.0001 <0.0001 <0.0001 –
2 0.40 0.84 0.76 – 2 0.007 <0.0001 <0.0001 –
3 20.25 20.76 20.80 – 3 ns <0.0001 <0.0001 –
MD – – – 20.25 MD – – – ns

Within bone correlations (comparisons between separate and mixed analyses)

Calc. Mix. Calc. Mix.

Sep. 1 2 3 MD Sep. 1 2 3 MD
1 20.93 20.98 0.93 – 1 <0.0001 <0.0001 <0.0001 –
2 0.43 20.01 0.23 – 2 0.004 ns ns –
3 20.08 20.01 20.05 – 3 ns ns ns –
MD – – – 0.45 MD – – – 0.003
Ast. Mix. Ast. Mix.
Sep. 1 2 3 MD Sep. 1 2 3 MD
1 20.57 20.98 20.90 – 1 <0.0001 <0.0001 <0.0001 –
2 0.80 0.26 20.29 – 2 <0.0001 ns ns –
3 20.10 0.07 20.11 – 3 ns ns ns –
MD – – – 0.95 MD – – – <0.0001

Linear correlation (r) values in boxes on the left, (P) values in boxes on the right. These analyses are run on species mean
values and N 5 43 in all cases.
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represented in the remaining variables (a MDS approach
could be better since we could probably force more of the
variance onto two axes), these remaining PC’s explain an
increasingly miniscule amount of variation.

Interestingly, the phylogenetic signal for a given bone-
type was minimally affected (if at all) by running GPA
and PCA on a mixed bone sample versus a single bone-
type sample (Table 5). The calcaneus, in obtaining possi-
bly greater morphological disparity than the astragalus,
seems to have developed a stronger phylogenetic signal
as well (Table 5). This suggests that change in calcaneus
has approximated a Brownian motion model along the
branches of the primate phylogenetic tree more so than
the astragalus. This difference in mode may be
explained functionally by noting that the calcaneus
comes into (almost) direct contact with the environment
(through the skin, etc.) as the heel, and helps comprise a
load arm/lever arm pair that experiences functional
demands for leaping and other forms of locomotion
(Boyer et al., 2013). In contrast, the astragalus is almost
completely isolated with no part that touches the
ground, and no attaching muscles. Therefore, the astrag-
alus may often be insulated from subtle changes in func-
tional demands and be more likely to experience periods
of stasis, whereas the calcaneus probably responds more
faithfully to small changes in mechanical environment.

The astragalus has long been noted for its high
valence in reflecting systematic relationships, while the
calcaneus has appeared less useful. At first pass, this
observation seems contradicted by our results. However,
if the astragalus has experienced stasis more generally
than the calcaneus and developed its comparable mor-
phological variance through more punctuated changes,
then the resulting variance may be more clearly associ-
ated with more inclusive taxonomic groups (like strepsir-
rhines, tarsiers, platyrrhines, cercopithecoids, and
hominoids) than with species-level differences.

Biological Significance of Automated
Pseudolandmarks

The most obvious difference between pseudolandmarks
of our method and traditional landmarks is that points
associated with a particular feature (e.g., peroneal tuber-
cle), or an articular surface on one bone, may not be
located on those features in another bone. This may rub
some morphologists the wrong way if they feel that they
know that the peroneal tubercle is homologous between
two taxa, but the algorithm does not bear this out.

There are several points to be made here. First, as
reviewed by MacLeod (2001), Owen’s (1846) original

definition considered homology as pertaining to “organs”
(or we could say “whole bones” here) but did not define
mappings of sub-regions therein. In a strict sense, the
concept of homology does not apply to features of organs.

Second, the essence of Darwinian homology is that fea-
tures in different taxa are biologically equivalent if they
can be traced to the same feature in a common ancestor
through the process of “descent with modification.” This
is reflected in a more recent definition stating that homol-
ogy is a “continuity of information” (Van Valen, 1982).
This view dictates that the ultimate arbiter of contrasting
homology hypotheses is the pattern of transformations
that occurred in evolution, but it is rare to obtain data
allowing such an empirical test, meaning that researchers
should remain open to multiple alternatives.

Third, the critics of the adaptationist program (Gould
and Lewontin, 1979) warn us to beware of “spandrels.”
One can ask whether the feature of interest exists by
genetic design or by developmental context. If the pero-
neal tubercle “exists” as a genetically specified bump on
the side of the calcaneus (in the sense that there are gene
products that cause the formation of this bump, and vari-
ation in the position or size of the tubercle can be
explained by these gene products being expressed at dif-
ferent positions, at different concentrations, and/or for dif-
ferent durations along the shaft of the calcaneus), then it
follows that this “bump” should be marked with a land-
mark of the same identity on any bone regardless of
where topologically it occurs. However, it seems equally
likely that the form of the bony peroneal tubercle is a
mechanical and re-modeling consequence of the paths of
the peroneal tendons and attachment positions of the ret-
inacular ligaments. In this alternative scenario, repre-
senting the position of this bump by the same point
regardless of its position on the calcaneus seems misrep-
resentative. The truth is that the genetic influences and
developmental homologies for most features are not
known. An informative test of these alternatives
(although cruel) would be to remove the tendons at an
early stage of development and observe whether and
where a peroneal tubercle developed. Even if it were to
become known that peroneal tubercle development
occurred independent of attaching ligaments and tendons,
and the forces they exert, this would only imply evolu-
tionary homology if we assume parsimony in evolution
(or Hennig’s auxiliary principle) which some researchers
are willing to do, but others are not. This also comes
down to whether type I or type II landmarks are pre-
ferred when the respective criteria suggest different cor-
respondence patterns for a given anatomical region.
Finally, in this particular example, there is no widespread

