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Abstract

Maximum intensity projection (MIP) technology is a computer visualization method that projects three-dimensional spatial 

data on a visualization plane. According to the specific purposes, the specific lab thickness and direction can be selected. This 

technology can better show organs, such as blood vessels, arteries, veins, and bronchi and so forth, from different directions, 

which could bring more intuitive and comprehensive results for doctors in the diagnosis of related diseases. However, in this 

traditional projection technology, the details of the small projected target are not clearly visualized when the projected target is 

not much different from the surrounding environment, which could lead to missed diagnosis or misdiagnosis. Therefore, it is 

urgent to develop a new technology that can better and clearly display the angiogram. However, to the best of our knowledge, 

research in this area is scarce. To fill this gap in the literature, in the present study, we propose a new method based on the 

hybrid of convolutional neural network (CNN) and radial basis function neural network (RBFNN) to synthesize the projection 

image. We first adopted the U-net to obtain feature or enhanced images to be projected; subsequently, the RBF neural network 

performed further synthesis processing for these data; finally, the projection images were obtained. For experimental data, in 

order to increase the robustness of the proposed algorithm, the following three different types of datasets were adopted: the 

vascular projection of the brain, the bronchial projection of the lung parenchyma, and the vascular projection of the liver. In 

addition, radiologist evaluation and five classic metrics of image definition were implemented for effective analysis. Finally, 

compared to the traditional MIP technology and other structures, the use of a large number of different types of data and 

superior experimental results proved the versatility and robustness of the proposed method.

Keywords Maximum intensity projection · Convolutional neural network · Radial basis function neural network · 

Projection synthesis

Introduction

In the 3D visualization of medical imaging, the maximum 

intensity projection (MIP) method can provide more intuitive 

images, the display effect of which is similar to that afforded 

by X-ray imaging. The algorithm principle is simple, and the 

amount of calculation is small. More importantly, MIP can 

be displayed in real time, so it is widely used in the field of 

medical imaging, such as displaying the three-dimensional 

structure of blood vessels, details of bronchi, and so forth 

[1–3]. In addition, the MIP technology plays an important 

role in the optimal diagnosis of diseases or postprocessing 

of medical imaging. For instance, Zheng et al. [4] applied 

MIP images to convolutional neural networks (CNNs) to 

improve the effectiveness of automatic lung nodule detec-

tion. The annotations of 2D MIP images were adopted to 

enhance the performances of neural networks to better 
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segment the linear structures of 3D magnetic resonance 

angiography (MRA) images [5]. Furthermore, Harvey et al. 

[6] explored the effects of MIP images of cerebral CT angi-

ography (CTA) based on photon counting CT and proved 

that the quality of CTA-MIP images is better than that of 

traditional CT images. Recently, the world has undergone 

tremendous changes due to the coronavirus disease 2019 

(COVID-19). In order to solve this worldwide difficulty as 

soon as possible, the first important thing for scientists is 

to better understand the nature of this virus from different 

perspectives. The MIP technology plays a key role in better 

understanding and diagnosis of COVID-19 [7–10].

The MIP technology treats the voxel of the three-dimensional 

volume data as a small light source. Then, according to the 

theory of image space rendering, the light source emits rays 

along a certain direction. When the rays pass through the data 

field and encounter the maximum density value, the maximum 

value is projected in each pixel on the corresponding screen  

to form the final projection [11–13]. Therefore, based on this 

projection logic, MIP has several limitations, such as the overlap 

of blood vessels, bones, and internal organs or inconspicuous 

visualization of small blood vessels and trachea due to unrelated 

impurities with similar intensity. Accordingly, several improved 

algorithms have been proposed [14–17]; however, these  

distant algorithms are mainly aimed at reducing the amount of 

calculation or increasing the depth of projection. Therefore, after 

more than 10 years or even 20 years, these algorithms have not 

been widely used. In contrast, nowadays, the traditional MIP 

algorithm is still being used in 3D visualization of medical  

imaging. Based on these considerations, we assumed that the 

biggest function of MIP technology is to display the stenosis, 

dilation, and morphological direction of blood vessels or trachea. 

By now, the developed post processing-based high-performance 

software can display high-quality MIP images well [18]. If the 

three-dimensionality of the image needs to be displayed, the 

volume rendering (VR) method can replace the projection 

method. Therefore, in further research, it would be necessary 

to understand how to use a certain algorithm to generate the 

better-quality MIP images, which can more clearly show the 

tiny details. This “high quality-higher quality” research logic or 

direction can better promote clinically high-precision diagnosis. 

