
Citation: Pan, J.-S.; Liu, L.-F.; Chu,

S.-C.; Song, P.-C.; Liu, G.-G. A New

Gaining-Sharing Knowledge Based

Algorithm with Parallel Opposition-

Based Learning for Internet of

Vehicles. Mathematics 2023, 11, 2953.

https://doi.org/10.3390/

math11132953

Academic Editor: Ioannis G. Tsoulos

Received: 3 June 2023

Revised: 28 June 2023

Accepted: 29 June 2023

Published: 2 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A New Gaining-Sharing Knowledge Based Algorithm with
Parallel Opposition-Based Learning for Internet of Vehicles
Jeng-Shyang Pan 1,2 , Li-Fa Liu 1, Shu-Chuan Chu 1,3,* , Pei-Cheng Song 1 and Geng-Geng Liu 4

1 College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; jspan@cc.kuas.edu.tw (J.-S.P.); llf@sdust.edu.cn (L.-F.L.); spc@sdust.edu.cn (P.-C.S.)

2 Department of Information Management, Chaoyang University of Technology, 168, Jifeng E. Rd.,
Wufeng District, Taichung 41349, Taiwan

3 College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
4 College of Computer and Data Science, Fuzhou University, Xueyuan Road No.2, Fuzhou 350116, China;

liugenggeng@fzu.edu.cn
* Correspondence: scchu0803@sdust.edu.cn

Abstract: Heuristic optimization algorithms have been proved to be powerful in solving nonlinear
and complex optimization problems; therefore, many effective optimization algorithms have been
applied to solve optimization problems in real-world scenarios. This paper presents a modification of
the recently proposed Gaining–Sharing Knowledge (GSK)-based algorithm and applies it to optimize
resource scheduling in the Internet of Vehicles (IoV). The GSK algorithm simulates different phases of
human life in gaining and sharing knowledge, which is mainly divided into the senior phase and the
junior phase. The individual is initially in the junior phase in all dimensions and gradually moves into
the senior phase as the individual interacts with the surrounding environment. The main idea used
to improve the GSK algorithm is to divide the initial population into different groups, each searching
independently and communicating according to two main strategies. Opposite-based learning is
introduced to correct the direction of convergence and improve the speed of convergence. This paper
proposes an improved algorithm, named parallel opposition-based Gaining–Sharing Knowledge-
based algorithm (POGSK). The improved algorithm is tested with the original algorithm and several
classical algorithms under the CEC2017 test suite. The results show that the improved algorithm
significantly improves the performance of the original algorithm. When POGSK was applied to
optimize resource scheduling in IoV, the results also showed that POGSK is more competitive.

Keywords: Gaining–Sharing Knowledge-based algorithm; Taguchi method; opposition-based learning;
resource scheduling; parallel mechanism

MSC: 68W50

1. Introduction

Heuristic optimization algorithms have been studied and discovered over the past
three decades and have been fully proven to solve a variety of complex, nonlinear optimiza-
tion problems. These methods are both user-friendly and do not necessitate mathematical
analysis of the optimization problem. Compared with the traditional methods, they have
the advantages of flexibility, no gradient mechanism and avoiding being trapped in the
local optimum [1]. These features drew a large number of researchers to participate in
the design. Most heuristic algorithms are inspired by the author’s observation of animal
and plant phenomena in nature. To solve optimization problems, algorithms are used to
simulate growth and evolution. In real scenarios, heuristics are also widely used, such
as path planning [2], wireless sensor network localization problem [3], wireless sensor
network routing problem [4], airport gate assignment [5] and cloud computing workflow
scheduling [6].

Mathematics 2023, 11, 2953. https://doi.org/10.3390/math11132953 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11132953
https://doi.org/10.3390/math11132953
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3128-9025
https://orcid.org/0000-0003-2117-0618
https://orcid.org/0000-0002-9355-1797
https://doi.org/10.3390/math11132953
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11132953?type=check_update&version=2

Mathematics 2023, 11, 2953 2 of 25

Heuristic algorithms can be divided into four categories [7]. The first category is
algorithms based on swarm intelligence techniques. Much of the inspiration for such algo-
rithms comes from observations of social animals. In a population, each individual exhibits
a certain degree of independence while still interacting with the entire group. The main
representative algorithms are particle swarm optimization (PSO) [8], the phasmatodea
population evolution algorithm (PPE) [9], the Gannet optimization algorithm (GOA) [10],
the grey wolf optimizer (GWO) [11], cat swarm optimization (CSO) [12], etc. The second
category is algorithms based on evolutionary techniques. Such algorithms are inspired by
developments in biology. The initial random population is gradually iterated to achieve
the final optimization purpose through crossover, mutation, selection and other operations.
The main representative algorithms are the genetic algorithm (GA) [13], the differential
evolution algorithm (DE) [14], the quantum evolutionary algorithm (QEA) [15], etc. The
third category is the algorithm based on physical phenomena. This kind of algorithm
simulates the law of some natural phenomena. The main representative algorithms are
the Archimedes optimization algorithm (AOA) [16], the simulated annealing algorithm
(SAA) [17], the sine cosine algorithm (SCA) [18], etc. The fourth category of algorithms
is those based on human-related technology. As an independent intelligent and rational
individual, each person has unique physical and psychological behavior. The main repre-
sentative algorithms are the Teaching–Learning-Based Optimization Algorithm (TLBO) [19],
the Gaining–Sharing Knowledge-based algorithm (GSK) [7], etc.

The original GSK simulates the behavior of acquiring and sharing knowledge through-
out a person’s life, culminating in the maturation of the individual [20]. The author divides
human life into two distinct phases: the junior phase, which corresponds to childhood,
and the senior phase, which corresponds to adulthood. The strategies for knowledge
acquisition and sharing are different in these two phases. At the beginning of the algo-
rithm, individuals tend to use a relatively naive method to acquire and share knowledge.
However, not all disciplines (on all dimensions of the solution) use this naive method. In
some disciplines, individuals will also use relatively advanced methods for knowledge
acquisition and sharing. With the growth of individuals, the algorithm enters the middle
stage and the learning of knowledge is more inclined to use the advanced method, while a
few disciplines still use the naive method. Individuals go through two stages, alternating
between naive or advanced strategies to update their knowledge in each discipline. In-
dividuals eventually reach maturity, which is when they find their optimal position. Ali
Wagdy Mohamed demonstrated its powerful optimization capabilities on the CEC2017 test
suite when he presented the GSK algorithm. Although the GSK algorithm demonstrates
excellent convergence in solving the optimization problem, there is room for improvement
in avoiding locally optimal solutions and convergence speed. To further improve the
performance of the GSK algorithm, we propose several approaches to be incorporated into
the GSK algorithm, which are described next in turn. Experiments have been conducted
to demonstrate that these approaches are effective in improving the performance of the
GSK algorithm.

Parallel processing is concerned with producing the same results using multiple pro-
cessors with the goal of reducing the running time [21]. Because physical parallel processing
cannot be used in the optimization algorithm, we adopt an alternative approach. The main
idea of the parallel mechanism is to divide the initial population into several different
groups. Each group performs iterative updates independently and communicates regularly
between groups. The parallel mechanism has been applied widely, including to the parallel
particle swarm algorithm (Chu S C 2005) [21] and parallel genetic algorithms [22]. In
addition, parallel strategy is also used in multi-objective optimization algorithms. Cai D
proposed an evolutionary algorithm based on uniform and contraction for many-objective
optimization [23], which uses a parallel mechanism to enhance the local search ability.

The communication strategies between groups can be varied for optimizing different
algorithms. This paper presents a communication strategy using the Taguchi method. The
main idea is to use a pre-designed orthogonal table for crossover experiments. Compared

Mathematics 2023, 11, 2953 3 of 25

with the traditional experimental method, it can achieve almost the same effect while
obviously reducing the number of experiments. The Taguchi method has the advantages
of reducing the number of experiments, reducing the cost of experiments and improving
the efficiency of experiments [24]. It has been successfully applied to improve the genetic
algorithm (Jinn-Tsong Tsai 2004) [25], the Archimedes optimization algorithm (Shi-Jie Jiang
2022) [26], the cat swarm optimization algorithm (Tsai P W 2012) [24], etc. In addition,
opposition-based learning (OBL) was also incorporated into GSK. The concept of OBL was
proposed by Tizhoosh (2005) [27]. After that, some classical optimization algorithms started
to introduce this idea. It has been successfully applied to improve grey wolf optimization
(Souvik Dhargupta 2020) [28] (Dhargupta S 2020) [29], the differential evolution algorithm
(Rahnamayan S 2008) [30] (Wu Deng2021) [31], particle swarm optimization (Wang H
2011) [32], the grasshopper optimization algorithm (Ahmed A. Ewees 2018) [33], etc.

In order to reach a convincing conclusion, the performance of any optimization or
evolutionary algorithm can only be judged via extensive benchmark function tests [34].
Some diverse and difficult test problems are required for this purpose and the CEC2017 test
suite [35] is a widely accepted test problem. In order to apply the optimization algorithm
to the complex real-world optimization problem, it is necessary that the optimization algo-
rithm can effectively solve the single objective optimization problem. CEC2017 test suite
contains 30 single-objective real-parameter numerical optimization questions. Compared
with CEC2013 and CEC2014, in CEC2017, several test problems with new characteristics
are proposed, such as new basic problems, composing test problems by extracting features
dimension-wise from several problems, graded level of linkages, rotated trap problems and
so on. In this paper, the CEC2017 test suite is utilized to evaluate the proposed algorithm
(POGSK), the original algorithm and several classical algorithms.

