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A NEW GENERALIZATION OF GAMMA, BETA,
HYPERGEOMETRIC AND CONFLUENT
HYPERGEOMETRIC FUNCTIONS

RAKESH KUMAR PARMAR

The main object of this paper is to present new generalizations of
gamma, beta, hypergeometric and confluent hypergeometric functions.
Some integral representations, Mellin transform, operation formulas, dif-
ferentiation formulas,summation formula,beta distribution and transfor-
mation formulas are obtained for these new generalizations.

1. Introduction

In recent years, several extensions of the well known special functions have
been considered by several authors [1-7]. In 1994, Chaudhry and Zubair [1]
have introduced the following extension of gamma function.

oo

T, (x) :/tx—lexp(—t—§)dz (R(p) > 0,R(x) > 0) (1)
0

In 1997, Chaudhry et al. [2] presented the following extension of Euler’s
beta function
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B, (x,y) :/1tx_1(1t)y_lexp [t(l”_t)] dr
0

(R(p) > 0,%R(x) >0,%R(y) >0) (2)

Afterwards, Chaudhry et al. [8] used B, (x,y) to extend the hypergeometric and
confluent hypergeometric functions as follows:

= B,(b+n,c—b), 7"
Fp(a,b;e;2) = gm(“)"ﬂ

(p>0;|z|< 1;R(c) > R(b) > 0) (3)
. & By(btnc—b)"
Pt = L e m
(p=>0;R(c) > R(b) >0) (4)

and gave the Euler type integral representation

1

1
F,(a,b;c;z) = W/tb—l(l_z)c—b—l(l_zt)—aexp [_t(lp—t)} dt
0

(p>0;p=0and |arg(l—z) |<mR(c)>R(D) >0) (5

1
®,(b; P (1 =)t P A
p(bi2) bc— O/ P 1% t(1—1)

(p>0;p=0and R(b) > R(c) >0) (6)

They have obtained the integral representation, differentiation properties,
Mellin transforms, transformation formulas, recurrence relations, summation
and asymptotic formulas for these function.

Recently Lee et al. [11] generalized the beta, hypergeometric and confluent
hypergeometric function as

1

B} (x,y) = Bp(x,y;m O/t" Y1 —r) exp[ (i = )m]dt
(R(p) > 0,R(x) > 0,R(y) > 0),R(m) >0) (7)
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= B"(b+n,c—Db) P
m ) e _ P ’
F)'(a,b;c;z) = Fp(a,b;c;zm) = n;)m(a)na

(p>0;|z|< 1;%R(c) > R(b) > 0,R(m) >0) (8)

> B b+l’l C—b)z
M. . P
@ (b;c;2) = @p(bsc;z3m) Z B b nl

(p>0;R(c) >R(b) >0,R(m) >0) (9)

and gave the Euler type integral representation

1
F;”(a’b;c;z) = mgtb—l(l —t)c_b—l(l —Zl‘)_aexp |:_4t’”(1p—t)mj| dt

(p>0;p=0and |arg(l —z) |< m; R(c) > R(b) >0, R(m) > (0) (10)

1
¢m b /tb l C b—1 f— p dt
(b;c;z) bc— exp |z NG
O

(p>0;p=0;R(c) > R(b) >0,R(m) >0) (11)

and Ozergin et al. [10] generalized the gamma, beta, hypergeometric and con-
fluent hypergeometric function as

oo

F;,a’ﬁ)(x) = /t"_llFl (a;ﬁ;—t— ?) dt

0
(R(a) > 0,R(B) > 0,R(p) > 0,R(x) >0) (12)

1

e e R e

0
(R(p) > 0,R(x) >0,R(y) > 0,R(x) >0,R(B) >0) (13)

- ped) "
(@B)( b\ (btn,c—b)z"
p o abiez) = Z(a)” Bb,c—b)  n!

n=0
(p>0;]z|< LR(e) > R(b) > 0,R(a) >0,R(B) >0) (14)
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) n
@B)p. . v Bp " (btnc—b)z
©p (b’c’z)_,;) Bb,c—b) n!

(p > 0:R(c) > R(b) > 0,R(ax) > 0,R(B) >0) (15)

and gave the Euler type integral representation

F,Sa’ﬁ)(a,b;c;z)
1
1 b1 c—b—1 —a —p
=— [ 1-1) (1—zt)"1F (o B dt
B(b,c—b)o/ < t(l—t)>
(p>0;p=0and |arg(l —z)| < ;R(c) > R(b) > 0,R(ax) > 0,R () >0)

(16)
@) (biciz)
1
_ 1 b—1/1 _ Ne—b—1 zt .p.. P
_B(b,c—b)o/t (1 l) e 1F <06,B,t(1_t)>dl
(p>0;p=0;R(c) >R(D) >0,R(ex) >0,R(B) >0) (17)

respectively.