However, to the best of our knowledge, when deep learning has 

been becoming the mainstream in the recent years, very few 

studies have addressed the aforementioned issue.

Furthermore, artificial intelligence technology has been 

widely used in medical image processing, and various 

network structures have been proposed to perform image 

synthesis, image fusion, and so forth [19–22]. The logic of 

image synthesis or image fusion is to transform a medical 

image or several medical images into the desired medical  

image through neural network technology. In simple  

terms, the MIP technology aims to synthesize a projection 

image from volumetric data or continuous 2D data images.  

Inspired by this, the purpose of the present study is to 

explore the potential of using neural networks to synthesize 

or generate projection images and to compare the results 

with those afforded by the traditional MIP technology. 

Accordingly, we propose a new network structure based  

on the hybrid of U-net and radial basis function neural  

network (U-RBFNN), which is a combination of deep  

neural network and shallow neural network. To this end, 

we first adopted a U-net to extract features of input images 

and generate enhanced or improved output images. Then, 

these output images were used as parallel inputs of radial 

basis function (RBF) neural network to synthesize the 

final projection image. The characteristic of the proposed 

U-RBFNN is to fully combine the learning capabilities of 

different types of neural networks. First, the feature prior 

points are extracted by the convolutional neural network, and 

then point-to-point fusion is performed through the shallow 

neural network whose running is based on the data points; 

finally, the learning abilities are superimposed. Additionally,  

our aim is to get higher-quality images than traditional MIP 

images. Accordingly, for training, we adopted a transfer 

learning style. We first performed a certain blur processing 

on the initial images and then used traditional MIP images 

as the gold standard for supervised training. For a better 

comparison, in addition to comparing the traditional MIP 

images, we also used two neural network networks based 

on image fusion for better observation. For experimental 

datasets, in order to increase the robustness and generality  

of the proposed algorithm, we used three open datasets to 

verify the proposed algorithm by using different human body  

parts and different slab thicknesses. Finally, in addition to 

applying radiologist subjective observation, to objectively  

compare the generated resultant image, five metrics were 

implemented to evaluate the performance of different  

methods. The results demonstrated that the performance  

of the proposed algorithm was significantly better than that 

of the traditional MIP technology and the other two neural 

network-based structures. Overall, the contributions of this 

study can be summarized as follows:

1. The present study is the first to introduce the neural net-

work technology to synthesize the maximum intensity 

projection (MIP) images to achieve superior image per-

formance.

2. This study is the first to combine the convolution-based 

U-net neural network and the radial basis function neural 

network (RBFNN). The results proved that the CNN can 

effectively activate the intelligence of the shallow neural 

network and achieve good effects.

3. The results of applying a large number of open-

databases demonstrated robustness, generality, and 

applicability of the proposed algorithm.
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Methods and Materials

The entire flow chart of the proposed hybrid of U-net and 

radial basis function neural network (U-RBFNN) is shown 

in Fig. 1. The data basis for the generation of the maxi-

mum intensity projection (MIP) images required a specific 

3D volumetric data or continuous 2D data. Accordingly, we 

firstly substituted the 2D images used for MIP into the U-net 

network, and the output images with increased detail could 

be obtained after feature extraction and up-sampling. Subse-

quently, we substituted these output images into RBFNN in 

parallel and, finally, the MIP image was obtained by effec-

tively running RBFNN.

Radial Basis Function Neural Network

Radial basis function neural network (RBFNN) is a single 

hidden layer, a feedforward neural network based on func-

tion approximation proposed in the late 1980s. The structure 

of classic RBFNN includes the following three layers: input 

layer, hidden layer, and output layer (see Fig. 2). With the 

maturity of technology, RBFNN has received considerable 

attention from researchers in various fields due to its simple 

structure, strong nonlinear approximation ability, and good 

generalization ability. It is widely used in many research 

fields, including pattern classification, function approxima-

tion, and data mining [23–25]. In RBFNN, the Gaussian 

function is the most commonly used radial basis function 

to effectively activate the logical relationship between the 

input layer and the hidden layer [24]. The expression of the 

Gaussian function G is as follows (see Eq. 1):

Fig. 1  The detailed flow chart of the proposed method

Fig. 2  The structure of the traditional radial basis function neural 
network (RBFNN), which includes three layers: input layer, hidden 
layer, and output layer
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where x is input variable, i is ith neuron of input layer; p is 

the pth neuron of hidden layer, which also corresponds to the 

pth Gaussian function. cpi and �pi are the center and variance 

of the pth Gaussian function of ith input neuron, and ∥∥ is 

Euclidean norm.