The IoV enables vehicles on the road to exchange information with roadside units
(RSUs) [36]. Therefore, users can expect quick, comprehensive and convenient services,
such as road condition information, traffic jam section information, traffic condition in-
formation, city entertainment information, etc. However, traditional resource-allocation
strategies may not be able to provide satisfactory Quality of Service (QoS) due to several
factors. These include resource constraints, network transmission delays and the deploy-
ment of RSUs. Scheduling problems can be solved using various methods, which can be
roughly grouped into three categories: exact, approximate and heuristic [37]. The exact
method is to calculate all the solutions of the whole search space to find the optimal solution,
which is obviously only suitable for small-scale problems. The approximation method uses
certain mathematical rules to find the optimal solution, which requires different analyses
for different problems. However, in most cases, the mathematical analysis of the problem
is difficult. Therefore, the heuristic approach is a decent option. The main objective of
scheduling algorithms is to find the best resources in the cloud for the applications (tasks)
of the end user. This improves the QoS parameters and resource utilization [38]. In order to
solve this optimization problem, this paper proposes using the heuristic algorithm POGSK
to complete resource scheduling.

The main contributions of this paper are as follows:
1. An improved Gaining–Sharing Knowledge-based algorithm (POGSK) is proposed,

which uses parallel strategy and OBL strategy. The use of parallel strategy increases the
diversity of the population so that the algorithm can effectively avoid local optimal solu-
tions. The OBL strategy can correct the convergence direction and improve the convergence
accuracy.

2. A new inter-group communication strategy is designed. Specifically, the Taguchi
communication strategy and the population-merger communication strategy were used.
This enables efficient exchange of information between subpopulations and avoids the
weakening of algorithm performance caused by the reduction of the number of individuals
in subpopulations.

Mathematics 2023, 11, 2953 4 of 25

3. POGSK is used in the resource-scheduling problems of the IoV to improve QoS,
which can reflect the performance of the algorithm in real scenarios. Simulation results
show that POGSK is more competitive than other algorithms.

2. Related Works
2.1. GSK Algorithm

GSK is a human-based heuristic algorithm that gradually updates knowledge (corre-
sponding to the solution of the algorithm) by simulating the process of knowledge sharing
and acquisition in human life. The algorithm mainly consists of two phases: the junior
phase and the senior phase, for knowledge gaining and sharing in phases have different
processes [7].

When individuals are young, they prefer to interact with individuals who are similar
to themselves. Despite their immature ability to distinguish right from wrong, they are
willing to communicate with unfamiliar people, which represents curiosity in the junior
phase. People who are similar to themselves correspond to their relatives, friends and other
small surrounding groups. People who are unfamiliar correspond to the stranger. The
above scheme is the junior gaining–sharing scheme. In the junior phase, more dimensions
are updated using this scheme than using the other (senior gaining–sharing) scheme.

After updating and iteration, individuals reach middle age gradually. As the capacity
to distinguish between right and wrong gradually increases, individuals are more willing
to divide the crowd into three different populations: the advantaged, the disadvantaged
and the general population. Individuals improve themselves by interacting with these
three groups. The above scheme is the senior gaining–sharing scheme. In the senior phase,
more dimensions are updated using the senior scheme than using the junior scheme. In the
following, we describe in detail the dimensions in which the two schemes are utilized and
their respective processes.

Let xi, i = 1, 2, 3, . . . , N; N is population size, xi represents the individual members of
the population. xi = (xi1, xi2, xi3, . . . , xiD), D is the size of the problem and xij represents
the value of an individual in this dimension. Before the renewal of each generation, we
need to determine which dimensions use the senior scheme and which dimensions use
the junior scheme for each individual. Based on the concept of constant human growth,
these dimensions are determined to use the following nonlinear increasing or decreasing
empirical equation [7].

D(juniorphase) = (problemsize) ∗ (1− G
GEN

)k (1)

D(seniorphase) = (problemsize)− D(juniorphase) (2)

where K is knowledge rate of a real number, K > 0, G is generation number and GEN is the
maximum number of generations.

The steps for the junior scheme are as follows:
1. The fitness of all individuals is calculated and the sequence that follows is generated

by ranking the individual from high to low fitness: (xbest, x2, x3, . . . , xn−1, xworse). Each
individual chooses three individuals to communicate with according to step 2.

2. For each individual xi which is not the best and the worst, select xi−1 and xi+1. For
the best individual xbest, select xbest+1 and xbest+2. For the worst individual xworse, select
xworse−1, xworse−2. In addition, an individual xr is selected in a random way. These three
individuals are sources of information. The pseudo-code for the above junior scheme is
presented in Algorithm 1:

Mathematics 2023, 11, 2953 5 of 25

Algorithm 1: Junior scheme pseudo-code

for i = 1: N do
for j = 1: D do

if rand<=Kr(Konwledge ratio) then
if f(xi) > f(xr) then

xnew
ij = xi+k f *[(xi−1 − xi+1) + (xr − xi)]

else
xnew

ij = xi+k f *[(xi−1 − xi+1) + (xi − xr)]

end
else

xnew
ij = xold

ij

end
end

end

Here, k f represents the knowledge factor (k f > 0).
The steps for the senior scheme are as follows:
1. The fitness of all people is calculated and the sequence that follows is generated by

ranking the individual from high to low fitness: (xbest, x2, x3, . . . , xn−1, xworse).
2. The population is divided into three parts: the first 100p% with better fitness, the

last 100p% with poor fitness and the middle NP − (2 * 100p%), where p is the proportion
of a population division. For example, if p = 0.1, NP = 100, the best group is the top
10 peoples with better fitness, the worst group is the bottom 10 peoples with poor fitness
and the middle group is the middle 80 peoples. From these three groups, xp_best, xp_worse
and xp_middle are selected as sources of information. The pseudo-code for the above senior
scheme is presented in Algorithm 2:

Algorithm 2: senior scheme pseudo-code

for i = 1: N do
for j = 1: D do

if rand<=Kr(Konwledge ratio) then
if f(xi) > f(xm) then

xnew
ij = xi + k f *[(xpbest − xpworse) + (xm − xi)]

else
xnew

ij = xi + k f *[(xpbest − xpworse) + (xi − xm)]

end
else

xnew
ij = xold

ij

end
end

end

There are several important parameters in GSK, respectively knowledge rate K that
controls the proportion of junior and senior schemes in the individual renewal scheme,
knowledge factor K f that controls the total amount of knowledge currently learned by the
individual from others, knowledge ratio Kr that controls the ratio between the current and
acquired experience. The pseudo-code is presented in Algorithm 3:

Mathematics 2023, 11, 2953 6 of 25

Algorithm 3: GSK pseudo-code
G = 0, initialize parameters: N, K f , Kr, K and p
Creat a random initial population xI , i = 1, 2, . . . , N
Evaluate f (xi), i = 1, 2, . . . , N
for G = 1: GEN do

computer the number of(Gained and Sherad dimensions of both phase) using
experinence Equations (1) and (2);

//Junior gaining–sharing knowledge phase//
//Senior gaining–sharing knowledge phase//
Evaluate f (xnew

i), i = 1, 2, . . . , N
for i = 1: N do

if f(xnew
i) < f(xold

i) then
xold

i = xnew
i , f (xold

i) = f (xnew
i)//update each vector

end
if f(xnew

i) < f(xbest
G) then

xbest
G = xnew

i , f (xbest
G) = f (xnew

i)//updateglobal best
end

end
end

2.2. Taguchi Method and Parallel Mechanism

Every engineer wants to design a satisfactory product with minimum cost and mini-
mum time. However, many factors can impact the quality of the product and it will take a
long time to test one by one. The Taguchi method was developed by Dr. Genichi Taguchi in
Japan after World War II [25]. When this method was used in practical production, it greatly
promoted Japan’s economic recovery. The orthogonal matrix experiment is one of the
important tools of the Taguchi method. Suppose a product has K influencing factors, each
of which has Q levels. If the influence of each factor level on product quality is tested one
by one, KQ experiments are required [24]. This will consume a lot of time and production
costs are difficult to control. The orthogonal matrix experiment uses the pre-designed
orthogonal matrix to conduct a small number of experiments on each factor, which can
achieve almost the same effect while greatly reducing the number of experiments. Assume
that there are seven factors affecting the product, each of which has two levels, then we
can use the L8(27) shown in Equation (3). Each row in the table represents an experiment,
where the values represent the current level of factor adoption. It can be observed that in
each column, the number of occurrences is the same for both levels, which guarantees the
fairness of the experiment.

L8(27) =

1 1 1 1 1 1 1
1 1 1 2 2 2 2
1 2 2 1 1 2 2
1 2 2 2 2 1 1
2 1 2 1 2 1 2
2 1 2 2 1 2 1
2 2 1 1 2 2 1
2 2 1 2 1 1 2

(3)

This paper mainly uses two levels orthogonal matrix. For the 10-dimensional experi-
ment uses L12(211). For the 30-dimensional experiment uses L32(231).

The parallel mechanism, also known as multi-population strategy, is a popular
algorithm-optimization method for increasing population diversity. The main idea is
to divide the initial population into several subpopulations. The subpopulations were
searched independently after initialization and communicated with other subpopulations
according to certain conditions. For parallel strategies, the inter-group communication

Mathematics 2023, 11, 2953 7 of 25

strategy is critical. Because the number of individuals in the subpopulation is reduced,
the algorithm easily falls into the local optimum via independent search. Excellent inter-
group communication strategies can make subpopulations gain the ability to escape the
local optimum and effective communication strategies enable populations to exchange
a small amount of information while improving their search ability. Chai proposed the
tribal annexation communication strategy and herd mentality communication strategy
to improve the searching ability of the whale optimization algorithm [3]. Tsai used the
Taguchi communication strategy to enhance the search capability of the cat swarm opti-
mization algorithm [24]. The above scheme demonstrates the diversity of communication
strategies for different algorithms. In this paper, a suitable communication strategy is
proposed according to the characteristics of the GSK algorithm. Specifically, the Taguchi
communication strategy and the population-merger communication strategy were used.

2.3. Opposition-Based Learning

OBL was proposed by Tizhoosh (2005) [27], which is fundamentally based on estimates
and counter estimates. OBL can modify the convergence direction of the algorithm and
improve the search accuracy of the algorithm. In order to get close to the optimal position
quickly, we generally want the population to be near it. However, the initial populations
are generated randomly and it may be far from the optimal position or even the exact
opposite. As a result the algorithm converges so slowly that it does not converge to near
the optimal solution under the specified conditions. The main idea of OBL is to find the
opposite position of the random initial population, evaluate it and select the better position
to replace the initial population. Furthermore, during the population updating process, the
position of the current individual and its opposite are evaluated and the better individuals
are left.