In this paper, the new generalizations of gamma, Euler’s beta functions,
hypergeometric function and confluent hypergeometric function is considered.
The plan of this paper is as follows:

The present paper is divided into three sections. In Section 2 , a new gen-
eralization of the gamma and beta functions is introduced. Some properties,
Mellin transform representation, various integral representations, functional re-
lation, summation relations and beta distribution are obtained for these newly
generalized gamma and beta functions. In Section 3, a new generalization of the
hypergeometric function and confluent hypergeometric function is defined and
some integral representations are obtained. Furthermore differentiation proper-
ties, Mellin transforms, transformation formulas, recurrence relations, summa-
tion formulas for these newly generalized hypergeometric and confluent hyper-
geometric functions are obtained.

2. Generalized Gamma and Beta Function

In this section the new generalized gamma and beta functions are defined as:
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oo

Fﬁ,""ﬁ /t 1Fy (o B; t—t%)dt
0

(R(a) > 0,R(B) > 0,R(p) > 0,R(x) >0,R(m) >0) (18)

1

1 1 p
(Y RS
/[ [ 11< ﬁ’ tm(l—t)m> t

0
(R(p) > 0,R(x) >0,R(y) > 0,R(ex) >0,R(B) >0,R(m)>0) (19)

It is obvious,

e =P, 0 =W, Y0 =T,
BY PV (x,y) = BV P (x,y), By ™" (x,y) = B2 (x,y), BY**"(x,y) = B(x,y)

2.1. Some properties of generalized gamma and beta function

In this section some properties of new generalized gamma and beta functions
are obtained.

Theorem 2.1. For the new generalized gamma function, we have

B ()

s—1 —o—1
P (M/FP”WJA o- ( *,LL)IB o d‘u,

Proof. Using the definition of gamma function (18) and integral representation
of confluent hypergeometric function, we have

m =1 — —U - - —U—

Now using a one-to-one transformation (except possibly at the boundaries
and maps the region onto itself) v = ut, yu =t in the above equality and consid-
ering that the Jacobian of the transformation is J = ﬁ , we get

1 m+1
P3 r s—1 —y—_bu
P (s) = mare=a A
From the uniform convergence of the integrals, the order of integration can
be interchanged to yield that

1 [oo
r(p) 1 v
F(a)F(ﬁ—a)({ ({ viTe

dvu“*‘“l(l _ 'u)ﬁfocfldu

F;)oc.ﬂ;m) (s) . ‘LLO‘_S_I(l _ [.L)'B_a_ld,u,
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B; (B
Féaﬁm)(s):WfrpﬂmH‘ua s=1(1 ‘u)ﬁ a=lgy,
This completes the proof O

Remark 2.2. In theorem 2.1, the case m = 1 and for p = 0 gives (see [9,
page 192])
Bl §— —s)I(s
F(()aﬁ )(S): ( 1;_(ﬁ)_oc)fr*(s)‘uoz (1 —p)B-olgu = (I@()olz)(lg(ﬁzl;)()

Theorem 2.3. For the new generalized beta function, we have the following
functional relation:

BEP™ (e, y 1) + B P (x4 1,y) = BP ()
Proof. Direct calculations yield

BT (e y+1) + B P (x4 1)
1
= [ R (Bt dr
(1 —r)m
0
x—1 11—tV F
+/l ( t)11<aﬁ(l—t)m>dt

(1= 7 (1 1)) Fy (a;ﬁ;ﬂn(;ft)rrl> dr

1= YR (a;B; —p)m> dt

m(1—t

which completes the proof.
O]

Theorem 2.4. For the new generalized beta function, we have the following
summation relation:

oo

B;a,[i (x,1— Z

x+n 1) (R(p) > 0,R(m) >0)

Proof. From the definition of the generalized beta function (19), we have
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. 1
BEP 1= y) = [ (1)1 (@B it )
Using the following binomial series expansion

(1=n7=Lmg (<)
n—
we obtain

m 1 & ) —
B (x,1—y) =1 L el (03B e ) .