After activating the correlation of each hidden layer neu-

ron and each input layer neuron, the corresponding relation-

ship between a certain hidden layer and the entire input layer 

was obtained using Eq. (2). Finally, the logical relationship 

between hidden layer neurons and output layer neurons was 

the linear weighting style (see Eq. 3).

where R
(

x,�p, �p

)

 is the value of the pth hidden neuron. k 

is the number of input neurons. Yo is the value of the oth 

output neuron. l is the number of hidden neurons. ωpo is the 

connection weight of the pth neuron of the hidden layer and 

the oth neuron of the output layer.

Accordingly, each input neuron of RBFNN was actually  

a variable value. In a previous study, we succeeded in  

substituting medical images of different modalities into 

RBFNN for medical image fusion [26]. From the point 

of view of variable points, we used the pixels at the same 

position of different modal images through neural network 

technology to synthesize the pixels at the corresponding 
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positions of the fused image. Therefore, following the same 

logic, in this study, our aim in the present study was to  

substitute the pixels at the same position of the continuous 

2D data into the RBFNN in parallel. The output layer of the 

neural network is a neuron which represents a pixel point 

at the corresponding position of the MIP image. In turn, 

the entire projected image could be obtained. In addition, 

according to our previous results [25, 26], in medical image 

processing, one of the key aspects necessary to improve the 

intelligence of RBFNN is to effectively select or calculate  

the feature points of the pending images which are the  

neurons that make up the input layer of the neural network. 

Based on this, in the present study, we applied U-net neural 

network as a priori processing for the feature extraction of 

the input layer of RBFNN.

U‑Net Neural Network

From the image level, to better highlight the detailed features  

of the image, many previous studies have applied U-net and 

got good effects [27, 28]. The structure of the U-net in this 

study, including an encoder path and a decoder path, is shown 

in Fig. 3. The encoder part adopted typical convolutional 

neural network structure, with 4 down-sampling and 5 layers  

of convolutions. Each group of convolution consisted of two  

convolution operations. The size of the convolution kernel 

was 3 × 3, followed by corresponding batch normalization  

operation and rectified linear unit (ReLU) activation function. 

In the 2nd layer to the 5th layer, there were corresponding 

down-sampling max pooling operation with a convolution 

kernel of 2 × 2 and a stride of 2. The purpose of down-

sampling was that the size of the feature map continued 

Fig. 3  The structure of U-net for activating the intelligence of RBFNN
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shrinking, and the number of channels went on increasing. 

The decoder part was expansion processing; the up-sampling 

operation (the size of the convolution kernel is 2 × 2) was  

performed first; then, it was superimposed with the feature  

map of the corresponding layer on the down-sampling path 

on the left to perform convolution processing. In addition,  

other convolution operations were consistent with the  

corresponding up-sampling part on the left side, until the 

final image was output through a 1 × 1 convolution. Of 

note, in order to ensure the consistency of image size, we  

implemented zero padding.

Experimental Data

To increase the robustness and versatility of the proposed 

method, we adopted three open datasets. To explore morpho-

logical changes of the weak and small bronchi of the lung 

parenchyma, we used The Lung Image Database Consortium 

and Image Database Resource Initiative (L-IDRI) dataset 

[29]. Subsequently, Cancer Imaging Archive-pancreas data-

set (CIA-P) was selected to observe the projection of the 

shape details of the blood vessels in the liver and pancreas 

[30]. Finally, Information Extraction form Images-Magnetic 

resonance angiography (IXI-MRA) dataset was adopted to 

check the morphological changes of blood vessels in the 

brain [31]. To increase the diversity of experimental data 

effects based on different slab thicknesses, the number of 

2D data required for each projection based on L-IDRI, 

CIA-P, and IXI-MRA was selected as 10–25, 20–35, and 

70–100, respectively, depending on whether it was the 

training dataset or the test dataset. In addition, for L-IDRI 

data, in order to more effectively perform projection pro-

cessing without being disturbed by irrelevant factors, we 

implemented the extraction of lung parenchyma. First, we 

transformed the image into the binary image according to 

the threshold and the “Find” function [32]. This was done to 

roughly distinguish the internal and external information of 

the lung parenchyma. The threshold range was determined 

according to the mean of the maximum pixel value and the 

minimum pixel value. Subsequently, the maximum con-

nected component [33] was calculated to connect as many 

small components as possible. Furthermore, for the remain-

ing gaps in the lung parenchyma, we used erosion process-

ing [34] to fill the entire lung parenchyma. Next, in order to 

prevent unnecessary details from interfering with the final 

extraction of lung parenchyma, we removed the interfering 

details of original image through hole filling [35] and the 

Find function. Finally, based on the corroded binary image 

and the processed original image, we successfully extracted 

the lung parenchymal by the Find function. The whole pro-

cessing is depicted in Fig. 4.