Definition 1 (Opposite Number [27]). Let x be a real number defined in the interval [a,b], then
the Opposite Number xop of x is defined by the following equation:

xop = a + b− x (4)

Definition 2 (Opposite Point [27]). Let P (x1, x2, . . . , xn) be a point in an n-dimensional
coordinate system with (x1, . . . , xn) being real numbers, where each of xj is defined in the interval
[aj, bj]. Then, the Opposite Point Pop (xop

1 , xop
2 , . . . , xop

n) is defined by the following equation:

xop
j = aj + bj − xj (5)

In the actual search process, the search space usually changes dynamically, the Oppo-
site Point Pop

i = ((xop
i1 , xop

i2 , . . . , xop
in)) of Pi is defined by the following equation; Pi belongs to

the population P = (P1, P2, . . . , Pn).

amin
j = min(Pi,j) i = 1, 2, . . . , n (6)

bmax
j = max(Pi,j) i = 1, 2, . . . , n (7)

xop
i,j = amin

j + bmax
j − xi,j (8)

2.4. Resource-Scheduling Problem of the IoV

With intelligent transportation and smart city development, the IoV has received
more and more attention. Based on the information interaction between the on-board
unit and the roadside unit, a successful architecture of the IoV is formed. In this process,
due to roadside unit deployment, own resource limitation and network delay, it may not
guarantee satisfactory QoS for users. In this case, the most likely bottleneck is the proper

Mathematics 2023, 11, 2953 8 of 25

scheduling of resources [39]. Therefore, we need a scheduling algorithm to distribute the
user workload into the RSUs. The algorithm must be based on resource capacity and solve
the problem of over- and underutilization [6]. The algorithm should take into account
the available resources and work to improve QoS. Based on practical considerations, the
performance of the algorithm can be evaluated by resource utilization, load balancing,
maximum completion time, execution cost, power consumption, reliability and other
indicators.

To improve the computing capabilities of mobile devices, edge computing transfers
computation-intensive applications from resource-constrained smart mobile devices to
nearby edge servers with computational capabilities [40]. Bin Cao proposed a space–
air–ground-integrated network (SAGIN)-IoV edge-cloud architecture based on software-
defined networking (SDN) and network function virtualization (NFV) [36] that takes into
consideration that the actual user needs to establish an optimization model. Yao proposed
a big data-based heterogeneous Internet of Vehicles engineering cloud system resource
allocation optimization algorithm [39]. Filip proposed a new model for scheduling mi-
croservices over heterogeneous cloud-edge environments [41]. This model aims to improve
the resource utilization of edge computing equipment and reduce cost. Farid M proposed a
new multi-objective scheduling algorithm with fuzzy resource utilization (FR-MOS) for
scheduling scientific workflow based on the PSO method [6]. This algorithm’s primary
objective is to minimize cost and makespan in consideration of reliability constraints, where
the constraint coefficient is determined by cloud resource utilization.

Existing resource-scheduling algorithms generally account for a variety of usage
scenarios. In our proposed case study, we recognize that it is practical to employ these
existing methods. In this article, service delay, resource utilization, load balancing and
security are considered simultaneously and an optimization model is constructed.

3. Proposed Algorithm and Its Application
3.1. Parallel Communication Strategy

Choosing a suitable communication strategy is critical in parallel strategy since it
facilitates information exchange between two groups, thereby enhancing their search
capabilities. In this paper, two primary communication strategies are used. The first
primary communication strategy is controlled by the communication control factor R. If
the random number generated in the communication is greater than R, all groups will be
matched in pairs and the following Taguchi communication will be performed:

1. Select the optimal solution of the two groups and select the appropriate orthogonal
table based on the number of levels and factors. For example, the experiment is two-level if
it contains two candidates and is seven-factor if each candidate in the experiment contains
seven influencing factors. Conduct the experiment according to the orthogonal table and
calculate the fitness value for each new individual.

2. In each dimension, calculate the fitness sum of the two levels separately. For each
dimension, select the level with better fitness as a candidate. Combine the candidates to
produce an optimal individual.

When the random number is less than R, the optimal solutions within all groups are
compared with the global optimal solution using the following steps:

1. If it is worse than the global optimal solution, the intra-group optimal solution is
replaced by the global optimal solution.

2. If it is better than or equal to the global optimal solution, a random mutation
operation is performed.

Every individual has the potential to excel in some dimensions. The Taguchi method
can efficiently excavate these excellent dimensions and then combine them together. The

Mathematics 2023, 11, 2953 9 of 25

communication process described above will be visualized through an example. The fitness
function is assumed to be:

f (x) =
n

∑
i=1

x2 (9)

Suppose the search goal is to find the smallest fitness value. The two candidate
individuals are shown in Table 1. The Taguchi orthogonal experiment is a two-level
seven-factor experiment that employs the L8(27) orthogonal table shown in Equation (3).
Table 2 depicts the specific operation process. The cumulative fitness value of the two
candidate solutions in the table is calculated based on whether the solution is selected in
the orthogonal table. In the first dimension of Table 2, the candidate solution x2 was used
in experiments 5 to 8, the cumulative fitness value for the first dimension of x2 is the sum
of the fitness values from 5 to 8 experiments.

Table 1. The position of the candidate individuals.

Position
Dimension

1 2 3 4 5 6 7 Fitness Value

x1 0 1 1 0 0 1 0 3
x2 1 0 0 1 1 0 1 4

Table 2. The Taguchi method is used to produce better individuals.

Experiment Number
Dimension

1 2 3 4 5 6 7 Fitness Value

1 0 1 1 0 0 1 0 3
2 0 1 1 1 1 0 1 5
3 0 0 0 0 0 0 1 1
4 0 0 0 1 1 1 0 3
5 1 1 0 0 1 1 1 5
6 1 1 0 1 0 0 0 3
7 1 0 1 0 1 0 0 3
8 1 0 1 1 0 1 1 5

x1 cumulative fitness value 12 16 16 12 12 16 12 -
x2 cumulative fitness value 16 12 12 16 16 12 16 -
Selected dimension source x1 x2 x2 x1 x1 x2 x1 -

Position of the new individual 0 0 0 0 0 0 0 0

In addition, this paper employs the population-merger communication strategy as the
second primary communication strategy. In a swarm intelligence algorithm with parallel
strategies, multiple subpopulations search independently and communicate with each
other at intervals. The parallel strategy increases the diversity of the algorithms, but
reduces the number of individuals in each subpopulation and some algorithms require
more individual data for search. This conflict weakens the performance of the algorithm.
After testing, the search performance of the original GSK algorithm was significantly
reduced when the algorithm was divided into several subpopulations. In order to solve the
above problem, the population-merger communication strategy was adopted. Specifically,
each subpopulation searched independently in the early stage of the algorithm. Once a
specific condition is met, the two adjacent subpopulations combine into one population.
The newly formed population incorporates all the information from both subpopulations.
Finally, before the end of the algorithm, all the individuals are merged into one population,
which contains all the information of the original subpopulation. In the first stage of this
paper, the initial GSK population was divided into four groups. In the second stage, the
four groups were merged into two groups. In the third stage, the two groups are merged
into one group. The condition of merger refers to the number of fitness functions.

Mathematics 2023, 11, 2953 10 of 25

3.2. Incorporate OBL into GSK

There are two primary steps involved in adding OBL to GSK. Using OBL, optimize the
initial population as the first step. In the second step, the opposite population is generated
to correct the convergence direction.

For the original algorithm (GSK), the initial population is randomly generated within
a defined range. The initial individuals thus generated may be too far away from the global
optimal position. The utilization of the OBL strategy enables the generation of a population
closer to the optimal position, thereby facilitating more effective algorithm optimization.
The steps in detail are as follows:

1. Initialize the population X = {x1, x2, . . . , xn} randomly according to the defined
range, n denotes the number of individuals in the population. Generate the opposing
population Xop = {xop

1 , xop
2 , . . . , xop

n } with the following formula:

xop
i,j = aj + bj − xi,j i = 1, 2, . . . n; j = 1, 2, . . . , D; (10)

where aj represents the upper bound of the current dimension and bj represents the lower
bound.

2. Select individuals with excellent fitness from {xi, xop
i } and combine them into NP,

taking NP as the initial population.
In the process of population updating, by using similar methods to generate the

opposite population and for evaluation, the current population can be guaranteed to be
closer to the global optimal position. The probability of generating an opposing population
can be controlled by adjusting the jump rate r. The steps in detail are as follows:

1. After each update of the population, a random number is generated to compare
with the jump rate r. If the random number is less than r, the opposite population of the
current population will be generated, the following formula shows the process:

xop
i,j = maxj + minj − xi,j i = 1, 2, . . . n; j = 1, 2, . . . , D; (11)

where maxj represents the maximum value of the j dimension in the current population
and minj represents the minimum value.

2. Current and opposing populations are combined, and the fitness is tested separately.
Then, the fittest individuals are selected from {xi, xop

i }.
In this paper, several different approaches are considered for integration with GSK

and Figure 1 illustrates the process. In POGSK, the initial population is divided into
four subpopulations after OBL optimization and the four subpopulations independently
conduct GSK and communicate with each generation according to the Taguchi method.
After updating the current population, the OBL operation is performed. The pseudocode
for POGSK is shown in Algorithm 4. Moreover, in order to demonstrate the POGSK process
more visually, Figure 2 shows its main processes.

Figure 1. The approaches of POGSK.

Mathematics 2023, 11, 2953 11 of 25

Algorithm 4: POGSK pseudo-code
nfes = 0, t = 0, initialize parameters: MAXne f s, K f , Kr, K, R, L, r and G.
Creat a random initial population {xi}, i = 1, 2, . . . , N.
Calculate the opposition population {xop

i } according to Equation (10), i = 1, 2, . . . ,
N.

Evaluate f (xi) and f (xop
i), i = 1, 2, . . . , N.