Therefore, interchanging the order of integration and summation and then
using definition (19), we obtain

. oo 1 -
BE,“"B’ Jx,1—y) = Zo%gt””‘llﬂ <a;ﬁ;m> di

n=

= § ShBE i)
n=
which completes the proof. O

Theorem 2.5. For the new generalized beta function, we have the following
summation relation:

BY P (xy) = Y B P (e tny 1) (R(p) > 0,%(m) >0)
n=0

Proof. From the definition of generalized beta function(19), we have

1
0

Using (1 —1)*~! = (1 —¢) Zt” (|t]< 1), we get

m 1
BI(/)OC,B, )(x’y):()ftxfl( ) Z l‘"lFl (a ﬁ’zml —t)m )dt

Interchanging the order of 1ntegrat10n and summation, we get
. (e} 1 _
B;“’B’m)(x,y) — Zooftwnfl(] —t)ylFl (a;ﬁ; ti’"(lft)’”) dt
n=

= ¥ B (et my+ 1)
n=0
which completes the proof. Ul

2.2. Mellin transform representation of generalized beta function

In this section the Mellin transform representation of the generalized beta func-

tion B( o pim )(x, y) is obtained in terms of the classical beta function and the
gamma function I'(*#) (5) for the case when p = 0.
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Theorem 2.6. Mellin transform representation of the new generalized beta
function is given by

M {Bg)(xﬁém)(_x’y) : s} = B(x_f_ms’y_’_ms)r(a,ﬂ) (S)

(R(s) > 0,R(x +ms) > 0,R(y+ms) > 0,R(p) > 0,R(c) > 0,R(B) > 0)

Proof. Taking Mellin transform of B;,a’ﬁ im) (x,y), we get

M {Bﬁaa’ﬁ’m) (x,y) : S} = [p [ (1= R (a;B, —ﬁ) drdp
0 0
From the uniform convergence of the integral, the order of integration can
be interchanged. Therefore, we have

M {Bga,ﬁm) (x,y) . S} — Oftx—l (1 — t)y—l Ofps—l 1F ((x;l}, _7tm(lp—t)m> dpdt
Now using the one-to-one transformation(except possibly at the boundaries
and maps the region onto itself)v = W,t = U, we get,

1

/‘u(merx)fl(l _ ‘u)(mery)fldu
0

X /VS‘IIFI (o;8,—Vv)dv

—
"Gw/\
R
>
2
—
=
~<
N—
“
—
I

0
1
_ /‘u(ms-&-x)—l (1 B H)(ms-&-y)—ldlul—w(a,ﬁ)(s)
0

= B(ms +x,y +ms)T %P (s)

which completes the proof. O
Corollary 2.7. By the Mellin inversion formula, we have the following complex
7 7 ((xvﬁ ;m) .
integral representation for B, (x,y):

Frioo

m 1 -
B;a,ﬁ, )(x,y)z T /B(ms—kx,y—i—ms)r(%ﬁ)(s)p Sds

—joo
Proof. Taking Mellin inversion of Theorem 2.6, we get the result. O

Remark 2.8. Applying definition of Mellin transform and putting s = 1 and

considering that [(*8) (1) = % in Theorem 2.6, we get
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(BT (a—1)

/BE,“’B;’") (e,y)dp = Blxtm.y+m) 5 o FE—1)"

Letting a = B3, it reduces to Lee et al. [11] relation

[ Brey)dp =Bl mytm) (Rt m) > —1, Ky +m) > 1)
0

and for m = 1, it reduces to Chaudhry et al. [2] interesting relations between the
classical and the extended beta functions.

/B,,(x,y)dp:B(x+1,y+1) (R) > —1,R(y) > —1)
0

2.3. Integral representation of generalized gamma and beta func-
tion

Theorem 2.9. For the product of two new generalized gamma function, we have
the following integral representation:

% [ee}
FI(Uozﬁ;m) (x)l“},a’ﬁ;m) () = 4//r2(x+y)—] cos® 1 9sin210
00

2 p 4
]F] (OC 13 r COS e—m) ]F] (OC ﬁ r sin e—rMSlnzme> drd0

Proof. Substituting r =12 and r = £2 in (18), we get
F;a,ﬁ;m) (x) = 27172#11};1 (a;ﬁ; - HW) dn
and i
anaﬁ;m)(x) _ 2(({52;;711[71 (a;ﬁ;—éz §2m> dé

Therefore

Ly @ P (y)