Training Processing

In medical image processing based on deep learning, the 

determination or characterization of the ground truth data 

has always been a challenging task [36, 37]. In the present 

study, we aimed to obtain a better MIP image than the tradi-

tional ones through the proposed neural network. Therefore, 

we had no gold standard to rely on. Accordingly, targeted 

Fig. 4  The whole process of lung parenchyma extraction
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transfer learning was carried out. To train U-net, according 

to the characteristics of the key organ structure, gray value, 

and contour stripe trend, and so forth, we carefully selected 

2000, 2000, and 1000 data based on L-IDRI dataset, CIA-P 

dataset, and IXI-MRA dataset, respectively. Furthermore, 

we augmented the dataset by implementing blurring and 

adding noise locally or globally. Accordingly, the processed 

data were used as the original input data for training U-net, 

while the unprocessed data were used as the ground truth 

data for training U-net. The Adam optimization algorithm 

[38] was performed to train the U-net. We chose the learn-

ing rate as  10−3 to  10−6. Specifically, the original learn-

ing rate was  10−3, and it decreased exponentially with the 

increase of epochs until  10−6. The batch size was selected 

as 5. In order to prevent overfitting, the early stop based on 

8 epochs was implemented. Additionally, the loss function 

based on the mean square error (MSE) was selected [27]. 

To train RBFNN, we adopted the classic gradient descent 

method (GDM) [39]. We set the learning rate of shallow 

network and iteration number range to 0.01 and 200–300, 

respectively. The loss function of RBFNN was also selected 

based on classic MSE [25]. More importantly, the original 

2D image used to synthesize the MIP image was used as the 

input of the initial neural network. MIP images synthesized 

by traditional method were used as ground truth of RBFNN. 

The numbers of ground truth data used for training based on 

the L-IDRI dataset, CIA-P dataset, and IXI-MRA dataset 

were selected as 200, 200, and 250, respectively.

Evaluation Metrics

As mentioned above, to the best of our knowledge, none of 

the previous studies has applied neural network algorithm to 

MIP technology. Therefore, in order to better highlight the 

proposed algorithm, in addition to comparing with traditional 

MIP (T-MIP), we also compared the proposed method with 

two image fusion–based deep convolutional neural networks: 

IFCNN-1 [40] and IFCNN-2 [20]. In subjective observation,  

the radiologists can directly evaluate the shape of a key part 

under the projection, the stripe texture, and so forth to judge the 

quality of the projection. In addition to subjective evaluation, the 

application of objective indicators is also essential and necessary. 

It is well known that the most common and classic metrics for 

evaluating image quality are image sharpness, image contrast, 

and so on. Since there are no reference images, in the present 

study, we adopted the following five classic no-reference image 

quality metrics: Histogram Entropy (HISE) [41], image contrast 

(CONT) [42], Brenner’s (BREN) [43], Tenengrad (TENG) [41], 

and Tenengrad variance (TENV) [44]. For all metrics, the larger 

was the value, the higher was the image quality.

Fig. 5  Projection performance of L-IDRI Data-1 based on four methods. a–d The projection images by implementing T-MIP method, IFCNN-1, 
IFCNN-2 method, and the proposed method, respectively. e–h the magnified images of the region of interest (ROI) in respective (a–d)
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Results

Results on Visual Observation

For the L-IDRI dataset, CIA-P dataset, and IXI-MRA 

dataset, we tested 1000, 1000, and 250 data, respectively. 