Select NP fittest solutions from {xi, xop
i } as the initial population. The population is

divided into G groups. Update intra-group best and update global best.
while nfes < MAXn f ex do

t = t + 1;// into the next generation
for g = 1: G do

compute the number of (gained and shared dimensions of both phases)
using experience Equation (1) and Equation (2);

//Junior gaining–sharing knowledge phase//
//Senior gaining–sharing knowledge phase//
Evaluate f (xnew

i), i = 1, 2, . . . , N
for i = 1: N/G do

if f(xnew
i) < f(xold

i) then
xold

i = xnew
i , f (xold

i) = f (xnew
i)//update intra-group best

end
if f(xnew

i) < f(xbest
G) then

xbest
G = xnew

i , f (xbest
G) = f (xnew

i)//update global best
end

end
end
if t = nL (n = 1, 2, 3, . . .) then

communicate between groups.
end
if the first reduction group number condition is met then

four groups are combined into two groups
end
if the second reduction group number condition is met then

two groups are combined into one group
end
if rand < r then

Calculate the opposition population {xop
i } according to Equation (11), i = 1,

2, . . . , N.
Select the fittest solutions from {xi, xop

i } as the current population.
Update intra-group best and update global best

end
end

3.3. Apply the POGSK to Solve the Resource-Scheduling Problem in IoV

In order to reasonably allocate the resources of RSUs in IoV and enhance the QoS, this
paper proposes the following mathematical model. Assume that there are multiple vehicles
on the road and a total of n tasks are submitted simultaneously and each task contains
four attributes: (1) the size of the task; (2) deadlines for tasks; (3) type and quantity of
resources required; (4) the transfer time of the submitted work. The n tasks are represented
as follows [36]:

T = {Ti}(i = 1, 2, .., n) (12)

Mathematics 2023, 11, 2953 12 of 25

NO

YES

YES

NO

Figure 2. The flowchart of POGSK.

Suppose that there are m processing nodes in the current scenario. Each processing
unit contains two attributes: (1) type and quantity of resources owned by the processing
unit and (2) the processing capacity of the processing unit. The m processing nodes are
represented as follows [36]:

P = {Pj}(i = 1, 2, .., m) (13)

• Service delay
In order to provide users with faster services, service latency should be as short as
possible. A processing node can handle multiple tasks simultaneously, with different
processing capabilities for each node. Then, the processing time of a task on the
processing node is [36]

DOPj
i =

Si
Hj

(14)

where Si represents the size of the task Ti and Hj represents the processing capability
of the processing node Pj. Then, the time required for a processing node to complete
all the tasks assigned to it is

PTj =
n

∑
i=1

DOPj
i ∗ C(i, j) (15)

Mathematics 2023, 11, 2953 13 of 25

where C(i,j) is a binary value and indicates whether task Ti is assigned to node Pj,
denoted as

C(i, j) =

{
0, otherwise.
1, Ti is assigned to Pj

(16)

The sum of the processing delays of all nodes is

FT =
m

∑
j=1

PTj (17)

• Resource utilization
According to research, the energy consumption of the server in the idle state can
account for more than 60% of the full load operation [42], which leads to a large
amount of energy wasted on the idle server. So we want the roadside unit to be as
resource-efficient as possible. The service request in the IoV requires the support of
four kinds of computer resources, namely CPU, memory, disk and bandwidth. We
need to pay attention to all four sources. Then, the total resource utilization is

FU =
∑n

i=1 ∑4
k=1 CR(i, j)

∑m
j=1 ∑4

k=1 (PNj ∗ PR(j, k))
(18)

where CR(i,k) represents the number of resourcesk required by Ti, PR(j,k) represents
the number of resourcesk owned by Pj and PNj is a binary value indicating whether Pj
is turned on or not (k = 1,2,3,4 represents four resources).

PNj =

{
0, otherwise.
1, Pj is running

(19)

• Load balancing
The service request in the IoV has different demands on different resources; it is
easy to cause the load of different types of resources to be unbalanced. A valuable
load-balancing technique in cloud computing can enhance the accuracy and efficiency
of cloud computing performance [43]. So we want the processing unit to be as load-
balanced as possible. Then, the utilization of resourcek in Pj is

uk
j =

∑n
i=1 (CR(i, j) ∗ C(i, j))

PR(j, k)
(20)

where C(i,j) is calculated using Equation (16). The mean of resource utilization of Pj is

MUj =
∑4

k=1 uk
j

4
(21)

The variance of resource utilization of Pj is

VUj =
∑4

k=1 (u
k
j −MUj)

4
(22)

The average resource utilization variance for all processing units is

FN =
∑m

j=1 (VUk
j ∗ PNj)

z
(23)

where PNj is calculated by Equation (19) and z represents the number of processing
units opened.

• Security
In the IoV, tasks must be completed on schedule to ensure safety, as service requests
are made at high speeds. In real scenarios, the network latency and security of the task
is important [6,44]. Task deadlines will be sent with task submissions and we want

Mathematics 2023, 11, 2953 14 of 25

as many tasks as possible to be completed on time. Then, the actual time required to
complete the task is

psi = DOPj
i + TL(i, j) (24)

where DOPj
i is calculated with Equation (14) and TL(i,j) represents the transmission

buffer time from Ti to Pj. Then, whether the task is completed on time is expressed as
a binary value:

Si =

{
0, csi < psi.
1, csi ≥ psi

(25)

where csi indicates the deadtime of Ti, which is uploaded when the task is submitted.
Then, we express the degree of security as the successful execution rate of the task.

FS =
∑n

i=1 Si

n
(26)

Considering the above four objectives, we propose the following fitness function:

f itness = a ∗ FT +
b

FU
+ c ∗ FN +

d
FS

(27)

For processing unit Pj, the number of various resources required by all the tasks
running on it is not permitted to exceed the number of resources owned by the unit. The
workflow is shown in Figure 3. The constraint conditions are:

n

∑
i=1

(C(i, j) ∗ CR(j, k)) < PR(j, k)

j = 1, 2, . . . , m; k = 1, 2, 3, 4

(28)

Figure 3. Scheduling model.

4. Results
4.1. Simulation Results on CEC2017

Single objective optimization algorithms are the basis of the complex optimization
algorithm. It is considered effective to test with some classical mathematical functions.
CEC2017 contains 30 benchmark functions to test the optimization ability of the algorithm.
The F2 function was abandoned because of the dimension-setting problem. F1 and F3

Mathematics 2023, 11, 2953 15 of 25

are Unimodal Functions, F4–F10 are Simple Multimodal Functions, F11–F20 are Hybrid
Functions, F21–F30 are Composition Functions. Set error = (fi− f ∗i) as the objective function,
where fi is the actual value of the ith test function and f ∗i is the minimum value of the ith
test function. The optimization goal is to make the error as small as possible. Values of
error and standard deviations less than 10−8 are considered as zero [35].

In this paper, POGSK is compared with the original algorithm GSK, PSO, DE and
GWO. The Taguchi strategy in POGSK results in additional fitness function calls in each
population generation. So for the sake of fairness, in this paper, the termination condition of
the algorithm is set to the maximum number of function evaluations (NEFS) which is set to
10,000*problem_size. For example, the NEFS in a test with 30 variables is 300,000 times. The
population size is set to 100 and the range of all test function solutions is set to [−100, 100].
Conduct 31 independent experiments each time to avoid special circumstances. The best
results are marked in bold for all problems. The basic parameter settings of each algorithm
are shown in Table 3.

Table 4 shows experimental results of POGSK, GSK and DE over 31 independent runs
on 29 test functions of 10 variables under CEC2017. Table 5 shows the experimental results
of POGSK, GWO and PSO. Compared with the original algorithm GSK, POGSK obtains
excellent results in 26 test functions, five of which reach the minimum value of the test
function. In contrast to DE, POGSK obtains excellent results on 23 functions. In contrast to
GWO, POGSK obtains excellent results on 25 functions. In contrast to PSO, POGSK obtains
excellent results on 25 functions. In addition, it is worth noting that POGSK obtained
9 times better results on functions 21–30. This shows that it has excellent search ability on
Composition Functions.

Table 3. Parameter settings of each algorithm.

Algorithms Parameters Settings

POGSK G = 4, R = 0.5, L = 1, r = 0.1, K f = 0.5, Kr = 0.9, K = 1
GSK K f = 0.5, Kr = 0.9, K = 1
PSO Vmax = 6, Vmin = −6, wMax = 0.9, wMin = 0.2, c1 = c2 = 2
DE betamin = 0.2, betamax = 0.8, pCR = 0.2

GWO −→
d = 2 (linearly decreased over iterations)

Table 4. Experimental results of POGSK, GSK and DE over 31 independent runs on 29 test functions
of 10 variables under CEC2017.

Function
POGSK GSK DE

Mean Std Mean Std Mean Std

1 0 0 0 0 1243.046 917.0439
3 0 0 0 0 1521.115 622.8467
4 0 0 0 0 6.037244 0.307901
5 17.48551 4.653999 20.50791 3.041351 9.710514 1.981759
6 0 0 0 0 0 0
7 29.31611 4.914915 30.33268 3.706216 20.85221 1.880978
8 17.00134 4.4744 19.45566 3.871004 9.794002 1.752965
9 0 0 0 0 0 0

10 930.7502 187.4053 1022.488 101.7212 492.0772 107.547
11 0.288859 0.459088 0 0 3.254768 0.650172
12 102.7016 87.50214 80.9387 62.50609 162,272.8 84,043.21
13 4.39938 2.902828 6.489874 1.622716 1247.31 1044.067
14 0.87396 0.883004 5.982104 2.986793 26.23902 20.65982
15 0.15139 0.27689 0.313974 0.29665 28.17154 24.51716
16 0.99709 2.036369 2.917096 4.299084 3.314234 1.910263
17 1.82295 3.702029 9.250251 6.796455 1.89604 0.899154

Mathematics 2023, 11, 2953 16 of 25

Table 4. Cont.