:4//n2x’1§2y’11F1 (a;B;—nz—ﬁ) \Fy (oc;B;—&2 §2m>dnd§
00
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Letting N = rcos 0 and £ = rsin 6 in the above equality,we get

oo

F;avﬁ;m)( ) (X B m 4//}’2 x+y 2x—1 6 Sin2y—1 9

00
1F1<Ocﬁ —r?cos 9—¢> 1Pl o B —r*sin 9—$ drd0
r2m COSZm 2] r2’" Sin2m 2]
This completes the proof. O

Remark 2.10. Putting @ = 8 and p = 0, we get the classical relation between
the gamma and beta function:

F)C(y)

Blxy)= C(x+y)

Theorem 2.11. For the new generalized beta function, we have the following
integral representations:
/4

. 3
ng,ﬁ,m) (x,y) = 2fcos2)c_1 0 sin® ! 91F1(a;ﬁ;—pseczmecsczme)de

Béa7ﬁ;m)(xvy) (l+u)x+> lFl(a B p(2—|—u—|— ) )du

B;Otﬁ;m) (x,y) = ”(xp]r:)u:l 1Fi(a;B;—p (2+ u-+ %)m)d”
(R(p) > 0,R(x) > 0,R(y) > 0,R(x) > 0,R(B) > 0,KR(m) > 0)

o%_‘osg

Proof. Letting t = cos? 0 in (19), we get

1

/f‘ M- YR (aB (1__pt)m>dt

0

a

2
=2 / cos™ ' @sin® "' 0,F (a; B; —psec™Bcsc*0) dO
0

On the other hand, letting 1 = = +u in (19), we get

11—~ F S N P
11( Bt’"(l—t)m

1 m
x+y Fi (a;ﬁ;—p (2—|—u+u) >du

O\z °\~
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Again, we have by above integral
/ xﬂ,l 1(a;B;—P<2+u+u) )du

0
1

] m
/ ! 1<a;ﬁ;—p<2+u+u> )du
0

/ Hy]F] <a;[3;—p<2+u+u> >du
1
1

Substituting u =  in second integral and simplifying , we get the result. O

_l_

2.4. The beta distribution for new generalized beta function

As an one of the application of this new generalized beta function is in statis-
tics.For example, generalizing conventional beta distribution to variables a and
b with an infinite range.

Let the new generalized beta distribution be

) = Wr“ " =01 F(o; B; —mi)  0<1<l

0 otherwise

A random variable X with probability density function given by f(¢) will be
said to have the generalized beta distribution with parameter a and b such that
—o0 < < oo, —c0 < b <oo,p>0,R(a) >0,R(B)>0and R(m) >0

If v is any real number, then

(o0 fism) (a,B3m)
B b B 1,b
EXY) = )4 (a+v, ); andforv=1, u=E(X)= J4 (a+1,b)

By (a,b) By (a.b)

represents the mean of the distribution and
o® = E(X*) —{E(X)}
By P (a,b)B P (a+2,6) — (BP0t 1, b))2
(B (a, b))2

is the variance of the distribution.
The moment generating function of the distribution is
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v ! V- glaBim) "
M(t)=) —EX") =g By " (at+nb)—
=o' Béa’ﬁ’m)(a,b)r;) ! n!

The cumulative distribution of f(¢) can be written as

BF™ (4 b p)
F(0) == apm
B, " (a,b)
where
B*P™ (a,b; p) = /t”’l(l —t)b’llFl(a;ﬁ;—ﬁ)dt
0

is called new generalized incomplete beta function.

3. Generalized Gauss’s hypergeometric and confluent hypergeometric
functions

In this section, the new generalization of beta function (19) is used to define the
new generalized hypergeometric and confluent hypergeometric functions as

o0 (a,Bsm) n
B (4 brerg) = Y By " (b+n,c—b)z
p (a7 ,C,Z) n:()(a) B(b,C*b) n

(p=0:] z|< 1;R(c) > R(b) > 0,R(cr) > 0,R(B) > 0,%(m) > 0)

and
o plo,Bim) n
(cuBom) 7. . By (b+nc—b)z
P = il
p (b 20 Bb,c—b)  nl
(p>0;R(c) > R(b) >0,R(ax) >0,R(B) >0,R(m) > 0)
respectively.
Clearly,

F,S“’O“’") (a,b;c;2) = F)'(a,b;c;2), Flga’ﬁ;l)(a,b;c;z) = F,Sa’ﬁ)(a,b;c;z),
F%*Y(a,bse12) = Fi (a,bic:2)

and
D (breiz) = Rp(bicsz), P (biesz) = P (bicia),

d)éa’a;l)(b;c;z) = |Fi(b;c;z)
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3.1. Integral Representations

In this section, integral representation of the new generalized hypergeometric
and confluent hypergeometric function is obtained by using definition of gener-
alized beta function (19).