Specifically, 3 groups of L-IDRI data (labeled L-IDRI 

Data-1, L-IDRI Data-2, and L-IDRI Data-3), 2 grounds 

of CIA-P data (labeled CIA-P Data-1, CIA-P Data-

2), and 2 grounds of IXI-MRA data (labeled IXI-MRA 

Data-1 and IXI-MRA Data-2) are shown in Figs. 5, 6, 7, 

8, 9, 10 and 11. In Fig. 5, annotation letters (a–d) denote 

Fig. 6  Projection performance of L-IDRI Data-2 based on four methods. a–d The projection images by implementing T-MIP method, IFCNN-1, 
IFCNN-2 method, and the proposed method, respectively. e–h the magnified images of the region of interest (ROI) in respective (a-d)

Fig. 7  Projection performance of L-IDRI Data-3 based on four methods. a–d The projection images by implementing T-MIP method, IFCNN-1, 
IFCNN-2 method, and the proposed method, respectively. e–h the magnified images of the region of interest (ROI) in respective (a–d)
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the projection images by implementing traditional MIP 

(T-MIP) method, two image fusion convolutional neural 

network methods (IFCNN-1 and IFCNN-2), and the pro-

posed method, respectively. e–h of the second row denotes 

the magnified images of region of interest (ROI) in respec-

tive (a–d) for making it easier to observe the performances 

of several methods. Figures 6, 7, 8, 9, 10 and 11 follow the 

layout format of Fig. 5. In terms of visually judging image 

quality, the most important criterion is image definition. 

In addition, we also adopted fidelity to observe whether 

the projection images were distorted; texture continuity 

to observe whether some trachea, blood vessels, and other 

structures in the image were intact; and detail imaging to 

observe whether more details, especially, tiny structural 

details, were displayed. In order to increase authority and 

reduce subjective differences, we randomly selected 10 

pieces of data from each dataset, and all the data were 

judged and compared through four experienced radiolo-

gists. Additionally, we adopted the 5-point evaluation 

method; specifically, for the four standards, radiologists 

would score from 0 to 5, with 0 points being the lowest 

and 5 points being the highest. For the different types of 

data, the scoring situations are shown in Tables 1, 2 and 3.

Subsequently, we analyzed different datasets in fur-

ther detail. In the three datasets of the L-IDRI dataset 

in Figs. 5, 6 and 7, we clearly observed that the perfor-

mances of the two methods based on IFCNN were the 

worst, the images were severely distorted, and the bron-

chus, especially the tiny bronchus, was blurred. Compared 

to the traditional MIP method and the proposed method, 

the proposed method showed a superior performance in 

definition and small tracheal detail imaging. As can be 

seen in Fig. 7 that shows image inversion processing, the 

proposed method was clearly superior as compared to the 

Fig. 8  Projection performance of CIA-P Data-1 based on four methods. a–d The projection images by implementing T-MIP method, IFCNN-1, 
IFCNN-2 method, and the proposed method, respectively. e–h The magnified images of the region of interest (ROI) in respective (a–d)

Fig. 9  Projection performance of CIA-P Data-2 based on four methods. a–d The projection images by implementing T-MIP method, IFCNN-1, 
IFCNN-2 method, and the proposed method, respectively. e–h The magnified images of the region of interest (ROI) in respective (a–d)
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other three methods. In addition, according to the scores 

of four radiologists, as compared with the other three 

methods, the proposed method got the highest score (see 

Table 1). For the CIA-P dataset, our aim was to observe 

the projection of blood vessels in the liver. Since the gray 

values of blood vessels and other tissues around the liver 

had relatively small differences, it was very important to 

more clearly visualize blood vessels to observe related 

lesions. As can be seen in Figs. 8 and 9, while some small 

blood vessels were clearly displayed in the image pro-

duced by the proposed method, this did not occur in the 

other three methods. The comprehensive performance of 

our method was also optimal based on the 5-point evalu-

ation standard (see Table 2). Finally, we selected thick 

Fig. 10  Projection performance of IXI-MRA Data-1 based on four 
methods. a–d The projection images by implementing T-MIP method, 
IFCNN-1, IFCNN-2 method, and the proposed method, respectively. e–h 

The magnified images of the region of interest (ROI) in respective (a–d)

Fig. 11  Projection performance of IXI-MRA Data-2 based on 
four methods. a–d The projection images by implementing T-MIP 
method, IFCNN-1, IFCNN-2 method, and the proposed method, 

respectively. e–h The magnified images of the region of interest 
(ROI) in respective (a–d)
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slab thickness to project the blood vessels of the brain. As 

shown in Figs. 10 and 11, for both blood vessel continuity 

and microvascular imaging, our proposed method yielded 

more details without distortion of the image. The results 

in Table 3 further confirm the superior performance of 

the proposed method.