Function
POGSK GSK DE

Mean Std Mean Std Mean Std

18 1.67142 4.206737 1.673515 5.02943 967.1823 585.524
19 0.0497 0.056623 0.104905 0.114554 27.60279 33.09174
20 0.446523 0.312835 0.414759 0.211807 0 0
21 176.3012 57.57345 193.0073 51.14463 161.4336 36.74808
22 95.8506 16.53658 100.3894 0.814027 97.40993 9.366758
23 306.122 2.840924 317.7665 3.307184 312.0515 2.093624
24 306.697 81.28064 341.4343 21.0113 316.2438 39.04365
25 399.464 8.161678 427.1743 21.27511 410.4391 9.406591
26 296.774 17.96053 300 2.99E−13 300.5042 52.62727
27 389.217 0.239349 389.5044 0.052422 389.5575 0.2579
28 300 2.67E−13 303.1151 17.34415 430.3714 69.26502
29 243.926 5.174707 248.3445 5.043812 263.9279 8.011281
30 445.736 38.26841 7363.998 38,494.24 13,511.91 7149.584

Win - - 26 15 23 18
Lose - - 3 14 6 11

Table 5. Experimental results of POGSK, PSO and GWO over 31 independent runs on 29 test functions
of 10 variables under CEC2017.

Function
POGSK GWO PSO

Mean Std Mean Std Mean Std

1 0 0 4,497,091 11,601,735 1159.397 1605.775
3 0 0 259.1001 389.8524 0 0
4 0 0 9.201156 5.959095 3.91603 12.5333
5 17.48551 4.653999 13.25237 7.436721 28.50068 9.743601
6 0 0 0.464612 0.881753 4.077067 3.713828
7 29.31611 4.914915 26.10298 8.270842 21.02474 6.645744
8 17.00134 4.4744 11.49256 4.369928 15.46999 6.8877
9 0 0 3.344128 8.094291 0 0

10 930.7502 187.4053 455.7428 250.51 793.989 304.649
11 0.288859 0.459088 19.59614 25.7201 23.76794 11.81411
12 102.7016 87.50214 480,552.9 684,130.6 12,243.2 11,168.19
13 4.39938 2.902828 8697.586 4995.097 7018.655 5919.406
14 0.87396 0.883004 1108.531 1650.036 78.09055 101.3466
15 0.15139 0.27689 1291.43 1574.817 238.5524 322.1582
16 0.99709 2.036369 77.88443 69.76017 212.4675 118.4518
17 1.82295 3.702029 44.01848 19.88944 43.69786 25.65489
18 1.67142 4.206737 28,538.6 14,703.86 8380.526 5920.313
19 0.0497 0.056623 4300.029 5439.223 619.0984 767.2034
20 0.446523 0.312835 51.83766 39.56463 63.11953 46.19121
21 176.3012 57.57345 208.0848 19.82006 173.3363 63.70194
22 95.8506 16.53658 103.3866 17.3914 102.3462 0.964004
23 306.122 2.840924 315.7259 7.263185 361.6049 72.55207
24 306.697 81.28064 337.3761 43.27372 348.4116 106.5231
25 399.464 8.161678 439.6042 13.4442 425.0482 23.00597
26 296.774 17.96053 355.5426 169.6211 367.0571 174.7731
27 389.217 0.239349 397.2865 17.07097 432.788 42.47196
28 300 2.67E−13 537.1552 99.1675 377.7298 48.39093
29 243.926 5.174707 275.9368 34.50598 308.0478 38.2051
30 445.736 38.26841 601,218.1 684,207.6 4893.086 3573.952

Win - - 25 26 25 28
Lose - - 4 3 4 1

Mathematics 2023, 11, 2953 17 of 25

Table 6 shows the experimental results of POGSK, GSK and DE over 31 independent
runs on 29 test functions of 30 variables under CEC2017. Table 7 shows the experimental
results of POGSK, GWO and PSO. Compared with the original algorithm GSK, POGSK
obtains excellent results in 20 test functions, five of which reach the minimum value of the
test function. In contrast to DE, POGSK obtains excellent results on 26 functions. Compared
with GWO, POGSK obtains excellent results on 28 functions. In contrast to PSO, POGSK
obtains excellent results on 25 functions. Furthermore, it is worth noting that POGSK
obtained 7 times better results on functions 21–30. This again validates its excellent search
ability on combinatorial functions.

Table 6. Experimental results of POGSK, GSK and DE over 31 independent runs on 29 test functions
of 30 variables under CEC2017.

Function
POGSK GSK DE

Mean Std Mean Std Mean Std

1 0 0 0 0 565.1619 467.5469
2 0.1710225 0.951944 1.27E−07 3.59E−07 78,485.43 11,969.56
3 2.3896 2.00382 8.0680906 15.72576 88.87305 1.39142
4 32.70072 9.603168 157.06186 10.58822 129.9884 9.275313
5 4.78E−05 7.06E−05 6.48E−07 1.44E−06 0 0
6 110.9293 59.25905 184.5384 10.80525 163.7576 10.61515
7 31.70902 9.949111 157.84376 8.553038 130.7675 8.930799
8 1.3961111 0.964445 0 0 0 0
9 6640.146 352.1547 6773.1382 280.2139 5270.445 300.3687

10 15.3527 8.172784 32.010214 37.36949 110.2576 10.49883
11 7473.1514 4191.488 5872.033 3954.488 4,064,732 1,326,017
12 68.10246 33.29562 97.603211 38.84956 146,977.1 70,134.12
13 47.58591 13.26488 56.580342 4.594124 59,985.92 29,927.38
14 32.795131 16.27245 16.78781 10.92508 20,442.66 11,240.16
15 225.2992 208.1208 795.64371 166.3631 588.2006 138.6957
16 47.13605 16.82453 198.98593 92.83664 162.9097 38.25502
17 104.56587 64.00951 36.67658 8.700766 424,098.9 151,960.3
18 22.242391 8.28202 10.97738 4.416147 19,255.23 9427.15
19 62.56111 50.53387 68.739206 65.88684 173.8984 49.83044
20 234.2304 20.45764 349.17774 8.751155 332.6374 8.650852
21 100.07935 0.441787 100 4.52E−13 1202.919 888.6275
22 374.781 6.959946 463.52232 59.16068 480.7536 7.607155
23 444.1957 6.710317 567.06927 29.46917 582.855 8.472587
24 385.91772 1.780967 386.92029 0.19508 387.3266 0.082705
25 685.0133 500.7473 1035.9259 330.0292 2326.135 82.41891
26 496.61134 7.400898 492.5301 7.147451 509.6858 2.319662
27 303.3373 18.54975 321.05968 43.75981 427.0414 13.69322
28 460.2316 41.83653 563.47372 111.3137 729.1611 76.50307
29 2045.674 80.2348 2080.6714 121.1253 20,973.93 6734.785

Win - - 20 12 26 15
Lose - - 9 17 3 14

To demonstrate the algorithm performance of each CEC2017 test problem for multiple
numbers of objective function evaluation allowances, we conducted further experiments
setting the algorithm termination conditions to 0.1*maximum NFES, 0.3*maximum NFES
and 0.5*maximum NFES. Continue using the basic parameters of each algorithm shown
in Table 3 without change. Table 8 shows experimental results of POGSK, GSK and PSO
over 31 independent runs on 10 variables for multiple numbers of objective function
evaluation. Table 9 shows experimental results of POGSK, GWO and DE. For presentation
purposes, only the mean fitness values for 31 independent runs of the algorithm are shown

Mathematics 2023, 11, 2953 18 of 25

in Tables 8 and 9. It can be observed that in comparison with the 1*max NFES termination
condition, POGSK still shows a strong optimization performance when NFES is reduced. It
is worth noting that POGSK shows a slight decrease in optimization performance compared
to the PSO algorithm. In particular, when NFES = 0.1*Max NFES, POGSK outperforms PSO
for only 18 functions. We believe this performance is reasonable because the optimization
capability of the POGSK algorithm is not fully utilized when NFES is reduced.

Table 7. Experimental results of POGSK, GWO and PSO over 31 independent runs on 29 test functions
of 30 variables under CEC2017.

Function
POGSK GWO PSO

Mean Std Mean Std Mean Std

1 0 0 1.065E+09 9.63E+08 2399.513 3445.498
3 0.1710225 0.951944 28,199.902 10,867.38 0.059275 0.066189
4 2.3896 2.00382 160.71215 47.20044 60.0721 28.92923
5 32.70072 9.603168 78.084404 18.62267 152.9662 25.34413
6 4.78E−05 7.06E−05 4.5010838 2.508565 31.18878 7.532825
7 110.9293 59.25905 136.85245 23.06388 117.7735 23.32769
8 31.70902 9.949111 73.037706 18.75822 115.3826 25.07128
9 1.3961111 0.964445 524.43328 280.1444 2084.344 424.3998

10 6640.146 352.1547 2822.749 522.9234 3384.133 730.3928
11 15.3527 8.172784 296.75347 137.9677 90.02398 17.27491
12 7473.1514 4191.488 28,314,824 40,351,462 49,597.69 29,308.71
13 68.10246 33.29562 5,377,176.9 23,990,313 11,223.13 12,434.89
14 47.58591 13.26488 109,516.46 312,614.9 7271.957 5769.247
15 32.795131 16.27245 309,301.92 786,455 6660.235 7995.343
16 225.2992 208.1208 673.1389 239.9596 1021.81 208.1095
17 47.13605 16.82453 224.34632 107.809 518.3412 162.6259
18 104.56587 64.00951 449,259.69 471,076.9 113,207.1 84,886.55
19 22.242391 8.28202 680,051.23 1,796,562 10,046.08 14,864.67
20 62.56111 50.53387 316.20714 113.958 425.1631 129.9895
21 234.2304 20.45764 269.79579 15.67731 324.6484 26.97333
22 100.07935 0.441787 2207.2882 1473.069 1253.874 1862.064
23 374.781 6.959946 430.27783 38.0415 708.1221 116.4942
24 444.1957 6.710317 514.80412 50.32647 778.1768 72.14411
25 385.91772 1.780967 455.40908 24.09939 379.621 6.204345
26 685.0133 500.7473 1924.7685 304.0471 3503.61 1534.257
27 496.61134 7.400898 533.23588 12.11012 494.1057 71.15496
28 303.3373 18.54975 562.25313 62.77035 371.5156 61.83288
29 460.2316 41.83653 781.81747 149.2681 917.2247 292.7391
30 2045.674 80.2348 4,740,432.9 4,505,133 3024.257 4562.477

Win - - 28 26 25 26
Lose - - 1 3 4 3

To better visualize the performance of POGSK, the convergence curves of the nine
benchmark functions on 10 variables are shown in Figure 4 and the convergence curves
of the nine benchmark functions on 30 variables are shown in Figure 5. The convergence
curves of POGSK on functions 1–10 of 10 variables are not shown much because unimodal
functions and simple multimodal functions are too simple to distinguish the search capa-
bility in the case of a few variables. We can see that in the middle and late stages of the
algorithm, POGSK shows its powerful search ability to effectively avoid local optima. This
reflects the fact that the addition of the OBL strategy and parallel strategy significantly
enhances the search capability of the original algorithm. Through the above experimental
comparison, it can be determined that POGSK has better capability in the CEC2017 test
suite compared with GSK, PSO, DE and GWO.