Theorem 3.1. For the new generalized hypergeometric function , we have the
following integral representations:

F,Sa’ﬁ;m) (a,b;c;z)
1

— mo/t“(l —0) T 1 — ) R (a;ﬁ;M) dt

(p>0;p=0and |arg(l1—z)|< T R(c) >R(b) >0,R(m) >0) (20)

oo

pra’ﬁ; )(a b;c;z) /ub Y1+ u) (1 +u(l—2)]

b c—b

o

1 m

1F1 (Ot;ﬂ;—l? <2+u+> )d”
u

5 3

FYPm (4. bieiz) = B(bc—b)/sm%l veos® 2 y(1 —zsin?v) ¢
’ 0

1F (a;ﬁ; —psec?™vesc” v) dv

Proof. Direct calculations yield

oo (a,ﬁ;m) n

(o, B5m) L B (b+n,c—b)z
= n

Fy (a,b;c;z) nE:o(a) (b b) ‘

1
1 S btn—1 c—b—1 4 "
=—— n 1- Flof—>—— )=

n

1
~ B(b,c—b)

- c—b— .p._ P S (Zt)n
b 1(1—[) b llFl <a’ﬁ’tm(1t)m>nzo(a)n dt

1
~ B(b,c—b)

S O~ _

tb71(1 —t)cibq]F] (OC;B; tm(l_ft)’") (1—zt)“dt.
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Setting u = - in (20), we get

oo

/ub L1 40) <14 u(1 —2)] @
0

1 m
1F (Ot;ﬁ;—p <2+u+> >du
u

On the other hand, substituting t = sin? v in (20), we have

F*P (a,bes2) = b -

[S1E)

—a

) 2 )
FYP™ (g besz) = b) / sin” " veos™ 7y (1 —zsin®v)

B(b,c—

0
1F (a;ﬁ; —pseczm vese?™ v) dv
d

Theorem 3.2. For the new generalized confluent hypergeometric function, we
have the following integral representations:

1

(aBm) p. N 1 /b71 c—b-1_u
o = 1— F;
P (byc;z) B(b,c—b)o 7 (1—1) e“q 1(&[3 (l—t) >dt

(,Bom ! l—u)b 1 U= —b—1 (1
P (p; “\F — = |d
! ) O/ B(b,c—b) ‘ ‘(“ﬁ T ) ’

(p = 0:R(c) > R(b) >0 and R(m) > 0) (21)

Proof. A similar procedure yields an integral representation of the new gen-
eralized confluent hypergeometric function by using the definition of the new
generalized beta function (19). ]

Remark 3.3. Putting « = 8 and p = 0 in (20) and (21), we get the integral
representations of the classical GHF and CHF.

3.2. Differentiation formulas

In this section, new formulas including derivatives of generalized hypergeomet-
ric and confluent hypergeometric function with respect to the variable z in terms
of a shift of the operator is obtained by using the formulas :

B(b,c—b) = {B(b+1,c—b) and (a),y1 =a(a+1),,
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Theorem 3.4. For the new generalized hypergeometric function we have the
following differentiation formula:
dn
dz"

[F,Sa’ﬁ’ )(a,b;c;z)} = ( zcga) F,Sa’ﬁ’ )(a+n,b+n;c—|—n;z).

Proof. Taking the derivative of F,Sa;ﬁ ) (a,b;c;z) with respect to z, we obtain

4
dz

7P abied)]| = 2| E @) Blb,c—b)  n!

d [ > B;,a’ﬁ;m)(b+n,c—b) b
n=0

@, B e ) 2
B " B(b,c—b) (n—1)!

Replacing n — n+ 1, we get

oo sﬁ;m) n

d [ (apm) ba BYP™ (b4 n+1,c-b)z

JE— F My ’b’ ; j|:— ll’l I

LN C L) s n;)(“ T By 3
ba

= ZFPm (a1, b+ e+ 152)
C

Recursive application of this procedure gives us the general form

jzn [F!Soc,ﬁ;m) (a,bic;z)| = (bzzga)angaﬁ;m) (atnb+nic+n:2).