Results on No‑Reference Image Quality Metrics

In addition to subjective observation, another important criterion 

is the evaluation of objective metrics. As mentioned above, for 

the three datasets, we tested 1000 L-IDRI dataset, 1000 CIA-P 

data, and 250 IXI-MRA data, respectively. Since there is no 

real standard image, we analyzed the definition of the images 

produced by the four methods. Based on this, in order to objec-

tively evaluate a total of 2250 data, we adopted the following 

five definition-based metrics: histogram entropy (HISE), image 

contrast (CONT), Brenner’s (BREN), Tenengrad (TENG), and 

Tenengrad variance (TENV). Tables 4, 5 and 6 show the means 

and standard deviations of respective test datasets based on five 

metrics.

Taken together, the proposed methods almost achieved 

the highest metrics value performance. Except for the CIA-P 

dataset and IXI-MRA dataset, the two methods based on IFCNN 

achieved better HISE performance. Combined with the image 

performance, we conclude that the most likely cause was that 

the image distortion–produced artifacts, which interfered with 

the judgment of HISE. In short, as compared to the traditional 

MIP technology, the proposed method produced the higher qual-

ity projection images based on the three datasets. In addition, 

all experimental results were statistically significant (p ˂ 0.01).

Discussion

Analysis of the Performances of Two IFCNN 
Structures for Projection Synthesis

As described in “Results”, regardless of subjective  

observation or objective analysis, the two convolutional 

neural network methods based on image fusion (IFCNN-1 

and IFCNN-2) did not achieve good results for synthesizing 

MIP images. Simply put, the overall framework of IFCNN-1 

is based on the classic fully connected convolutional  

neural network. IFCNN-2 uses the full convolutional  

network structure and feature map fusion processing.  

Table 1  The 5-point evaluation 
table based on the L-IDRI data, 
where four radiologists scored 
four metrics. DE, FI, TC, DI, 
and GT stand for definition, 
fidelity, texture continuity, 
detail imaging and grand total, 
respectively. Bold represents the 
best performances

Radiologist 1 Radiologist 2

DE FI TC DI GT DE FI TC DI GT

T-MIP 4 5 3 3 15 5 4 5 4 18

IFCNN-1 2 3 2 2 9 2 2 4 3 11

IFCNN-2 2 3 2 2 9 3 3 3 3 12

Proposed 5 5 5 4 19 5 4 5 5 19

Radiologist 3 Radiologist 4

DE FI TC DI GT DE FI TC DI GT

T-MIP 5 4 5 4 18 4 5 5 3 17

IFCNN-1 3 2 4 3 12 3 3 3 2 11

IFCNN-2 3 4 4 3 14 4 3 3 3 13

Proposed 5 5 5 4 19 5 5 5 4 19

Table 2  The 5-point evaluation 
table based on the CIA-P data, 
where four radiologists scored 
four metrics. DE, FI, TC, DI, 
and GT stand for definition, 
fidelity, texture continuity, 
detail imaging, and grand total, 
respectively. Bold represents the 
best performance

Radiologist 1 Radiologist 2

DE FI TC DI GT DE FI TC DI GT

T-MIP 4 4 3 4 15 5 5 3 4 17

IFCNN-1 2 1 3 1 7 3 2 2 2 9

IFCNN-2 2 3 3 3 11 3 3 3 2 11

Proposed 4 4 4 5 17 5 4 5 4 18

Radiologist 3 Radiologist 4

DE FI TC DI GT DE FI TC DI GT

T-MIP 4 4 5 4 17 4 5 4 5 18

IFCNN-1 2 4 3 3 12 3 3 2 2 10

IFCNN-2 3 5 4 3 15 4 4 3 2 13

Proposed 4 4 5 5 18 5 5 4 4 18
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These two methods achieved good results based on image 

fusion technology with fewer input images. Conversely, 

IFCNN-1 and IFCNN-2 performed poorly based on the  

MIP technology that requires many parallel input images. 

This finding can be attributed to the fact that, first of all,  

the principle of MIP technology is to project the details  

or elements with the maximum density, the pertinence of 

feature extraction which is more accurate than that of image 

fusion. The layer-by-layer convolution processing based on 

the window or patch-level may cause blurred recognition.  

In addition, due to the large amount of input images, many 

parallel network structures are needed, so training neural  

networks is a considerable challenge. Under existing  

conditions, neural networks cannot effectively learn.