TABLE 7. Phylogenetically informed correlations between astragalus and calcaneus variables that resulted
from sequential GPA followed by PCA on 1,024 pseudolandmarks per bone

PGLS correlations

Test Lambda (CI) P(0) P(1) Slope r Square P

sep PC1 (ast. vs. calc.) 1.0 (0.946, NA) <0.0001 1 0.28 0.073 0.05
mix PC1 (ast. vs. calc.) 1.0 (0.924, NA) <0.0001 1 0.84 0.204 0.0002
sep MD (ast. vs. calc.) 1.0 (0.925, NA) <0.0001 1 0.1 0.057 0.79
mix MD (ast. vs. calc.) 1.0 (0.952, NA) <0.0001 1 20.36 0.074 0.05

“Mix” preceding the variable name indicates that the data were the result of the sequential GPA and PCA on a “mixed”
sample of 160 astragali and calcanei. “MD” stands for mean distance and values represent the continuous Procrustes dis-
tance of each specimen from the mean shape. P(0/1) stands for the probability of lambda being zero or one.
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agreement on the evolutionary homology of the peroneal
tubercle among primates (Decker and Szalay, 1974).

Variation in features that are plastic and can be modi-
fied during life (such as ligament attachment points and
articular surface areas and boundary shapes) may be
explained by ontogenetic causes. For instance, variation
in the development of certain astragalar facets in
humans has been explained by different postural ten-
dencies among populations (Barnett, 1954). If we use the
distal boundary of the tibial facet as a landmark, this
feature point may extend all the way down the astraga-
lar neck in some people, or not approach it at all in
others. This would be useful for quantifying variation
due to postural differences among humans, but probably
not for distinguishing the shape of a human astragalus
from a chimpanzee astragalus.

Another argument for adding the use of pseudoland-
marks to the morphologist’s toolkit is the fact that the
research community already accepts similar approaches
to shape comparison including Fourier analysis (Rohlf
and Archie, 1984), eigenshape analysis (MacLeod, 1999),
and eigensurface analysis (Polly and MacLeod, 2008).
These methods retain no fidelity to specific landmark-like
features. The most significant conceptual difference
between our approach and eigensurface analysis is that
the anatomical axes must be manually set in the latter. A
more practical difference is that eigensurface is restricted
to “relief-type” or “disc-type” surfaces, whereas auto3dgm
can be applied to either disc-type or fully 3D surfaces.

The question of whether points or regions on different
instances of the same bone are “equivalent” is ultimately
a question about transformational homology. Our
method provides an “operational homology” (5topological
correspondence). The MST used to link forms can be
taken as a hypothesis of transformational homology to
be tested. The best answer to whether certain “point
features” are equivalent must be answered by assessing
whether treating them as such results in phenetic pat-
terns that correlate with independent datasets on phylo-
genetic relationships or functional capacity. This means
that if the utility of automated methods is going to
increase, then automated correspondence determinations
that are more sensitive to feature points (type II land-
marks) must also be developed. This requires algorithms
based on “non-area preserving maps.” The original work
of Boyer et al. (2011) presents such a method but lacks
applicability to “full 3D” shapes and does not provide a
means for inducing transitivity of comparisons. Different
patterns of transformational homology will be implied by
different phylogenetic hypotheses, which could be eval-
uated according to different optimization criteria.

Too Many Variables, Not Enough Specimens?

A major challenge in statistical modeling as applied to
molecular biology (Golub et al., 1999), genetics (Patter-
son et al., 2006), image analysis (Roweis and Saul,
2000), and text analysis (Blei et al., 2003) has been the
large P, small N setting (Poggio and Smale, 2003; West,
2003) where the number of variables is typically much
larger than the number of samples. In statistics, the dif-
ficulty of modeling data as the number of variables
increases and exceeds the number of observations is
often called “the curse of dimensionality,” a phrase
coined by Bellman with respect to optimization problems

(Bellman, 1984). However, many of the great advances
in the last 10 years in statistics, machine learning, and
applied mathematics are related to the observation that
the relevant dimension of the data is not the number of
variables, but the number of independent variables (the
intrinsic dimension) (Donoho, 2000). For 1,024 land-
marks spread on a sample of 80–160 objects, the intrin-
sic dimensionality will be much lower than the number
of landmarks. If the perspective promoted by statisti-
cians dealing with large P, small N problems is correct,
then the problem of over-determination can be avoided
by limiting the number of independent variables gener-
ated by data reduction techniques from a landmark
dataset with hundreds or thousands of points. The idea
that seemingly high-dimensional data have few degrees
of freedom, or low intrinsic dimensionality, is central to
the methodologies developed in this article.