Mathematics 2023, 11, 2953 19 of 25

Table 8. Experimental results of POGSK, GSK and PSO over 31 independent runs on 10 variables for
multiple numbers of objective function evaluation.

Function
POGSK GSK PSO

0.1*Max 0.3*Max 0.5*Max 0.1*Max 0.3*Max 0.5*Max 0.1*Max 0.3*Max 0.5*Max

1 65,168.64 0.008729 9.00E−08 198,621.8 0.148295 1.24E−07 1507.631 1841.959 1481.528
3 1072.874 0.020955 1.37E−09 1258.366 0.150523 3.43E−08 3.622942 1.32E−06 0
4 4.46869 0.156832 0.000642 4.782125 0.0252 1.26E−05 6.788089 9.600704 4.619372
5 35.91597 28.17189 22.91988 35.00533 29.01222 23.6099 31.58184 30.49059 29.62402
6 0.67712 0.000231 3.46E−07 1.131835 0.001475 9.12E−06 9.346549 4.068655 5.220518
7 46.40205 36.92188 34.41898 50.00724 37.96985 34.8906 28.87082 24.42772 23.73282
8 34.3193 26.88238 22.69993 36.83458 28.55074 26.63988 17.84513 15.91932 14.53922
9 0.335181 0 0 1.190911 0 0 17.39665 6.587552 6.853679

10 1532.095 1315.312 1128.588 1525.435 1311.749 1192.912 837.2588 806.28 762.448
11 11.17021 5.209862 1.532807 12.14115 5.79704 3.51912 26.16613 28.79452 25.05342
12 91,453.6 486.7377 199.4322 164,573.9 617.8236 179.6806 30,604.58 11,899.81 16,792.79
13 47.41327 12.20971 8.403044 60.55603 11.71106 9.488802 6398.473 9347.321 6564.624
14 27.46006 19.86859 11.84031 28.9843 18.29269 15.361 1203.128 558.986 266.1244
15 9.511309 2.529362 0.612543 10.67048 2.489827 0.667059 2532.754 1061.556 548.5125
16 83.47293 19.34939 4.684275 91.10372 36.5609 13.88171 216.4358 208.4391 229.0174
17 71.5188 30.70673 18.47544 85.25013 44.12263 29.57548 49.02151 50.02125 45.54325
18 74.44131 14.67361 5.338491 162.1569 15.29351 4.686504 13,029.71 8474.698 8372.767
19 6.425225 1.749615 0.682905 7.216083 1.944351 0.892702 3491.462 2753.934 2199.245
20 68.77453 11.38535 1.397734 81.44863 21.28738 3.679158 97.71285 83.91263 75.89307
21 188.5297 184.346 189.9476 209.0319 202.3022 178.1039 171.7462 178.0085 189.2755
22 103.8606 100.5495 100.2226 105.9777 102.3459 101.2098 131.0425 96.96854 135.8181
23 335.3295 325.8999 317.8954 335.7887 327.2087 323.999 377.3523 369.7106 371.4575
24 357.042 341.9053 316.7562 361.736 347.599 348.096 330.8915 320.122 347.5205
25 403.4286 409.5803 404.0327 420.6563 426.9033 422.8455 415.486 420.797 423.8288
26 302.3367 296.7742 296.7742 301.0423 300 300 395.6739 392.4169 469.6308
27 391.4686 389.2144 389.2638 391.1973 389.4444 389.4419 446.6022 436.6223 439.4359
28 383.6587 300.0077 303.8159 432.3408 312.2833 300 405.3951 389.2501 350.7108
29 310.7228 273.0201 257.9113 311.5873 277.9013 266.0836 319.5175 320.2717 321.4858
30 11,6124.7 735.7863 508.8163 169,420.9 26,998.33 474.5937 73,193.34 14,707.45 9126.257

win - - - 25 24 23 18 22 24
lose - - - 4 5 6 11 7 5

Table 9. Experimental results of POGSK, GWO and DE over 31 independent runs on 10 variables for
multiple numbers of objective function evaluation.

Function
POGSK GWO DE

0.1*Max 0.3*Max 0.5*Max 0.1*Max 0.3*Max 0.5*Max 0.1*Max 0.3*Max 0.5*Max

1 65,168.64 0.008729 9.00E−08 2,346,406 1417856 9.565626 16,135,020 20,544.91 4898.193
3 1072.874 0.020955 1.37E−09 2051.369 948.2263 0.752611 14,530.99 8845.123 5727.654
4 4.46869 0.156832 0.000642 22.33487 11.35453 29.34763 12.85429 6.929505 6.505718
5 35.91597 28.17189 22.91988 18.45571 12.63573 13.74093 30.60479 18.81837 14.40469
6 0.67712 0.000231 3.46E−07 1.228019 0.823463 3.763687 1.810073 0.001324 6.07E−07
7 46.40205 36.92188 34.41898 37.21266 29.32247 506.0761 44.70667 30.20338 25.16062
8 34.3193 26.88238 22.69993 15.91906 15.30446 21.20127 31.77074 20.53481 14.54278
9 0.335181 0 0 6.672216 8.604824 522,798.1 41.7464 0.017794 2.17E−07

10 1532.095 1315.312 1128.588 677.9308 573.4273 11,452.42 1210.891 851.5756 702.4145

Mathematics 2023, 11, 2953 20 of 25

Table 9. Cont.

Function
POGSK GWO DE

0.1*Max 0.3*Max 0.5*Max 0.1*Max 0.3*Max 0.5*Max 0.1*Max 0.3*Max 0.5*Max

11 11.17021 5.209862 1.532807 30.60828 31.73361 1246.452 47.17272 8.057127 5.097437
12 91,453.6 486.7377 199.4322 1,407,448 643,050.9 2140.969 6,603,038 1,351,308 594,344.9
13 47.41327 12.20971 8.403044 11065.19 12,549.47 90.00417 16,654.35 4276.951 1909.666
14 27.46006 19.86859 11.84031 2450.4 1269.145 52.02613 961.5601 184.9314 110.3554
15 9.511309 2.529362 0.612543 5154.414 3513.667 25,350.52 1426.507 236.2673 121.9112
16 83.47293 19.34939 4.684275 118.3694 120.0137 4220.433 96.57352 22.84995 9.823819
17 71.5188 30.70673 18.47544 68.63565 61.1111 60.51609 53.16403 29.56227 14.18701
18 74.44131 14.67361 5.338491 24,579.32 25,987.05 201.3137 41,806.47 6779.277 2723.725
19 6.425225 1.749615 0.682905 9683.89 7409.389 106.6633 2030.003 296.4361 199.3466
20 68.77453 11.38535 1.397734 88.42235 71.2303 317.6138 37.92879 4.11068 0.002431
21 188.5297 184.346 189.9476 211.797 205.8708 342.6138 209.201 179.1673 172.5472
22 103.8606 100.5495 100.2226 111.9155 108.5442 436.9162 126.1442 102.526 101.7367
23 335.3295 325.8999 317.8954 323.4811 317.4113 369.5282 332.2919 319.7871 316.0538
24 357.042 341.9053 316.7562 354.3611 335.1408 398.7922 361.1658 352.334 343.8135
25 403.4286 409.5803 404.0327 439.5899 433.9101 552.888 450.7069 431.3259 420.7792
26 302.3367 296.7742 296.7742 370.8195 374.8314 275.9333 541.4581 399.4515 350.68
27 391.4686 389.2144 389.2638 396.9011 394.4558 852,804.2 397.4228 391.6064 390.2805
28 383.6587 300.0077 303.8159 551.6053 539.1753 3358.777 549.7038 511.7699 488.9492
29 310.7228 273.0201 257.9113 299.4216 291.2249 3191.632 345.5497 296.2041 280.3842
30 116,124.7 735.7863 508.8163 491,702 795,289.2 255,507.2 285,465.2 70,612.38 32,384.37

win - - - 21 23 26 22 21 21
lose - - - 8 6 3 7 8 8

4.2. Simulation Results on Resource-Scheduling Problems

In this paper, we used the fitness function proposed in Section 3.3 to test the optimized
performance of POGSK in real scenarios. We consider the construction of an edge processing
system consisting of ten processing units. The size of the tasks to be processed is a random
distribution in the interval (0, 5] × 106 instructions. The maximum evaluation times were set
as 300,000 times and the population size as 100. In order to avoid exceeding the constraint,
the constraint test is carried out when the solution of the algorithm enters the fitness
function. Specific constraint testing steps are as follows:

1. Each individual is represented as Xi = {xi,1, xi,2, . . . , xi,m}, the assignment list {k1, k2,
. . . , km} is obtained by rounding each dimension of the individual. Ki = b indicates that
task i is assigned to node b. All nodes are traversed to find idle nodes and all nodes whose
resource utilization is lower than 50%. The idle queues F and low resource utilization
queues L are established, respectively. The node is traversed and the over-allocated node is
found. Queue Ej is established for the tasks on this node.

2. The tasks in queue Ej are redistributed to the nodes in queue L or to F if L is empty.
After each redistribution, the current node is checked to see if it is over-allocated. If not,
the current operation is stopped and the process returns to step 3 until all nodes have been
traversed. Based on the above results, the individuals need to be adjusted. For example,
xi,3 = 2.1 and k3 = 2. After the constraint test, k3 is adjusted to 6, then xi,3 is updated
randomly in the range [5.6, 6.4].