Analysis of the Performances of the Proposed 
Network Structures for Projection Synthesis

In a previous study, we successfully applied the radial basis 

function neural network based on point-level to medical 

image fusion. Based on these results, in the present study, we 

adopted a shallow, simple neural network to apply the MIP 

technology under the situation when the performances of 

the parallel and complex network structures were not good 

for synthesizing projection images. As is widely known, the 

traditional shallow neural network (SNN) is not as popular 

as the convolutional neural network in two-dimensional or 

even multi-dimensional image processing. Due to the sim-

ple network structure, the SNN cannot effectively learn the 

complex image structure. However, in the present study, we 

found that, after targeted feature point extraction, radial basis 

function neural network (RBFNN) was then implemented 

to analyze and process specific feature points, and combin-

ing effective learning, the intelligence of RBFNN can also 

be effectively activated. More importantly, as there is no 

need to train feature points and RBFNN is based on pixel 

(point)-level, the training burden is much smaller. In the field 

of medical imaging, labeled data are actually not abundant 

[45]. Therefore, it is necessary to investigate the training 

of small sample data. Based on this, we adopted U-net net-

work to provide feature points for RBFNN. Furthermore, in 

order to show more intuitively why we chose the network 

structure based on the hybrid of U-net and RBFNN, we 

conducted another set of comparative experiments based on 

the traditional MIP method (T-MIP), the hybrid structure of 

U-net and traditional MIP (U-MIP), meaning that the U-net 

was first implemented to obtain feature images or enhanced 

images, and then the projection image was obtained based 

on the traditional MIP method of projecting these enhanced 

images, RBFNN-only structure, and the hybrid structure 

of U-net and RBFNN structure (proposed method). For 

all structures, we also tested 1000 L-IDRI data. Figure 12 

shows the comparison effect of one of the L-IDRI dataset 

based on the four methods, where a–d denote the T-MIP 

method, the RBFNN-only method, the U-MIP method, and 

the proposed method, respectively. As can be seen in Fig. 12, 

the proposed hybrid structure based on U-net and RBFNN is 

the best in terms of intuitive effects, such as detail imaging 

Table 3  The 5-point evaluation 
table based on the IXI-MRA 
data, where four radiologists 
scored four metrics. DE, FI, TC, 
DI, and GT stand for definition, 
fidelity, texture continuity, 
detail imaging, and grand total, 
respectively. Bold represents the 
best performance

Radiologist 1 Radiologist 2

DE FI TC DI GT DE FI TC DI GT

T-MIP 5 4 3 2 14 4 4 2 3 13

IFCNN-1 3 1 2 1 7 1 0 1 1 3

IFCNN-2 2 3 3 2 10 1 1 3 3 8

Proposed 5 5 5 5 20 5 4 5 4 18

Radiologist 3 Radiologist 4

DE FI TC DI GT DE FI TC DI GT

T-MIP 5 4 3 3 15 4 5 3 3 15

IFCNN-1 3 1 1 2 7 3 1 2 2 8

IFCNN-2 3 1 2 3 9 4 2 3 2 11

Proposed 4 4 5 4 17 5 5 4 5 19

Table 4  For the four methods, 
the mean and standard deviation 
(SD) performances of the five 
metrics based on the L-IDRI 
dataset. Bold represents the best 
performance

HISE CONT (×  102) BREN (×  104) TENG (×  105) TENV (×  1012) p-value

Mean ± standard deviation (SD) p < 0.01

T-MIP 0.86 ± 0.1 2.31 ± 0.3 2.07 ± 0.2 5.41 ± 0.4 7.74 ± 0.7

IFCNN-1 0.71 ± 0.2 2.12 ± 0.4 1.85 ± 0.2 2.87 ± 0.5 5.79 ± 0.8

IFCNN-2 0.73 ± 0.1 2.45 ± 0.4 2.25 ± 0.4 3.18 ± 0.3 6.95 ± 0.7

Proposed 0.87 ± 0.1 3.32 ± 0.3 3.51 ± 0.3 7.66 ± 0.4 16.7 ± 0.6
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and image definition. Not surprisingly, based on the objec-

tive judgment of five image definition metrics, the proposed 

hybrid structure of U-net and RBFNN yielded the best per-

formance for 1000 sets of test data (see Fig. 13).

Analysis of the Performances of Different Numbers 
of Hidden Layer Neurons Based on RBFNN

Furthermore, due to some factors, such as the different types  

of data, the choice of different slab thickness when inputting  

data, and the different amount of adopted data, and so forth, the 

choice of the number of hidden layer neurons in the RBFNN is 

not fixed. The optimal hidden layer neuron mainly depends on 

the training data, input variables, and other factors; however, the 

amount of calculation and generalization effect should also be 

considered [46, 47]. For L-IDRI dataset, we selected 50 as the 

number of hidden neurons. For the selection of the number of 

hidden layers, we conducted a set of comparative experiments 

based on the different number of hidden layer neurons: 25, 30, 

35, 40, 45, 50, 60, 70, and 100, respectively. The actual output 

data from the respective trained neural network were compared 

to the ideal output data (gold standard) through mean square  

error (MSE), peak signal to noise ratio (PSNR), and structural 

similarity (SSIM) [48]. The larger was the value of PSNR and 

SSIM, the better (i.e., closer to the ideal output images) was the 

image quality, while MSE was the opposite. For a more intuitive  

observation, we selected the respective mean values for the metric  

values of all test data. The comparison based on different numbers  

of neurons is shown in Fig. 14. From the overall performances, 

50 obtained the best performance. Finally, combined with image 

factors, we chose 50 as the optimal hidden layer neuron.