As a matter of precedent, this philosophy is implicitly
acknowledged in articles that use large numbers of
evenly (or “optimally”) spread semi-landmarks as well as
in eigenshape analysis (Polly, 2008; Polly and MacLeod,
2008; Sievwright and MacLeod, 2012). Harcourt-Smith
et al. (2008) provides a pertinent example, in which a
total of nine user-defined landmarks were used to gener-
ate 361 semilandmark points on the talo-tibial facets of
a sample with 54 specimens representing three species.
Another example is Sievright and MacLeod (2012).
These authors used 62 points to represent the dorsal
surface of the proximal humerus in a sample of 50 falco-
niform specimens. They projected their coordinates into
tangent space and used principal component analysis to
generate projection scores. These mutually orthogonal
(independent) projection scores were then used to run a
Canonical Variates Analysis (5DFA). They limited the
number of principal components used in their analysis
to 21 (because this number represented 95% of the total
variation in the dataset and was much less than their
N550). These authors recognize the importance of the
number of independent variables, but do not discuss the
statistical ramifications of the number of original, yet
correlated, variables.

SUMMARY AND CONCLUSION

Greater automation and standardization for morpho-
logical studies are needed if morphology is to survive as
a branch of phenomics with relevance comparable to
genomics. The most important level at which such auto-
mation must occur is in determining biological/geometric
correspondence between shapes. Past attempts to auto-
mate such determinations have suffered from the pros-
pect that computations involved were too time intensive
(as well as philosophical arguments against the idea of
such an approach). Dimension reduction techniques such
as working from photographs and outlines have been
applied to circumvent this issue, but an observer is
needed to orientate objects before such application,
slightly defeating the purpose of automation. Greater
computing power and techniques for simplifying the
search for alignment and correspondence mapping
between 3D digital models are applied here and an R
package for implementing this method has been created.

Our analyses show a surprising and reassuring
degree of similarity between quantifications based on
user-defined landmarks and our auto3dgm approach.
Although human interaction must occur at several
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stages of the analyses to verify that erroneous align-
ments have not been generated, this approach still rep-
resents a step beyond any automation procedures yet
applied, because (1) no qualitative decisions about the
geometric equivalence of point features are required and
(2) protocols for generating alignments and pseudoland-
mark datasets lack observer error, since the final proce-
dure for the result of the algorithm can be described via
the numerical parameter input to the model. At this
juncture, it is important to re-iterate that the method of
auto3dgm was not completely deterministic in the test
samples we used even at 1000 points, though the corre-
lations between multiple runs were very high. This
means that researchers should, as always, be cautious
with the method when it comes to interpreting phenetic
affinities of individual specimens.

Very little familiarity with anatomical terminology or
features is required. Only a basic ability to visually com-
pare shapes is necessary in auto3dgm in order to verify
the absence of misalignments. This method has the
potential for adoption by geneticists, molecular biolo-
gists, and biomedical engineers who may feel uncomfort-
able about their ability to take measurements with
repeated accuracy or with biological significance to their
questions of interest.

One of the most exciting capabilities provided by this
algorithm is the ability to compare variance magnitude
and patterns for different skeletal elements. Our initial
experiments with this approach show that two articulat-
ing bones of the skeleton have similar levels of morpho-
logical diversity with strong covariance, which makes
sense developmentally, but the calcaneus has a consis-
tently stronger phylogenetic signal in its variance pat-
terns than the astragalus, which is potentially related to
more direct functional demands.

Future work will explore different types of correspon-
dence algorithms with an emphasis on constructing algo-
rithms that can efficiently determine non-area
preserving maps (those that mimic user-defined type II
landmarks of 3DGM more closely). Of course, developing
methods that yield more deterministic results is critical
as well. Furthermore, we intend to compare variance
levels among different regions of the skeleton with the
expectation that patterns of covariance and variance
magnitudes will differ more between bones that are far
apart from each other on the skeleton and are more
likely to have different developmental and historical nat-
ural–selective contexts. We recognize that these quanti-
ties are still dependent on the sample composition, the
parameters of any particular run of auto3dgm, any ordi-
nation methods that are used, and random differences
based on initial pseudolandmark spreading by
auto3dgm. Nonetheless, we feel that the patterns will be
informative for evolutionary questions including those
dealing with disparity because the quantification of
inter-bone shape distance is objective and more compre-
hensive using auto3dgm, and we have articulated a
rational geometric basis for comparing variance between
groups of non-homologous elements. A related challenge
for large scale automation of morphological analysis is
provision of comprehensive samples of digitized bones.
Towards that end a new “genbank-like” online archive
for 3D bone digitizations called MorphoSource (www.
morphosource.org) has been created at Duke University
(Boyer et al. 2014; Kaufman et al. 2014). At the time of

writing over 1,000 bones have been shared on this site.
We encourage readers to investigate and contribute to
this resource as its development is as important as
methods development for moving the field forward.
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