In this paper, we randomly generated 11 independent scenarios which submitted
30 tasks to the processing unit simultaneously. The best results are marked in bold for all
scenarios. Table 10 shows other experimental parameters. These experimental parameters
control the scene setting in the experiment. Each experiment was independently run
20 times. Table 11 shows the experimental performance of POGSK with GSK, GWO and
PSO. You can see that out of the 11 experiments, POGSK won nine times. POGSK achieved
excellent results in 9 scenarios compared to GSK. Compared with PSO, POGSK achieved

Mathematics 2023, 11, 2953 21 of 25

excellent results in 9 scenarios. Compared with GWO, excellent results were obtained
in 11 scenarios. This is due to the use of the parallel strategy and the OBL strategy. The
Taguchi communication strategy allows the original GSK to effectively avoid falling into a
local optimum. The population-merging communication strategy allows POGSK to not
weaken algorithm performance due to the reduction in the number of individuals in the
subpopulation. The use of the OBL strategy corrects the direction of convergence of the
algorithm and increases the speed of convergence.

0 1 2 3 4 5 6 7 8 9 10

NFES 10
4

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

F
it

n
e

s
s
 e

rr
o

r

Function10

GSK

POGSK

PSO

DE

GWO

0 1 2 3 4 5 6 7 8 9 10

NFES 10
4

-15

-10

-5

0

5

10

15

F
it

n
e

s
s
 e

rr
o

r

Function14

GSK

POGSK

PSO

GWO

DE

0 1 2 3 4 5 6 7 8 9 10

NFES 10
4

-4

-2

0

2

4

6

8

10

12

F
it

n
e

s
s
 e

rr
o

r

Function15

GSK

POGSK

PSO

GWO

DE

0 1 2 3 4 5 6 7 8 9 10

NFES 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

F
it

n
e

s
s
 e

rr
o

r

Function16

GSK

POGSK

PSO

GWO

DE

0 1 2 3 4 5 6 7 8 9 10

NFES 10
4

0

1

2

3

4

5

6

7

F
it

n
e

s
s
 e

rr
o

r

Function17

GSK

POGSK

PSO

GWO

DE

0 1 2 3 4 5 6 7 8 9 10

NFES 10
4

-4

-2

0

2

4

6

8

10

12

F
it

n
e

s
s
 e

rr
o

r

Function19

GSK

POGSK

PSO

GWO

DE

0 1 2 3 4 5 6 7 8 9 10

NFES 10
4

2

2.5

3

3.5

F
it

n
e

s
s
 e

rr
o

r

Function24

GSK

POGSK

PSO

GWO

DE

0 1 2 3 4 5 6 7 8 9 10

NFES 10
4

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

F
it

n
e

s
s
 e

rr
o

r

Function26

GSK

POGSK

PSO

GWO

DE

0 1 2 3 4 5 6 7 8 9 10

NFES 10
4

2

3

4

5

6

7

8

9

10

F
it

n
e

s
s
 e

rr
o

r

Function30

GSK

POGSK

PSO

GWO

DE

Figure 4. Convergence curves of 9 functions on 10 variables.

Mathematics 2023, 11, 2953 22 of 25

0 0.5 1 1.5 2 2.5 3

NFES 10
5

-3

-2

-1

0

1

2

3

4

5

6

F
it

n
e

s
s
 e

rr
o

r

Function4

GSK

POGSK

PSO

GWO

DE

0 0.5 1 1.5 2 2.5 3

NFES 10
5

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

F
it

n
e

s
s
 e

rr
o

r

Function5

GSK

POGSK

PSO

GWO

DE

0 0.5 1 1.5 2 2.5 3

NFES 10
5

1.5

2

2.5

3

3.5

4

F
it

n
e

s
s
 e

rr
o

r

Function7

GSK

POGSK

PSO

GWO

DE

0 0.5 1 1.5 2 2.5 3

NFES 10
5

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

F
it

n
e

s
s
 e

rr
o

r

Function8

GSK

POGSK

PSO

GWO

DE

0 0.5 1 1.5 2 2.5 3

NFES 10
5

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

F
it

n
e

s
s
 e

rr
o

r

Function9

GSK

POGSK

PSO

DE

GWO

0 0.5 1 1.5 2 2.5 3

NFES 10
5

1

2

3

4

5

6

7

8

9

F
it

n
e

s
s
 e

rr
o

r

Function17

GSK

POGSK

PSO

GWO

DE

0 0.5 1 1.5 2 2.5 3

NFES 10
5

1

2

3

4

5

6

7

8

9

10

11

F
it

n
e

s
s
 e

rr
o

r

Function18

GSK

POGSK

PSO

DE

GWO

0 0.5 1 1.5 2 2.5 3

NFES 10
5

2.6

2.8

3

3.2

3.4

3.6

3.8

F
it

n
e

s
s
 e

rr
o

r

Function24

GSK

POGSK

PSO

GWO

DE

0 0.5 1 1.5 2 2.5 3

NFES 10
5

2

2.5

3

3.5

4

4.5

5

F
it

n
e

s
s
 e

rr
o

r

Function26

GSK

POGSK

PSO

GWO

DE

Figure 5. Convergence curves of 9 functions on 30 variables.

Figure 6 shows the fitness function value as the number of test function call changes.
We can still see that POGSK performs well in avoiding local optimality. It shows that
POGSK also performs well in constrained realistic optimization problems.

Table 10. Experimental parameter settings.

Symbols Descriptions Values

Si Size of the ith task (0, 5] × 106 instr
Hj Processing capacity of the jth processing unit [0.5, 2] × 106 instr/ms

CR(i,k) The number of resourcesk required by Ti [0, 5]
PR(i,k) The number of resourcesk owned by Pj [5, 25]
TL(i,j) The transmission buffer time from Ti to Pj [0, 3] ms

csi Deadtime of Ti Si + [0, 3] ms

Mathematics 2023, 11, 2953 23 of 25

Table 11. A total of 30 tasks were assigned to 10 processing unit experiments.

Scenario
POGSK GSK PSO GWO

Mean Std Mean Std Mean Std Mean Std

1 5.718209 0.144952 5.855939 0.135115 6.053149 0.248256 8.991358 0.330173
2 6.329143 0.340846 6.485126 0.241881 6.265463 0.270268 9.997938 0.317971
3 5.981696 0.163071 6.003088 0.158414 6.339609 0.287226 9.344461 0.246512
4 5.212316 0.204313 5.36799 0.227842 5.917752 0.393545 8.974101 0.311377
5 5.245472 0.162959 5.326294 0.247776 5.428665 0.832814 9.157856 0.251572
6 5.624188 0.115448 5.789302 0.231226 6.21364 0.559447 9.555559 0.421648
7 6.661226 0.325418 6.793765 0.249867 6.975366 0.409818 10.00448 0.244958
8 5.158754 0.278578 4.992622 0.156462 5.53684 0.151473 8.233507 0.457459
9 5.567888 0.096427 5.70977 0.105788 5.874641 0.139983 8.946471 0.32081

10 5.828361 0.208058 5.929272 0.293122 6.330107 0.47567 9.343315 0.307779
11 5.677546 0.008842 5.558177 0.175736 5.274045 0.673208 9.222462 0.412783

Win - - 9 6 9 9 11 9
Lose - - 2 5 2 2 0 2

0 0.5 1 1.5 2 2.5 3

NFES 10
5

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

F
it

n
e

s
s
 v

a
lu

e

Scenario2

GSK

POGSK

PSO

GWO

0 0.5 1 1.5 2 2.5 3

NFES 10
5

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

F
it

n
e

s
s
 v

a
lu

e

Scenario3

GSK

POGSK

PSO

GWO

0 0.5 1 1.5 2 2.5 3

NFES 10
5

0.6

0.7

0.8

0.9

1

1.1

1.2

F
it

n
e

s
s
 v

a
lu

e

Scenario5

GSK

POGSK

PSO

GWO

0 0.5 1 1.5 2 2.5 3

NFES 10
5

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

F
it

n
e

s
s
 v

a
lu

e

Scenario10

GSK

POGSK

PSO

GWO

Figure 6. Convergence curves of four situations.

5. Conclusions

In this paper, the POGSK algorithm is proposed to solve the resource-scheduling
problem in the IoV. Based on the original algorithm, POGSK uses OBL and parallel strategy.
The information exchange of subpopulations uses the Taguchi strategy and the population-
merger strategy. By testing with the original algorithm and some classical algorithms on
CEC2017, it is shown that the new algorithm has stronger searching ability. Then, we
applied POGSK to the resource-scheduling problem and carried out the simulation test,
which also showed better results.

In the future, we can continue to improve the inter-group communication strategy and
enhance the search capability of the algorithm. We can also study the application of POGSK
in multi-objective problems, engineering optimization problems and binary optimization
problems. We believe the new algorithm can also achieve better results.

Mathematics 2023, 11, 2953 24 of 25

Author Contributions: Conceptualization, J.-S.P.; methodology, J.-S.P. and L.-F.L.; software, J.-S.P.
and L.-F.L.; validation, L.-F.L. and S.-C.C.; investigation, L.-F.L.; resources, J.-S.P. and P.-C.S.; data
curation, G.-G.L. and P.-C.S.; writing—original draft preparation, L.-F.L.; writing—review and editing,
J.-S.P. and P.-C.S.; supervision, G.-G.L.; project administration, S.-C.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets generated for this study are available on request to the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, H.; Wang, W.; Cui, Z.; Zhou, X.; Zhao, J.; Li, Y. A new dynamic firefly algorithm for demand estimation of water resources.