Significance of Proposed Method and Further Study

In the present study, we aimed to establish whether quality of the 

projection images obtained through the proposed neural network  

would be better than the traditional projection map, which 

would help doctors to more accurately and timely determine 

small lesions. In the field of medical imaging, today’s medical 

equipment and post-processing method based on software can 

produce high-quality images; however, in some cases, they still 

Table 5  For the four methods, 
the mean and standard deviation 
(SD) performances of the five 
metrics based on the CIA-P 
dataset. Bold represents the best 
performance

HISE CONT (×  102) BREN (×  103) TENG (×  105) TENV (×  1012) p-value

Mean ± standard deviation (SD) p < 0.01

T-MIP 0.99 ± 0.2 1.99 ± 0.3 9.54 ± 0.2 2.87 ± 0.5 8.76 ± 0.6

IFCNN-1 1.01 ± 0.3 1.54 ± 0.4 5.71 ± 0.3 2.12 ± 0.4 2.54 ± 0.7

IFCNN-2 1.02 ± 0.3 1.67 ± 0.3 6.39 ± 0.3 2.30 ± 0.6 2.78 ± 0.6

Proposed 1.00 ± 0.3 2.97 ± 0.3 14.4 ± 0.3 4.27 ± 0.5 20.1 ± 0.6

Table 6  For the four methods, 
the mean and standard deviation 
(SD) performances of the five 
metrics based on the IXI-MRA 
dataset. Bold represents the best 
performance

HISE CONT (×  101) BREN (×  102) TENG (×  103) TENV (×  109) p-value

Mean ± standard deviation (SD) p < 0.01

T-MIP 0.69 ± 0.2 3.91 ± 0.2 2.92 ± 0.5 7.39 ± 0.6 1.82 ± 0.7

IFCNN-1 0.72 ± 0.3 2.32 ± 0.3 3.17 ± 0.3 1.59 ± 0.6 1.66 ± 0.4

IFCNN-2 1.03 ± 0.4 2.28 ± 0.2 6.01 ± 0.4 8.32 ± 0.5 4.35 ± 0.6

Proposed 0.88 ± 0.2 6.77 ± 0.2 6.35 ± 0.5 14.1 ± 0.6 5.73 ± 0.5

Fig. 12  The image performances based on L-IDRI data. a–d The MIP based on traditional method (T-MIP), the radial basis function neural 
network-only method (RBFNN), the MIP based on U-net neural network (U-MIP), and the proposed method, respectively
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Fig. 13  For L-IDRI dataset, the objective comparison between the proposed three structures and the traditional MIP based on five no-reference 
quality evaluation metrics. The values of all metrics are the mean values of the test data

Fig. 14  For L-IDRI dataset, based on mean square error (MSE), peak signal to noise ratio (PSNR), and structural similarity (SSIM), the perfor-
mances of different numbers of hidden layer neurons
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cannot meet the requirements for accurate diagnosis. Therefore, 

we believe that the use of artificial intelligence technology to 

further improve high-quality images is a future development 

direction. Accordingly, we made a preliminary attempt in the 

field of synthetic projection maps. To the best of our knowledge,  

our study is the first to apply neural network technology to  

synthesize projection images. In further research, we will 

improve the network structure and training methods, apply more 

clinical data, and strive to obtain higher quality MIP images.

Conclusion

In the present study, we aimed to obtain higher-quality 

maximum intensity projection (MIP) images to help radi-

ologists precisely diagnose diseases. To this end, we pro-

posed a hybrid structure based on U-net network and radial 

basis function neural network (RBFNN) to synthesize MIP 

images. Compared to the traditional MIP method and other 

network structures, through the doctor’s judgment and objec-

tive metric analysis, the qualities of the images obtained by 

the proposed method were found to be optimal. In addition, 

the application of a large amount of data also demonstrated 

robustness and generality of the proposed method.
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