Inf. Sci. 2018, 438, 95–106. [CrossRef]
2. Song, B.; Wang, Z.; Zou, L. An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree

Bezier curve. Appl. Soft Comput. 2021, 100, 106960. [CrossRef]
3. Chai, Q.w.; Chu, S.C.; Pan, J.S.; Hu, P.; Zheng, W.M. A parallel WOA with two communication strategies applied in DV-Hop

localization method. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 50. [CrossRef]
4. Wu, J.; Xu, M.; Liu, F.F.; Huang, M.; Ma, L.; Lu, Z.M. Solar Wireless Sensor Network Routing Algorithm Based on Multi-Objective

Particle Swarm Optimization. J. Inf. Hiding Multim. Signal Process. 2021, 12, 1–11.
5. Deng, W.; Xu, J.; Song, Y.; Zhao, H. Differential evolution algorithm with wavelet basis function and optimal mutation strategy

for complex optimization problem. Appl. Soft Comput. 2021, 100, 106724. [CrossRef]
6. Farid, M.; Latip, R.; Hussin, M.; Hamid, N.A.W.A. Scheduling scientific workflow using multi-objective algorithm with fuzzy

resource utilization in multi-cloud environment. IEEE Access 2020, 8, 24309–24322. [CrossRef]
7. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining–sharing knowledge based algorithm for solving optimization problems: A

novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020, 11, 1501–1529. [CrossRef]
8. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95, Sixth International

Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43.
9. Song, P.C.; Chu, S.C.; Pan, J.S.; Yang, H. Simplified Phasmatodea population evolution algorithm for optimization. Complex Intell.

Syst. 2022, 8, 2749–2767. [CrossRef]
10. Pan, J.S.; Zhang, L.G.; Wang, R.B.; Snášel, V.; Chu, S.C. Gannet optimization algorithm: A new metaheuristic algorithm for

solving engineering optimization problems. Math. Comput. Simul. 2022, 202, 343–373. [CrossRef]
11. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
12. Chu, S.C.; Tsai, P.W.; Pan, J.S. Cat swarm optimization. In Proceedings of the PRICAI 2006: Trends in Artificial Intelligence:

9th Pacific Rim International Conference on Artificial Intelligence, Guilin, China, 7–11 August 2006; Proceedings 9; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 854–858.

13. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
14. Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341. [CrossRef]
15. Han, K.H.; Kim, J.H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol.

Comput. 2002, 6, 580–593. [CrossRef]
16. Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new

metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [CrossRef]
17. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
18. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
19. Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design

optimization problems. Comput.-Aided Des. 2011, 43, 303–315. [CrossRef]
20. Mohamed, A.W.; Abutarboush, H.F.; Hadi, A.A.; Mohamed, A.K. Gaining–sharing knowledge based algorithm with adaptive

parameters for engineering optimization. IEEE Access 2021, 9, 65934–65946. [CrossRef]
21. Chu, S.C.; Roddick, J.F.; Pan, J.S. A parallel particle swarm optimization algorithm with communication strategies. J. Inf. Sci. Eng

2005, 21, 809–818.
22. Harada, T.; Alba, E. Parallel genetic algorithms: A useful survey. ACM Comput. Surv. CSUR 2020, 53, 1–39. [CrossRef]
23. Cai, D.; Lei, X. A New Evolutionary Algorithm Based on Uniform and Contraction for Many-objective Optimization. J. Netw.

Intell. 2017, 2, 171–185.
24. Tsai, P.W.; Pan, J.S.; Chen, S.M.; Liao, B.Y. Enhanced parallel cat swarm optimization based on the Taguchi method. Expert Syst.

Appl. 2012, 39, 6309–6319. [CrossRef]
25. Tsai, J.T.; Liu, T.K.; Chou, J.H. Hybrid Taguchi-genetic algorithm for global numerical optimization. IEEE Trans. Evol. Comput.

2004, 8, 365–377. [CrossRef]

http://doi.org/10.1016/j.ins.2018.01.041
http://dx.doi.org/10.1016/j.asoc.2020.106960
http://dx.doi.org/10.1186/s13638-020-01663-y
http://dx.doi.org/10.1016/j.asoc.2020.106724
http://dx.doi.org/10.1109/ACCESS.2020.2970475
http://dx.doi.org/10.1007/s13042-019-01053-x
http://dx.doi.org/10.1007/s40747-021-00402-0
http://dx.doi.org/10.1016/j.matcom.2022.06.007
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/TEVC.2002.804320
http://dx.doi.org/10.1007/s10489-020-01893-z
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1109/ACCESS.2021.3076091
http://dx.doi.org/10.1145/3400031
http://dx.doi.org/10.1016/j.eswa.2011.11.117
http://dx.doi.org/10.1109/TEVC.2004.826895

Mathematics 2023, 11, 2953 25 of 25

26. Jiang, S.J.; Chu, S.C.; Zou, F.M.; Shan, J.; Zheng, S.G.; Pan, J.S. A parallel Archimedes optimization algorithm based on Taguchi
method for application in the control of variable pitch wind turbine. Math. Comput. Simul. 2023, 203, 306–327. [CrossRef]

27. Mahdavi, S.; Rahnamayan, S.; Deb, K. Opposition based learning: A literature review. Swarm Evol. Comput. 2018, 39, 1–23.
[CrossRef]

28. Yu, X.; Xu, W.; Li, C. Opposition-based learning grey wolf optimizer for global optimization. Knowl.-Based Syst. 2021, 226, 107139.
[CrossRef]

29. Dhargupta, S.; Ghosh, M.; Mirjalili, S.; Sarkar, R. Selective opposition based grey wolf optimization. Expert Syst. Appl. 2020,
151, 113389. [CrossRef]

30. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M. Opposition-based differential evolution. IEEE Trans. Evol. Comput. 2008, 12, 64–79.
[CrossRef]

31. Deng, W.; Shang, S.; Cai, X.; Zhao, H.; Song, Y.; Xu, J. An improved differential evolution algorithm and its application in
optimization problem. Soft Comput. 2021, 25, 5277–5298. [CrossRef]

32. Wang, H.; Wu, Z.; Rahnamayan, S.; Liu, Y.; Ventresca, M. Enhancing particle swarm optimization using generalized opposition-
based learning. Inf. Sci. 2011, 181, 4699–4714. [CrossRef]

33. Ewees, A.A.; Abd Elaziz, M.; Houssein, E.H. Improved grasshopper optimization algorithm using opposition-based learning.
Expert Syst. Appl. 2018, 112, 156–172. [CrossRef]

34. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.; Awad, N.H. Evaluating the performance of adaptive gainingsharing knowledge
based algorithm on CEC 2020 benchmark problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation
(CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8.

35. Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P. Problem Definitions and Evaluation Criteria for The CEC 2017 Special Session
and Competition on Single Objective Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological University:
Singapore, 2016.

36. Cao, B.; Zhang, J.; Liu, X.; Sun, Z.; Cao, W.; Nowak, R.M.; Lv, Z. Edge–Cloud Resource Scheduling in Space–Air–Ground-
Integrated Networks for Internet of Vehicles. IEEE Internet Things J. 2022, 9, 5765–5772. [CrossRef]

37. Ðurasević, M.; Jakobović, D. Heuristic and metaheuristic methods for the parallel unrelated machines scheduling problem: A
survey. Artif. Intell. Rev. 2022, 56, 3181–3289. [CrossRef]

38. Singh, S.; Chana, I. QoS-aware autonomic resource management in cloud computing: A systematic review. ACM Comput. Surv.
CSUR 2015, 48, 1–46. [CrossRef]

39. Yao, J. Research on Optimization Algorithm for Resource Allocation of Heterogeneous Car Networking Engineering Cloud
System Based on Big Data. Math. Probl. Eng. 2022, 2022, 1079750. [CrossRef]

40. Wang, Q.; Guo, S.; Liu, J.; Yang, Y. Energy-efficient computation offloading and resource allocation for delay-sensitive mobile
edge computing. Sustain. Comput. Inform. Syst. 2019, 21, 154–164. [CrossRef]

41. Filip, I.D.; Pop, F.; Serbanescu, C.; Choi, C. Microservices scheduling model over heterogeneous cloud-edge environments as
support for IoT applications. IEEE Internet Things J. 2018, 5, 2672–2681. [CrossRef]

42. Guo, M.; Li, L.; Guan, Q. Energy-efficient and delay-guaranteed workload allocation in IoT-edge-cloud computing systems. IEEE
Access 2019, 7, 78685–78697. [CrossRef]

43. Ullah, A.; Nawi, N.M.; Ouhame, S. Recent advancement in VM task allocation system for cloud computing: Review from 2015
to2021. Artif. Intell. Rev. 2022, 55, 2529–2573. [CrossRef]

44. Cao, B.; Sun, Z.; Zhang, J.; Gu, Y. Resource allocation in 5G IoV architecture based on SDN and fog-cloud computing. IEEE Trans.
Intell. Transp. Syst. 2021, 22, 3832–3840. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.matcom.2022.06.027
http://dx.doi.org/10.1016/j.swevo.2017.09.010
http://dx.doi.org/10.1016/j.knosys.2021.107139
http://dx.doi.org/10.1016/j.eswa.2020.113389
http://dx.doi.org/10.1109/TEVC.2007.894200
http://dx.doi.org/10.1007/s00500-020-05527-x
http://dx.doi.org/10.1016/j.ins.2011.03.016
http://dx.doi.org/10.1016/j.eswa.2018.06.023
http://dx.doi.org/10.1109/JIOT.2021.3065583
http://dx.doi.org/10.1007/s10462-022-10247-9
http://dx.doi.org/10.1145/2843889
http://dx.doi.org/10.1155/2022/1079750
http://dx.doi.org/10.1016/j.suscom.2019.01.007
http://dx.doi.org/10.1109/JIOT.2018.2792940
http://dx.doi.org/10.1109/ACCESS.2019.2922992
http://dx.doi.org/10.1007/s10462-021-10071-7
http://dx.doi.org/10.1109/TITS.2020.3048844

	Introduction
	Related Works
	GSK Algorithm
	Taguchi Method and Parallel Mechanism
	Opposition-Based Learning
	Resource-Scheduling Problem of the IoV

	Proposed Algorithm and Its Application
	Parallel Communication Strategy
	Incorporate OBL into GSK
	Apply the POGSK to Solve the Resource-Scheduling Problem in IoV

	Results
	Simulation Results on CEC2017
	Simulation Results on Resource-Scheduling Problems

	Conclusions
	References