O

Theorem 3.5. For the new generalized confluent hypergeometric function, we
have the following differentiation formula:

d” m b n ,Pm
pET [@E,a’ﬁ’ )(b;c;z)} = EC; dbg,a’ﬁ’ )(b+n;c+n;z)

Proof. A similar procedure as Theorem 3.4 gives the result. Ul

3.3. Mellin transform representation

In this section, the Mellin transform representations of the generalized hyperge-
ometric and confluent hypergeometric function is obtained.

Theorem 3.6. For the new generalized hypergeometric function, we have the
following Mellin transform representation:

M F,Ea"g;m)(a,b;c;z) 5| = rw’ﬁ)(s)gizt'g’)ﬁms_b) 2F(a,b+ ms;c+2ms;z).
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Proof. To obtain the Mellin transform, multiply both sides of (20) by p*~! and
integrate with respect to p over the interval [0, ). Thus we get

oo

M [Fzga’ﬁ;m) (a,b;c:2) :S} - /PS_IFISa’ﬁ;m) (a,bic;z)dp =
0

1
B(b,c—D)

1

/tbl £)eb1 /psllF]<aﬁ i )>dpdt

0

Substitution of u = W in the integral then leads to

0 0

— (1= [ (@ B —u)du
0
=" (1—1)" TP (s)

Thus we get

M [F,Sa’ﬁ;m) (a,b;c;z) : s]

1
1 b+ms—1 c+ms—b—1 —am(a,)
=— [t 1—1¢ 1—zt) ‘T t
s 0/ (1)1 (1 2) =T 5)a
1
(@B (s) bams—1
— ms—1 (1 _ c+2ms—(b+ms)—1 1— )¢
Bbc—b) O/t (1—1) (1 —zt) “dt

(@B (5)B(b 4 ms,c+ms — b)
B(b,c—D)

2Fi(a,b+ms;c+2ms;z).

O

Corollary 3.7. By the Mellin inversion formula, we have the following complex
integral representation for F,Sa’ﬁ ) (a,b;c;z) -

F,ﬁ“ﬁ;’”) (a,b;c;2)

tioo
1 @B (\B(b —b
/ (s)B(b +ms, c+ms )zFl (a,b+ms;c+2ms;z)p " ds

T mi B(b,c—b)

—Jjoo
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Proof. Taking Mellin inversion of Theorem 3.6, we get the result. 0

Theorem 3.8. For the new generalized confluent hypergeometric function, we
have the following Mellin transform representation:

T(%P) ()B(b+ms,c +ms —b)
B(b,c—D)

M {qD;a’B;m) (byc;z) i s|= 1F1 (b+ms;c+2ms; z)

Proof. A similar argument as Theorem 3.6 gives the Mellin transform of new
generalized confluent hypergeometric function O

Corollary 3.9. By the Mellin inversion formula, we have the following complex
integral representation for CIDE,a’ﬁ im) (byc;2):
Fioo

. (@.p) ctms— _
P (b s 7) = = J L (S)IEEZITZ’) tm=b)\ Fy (b+ ms; ¢+ 2ms; 2) p~Sds
oo
Proof. Taking Mellin inversion of Theorem 3.8, we get the result. O

3.4. Transformation formulas

Theorem 3.10. For the new generalized hypergeometric function, we have the
following transformation formula:

FSP (a,biciz) = (1—2) R P (“’C‘b;“ s ) (| arg(1-2)|< 7)

Proof. By writing

1—z

—a
M—z(1-0)]“=(1-7)""° <1 + Zt)
and replacing t — 1 —¢ in (20), we obtain

Fp(""ﬁ;’") (a,b;c;z)

1
(I—Z)a/ b—1,c—b—1 Z - —p
= [(1—) e 1-—) F(wp—L)a
B(b,c—b)o( 2 i) Py )@
Hence,

F,,(aﬁ;m) (a,b;c;z) =(1 —z)*“F,Sa’ﬂ;m) <a,c—b;c; L l)
i
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Remark 3.11. Note that, replacing z by 1 — % in Theorem 3.10, we get the
following transformation formula

F,§"""’ ) (a,b;c;l — ) :ZO‘FISO"B’ )(a,c—b;b;l —2), (| arg(z) |< ).
z

Furthermore, replacing z by 3 in Theorem 3.10, we get the following trans-
formation formula

FiFm) (a,b;c;) = (1+2)%F“P™ (a,c — bib:2), (| arg(1+2) |< 7)

1+z

Theorem 3.12. For the new generalized confluent hypergeometric function, we
have the following transformation formula:

CIDI(UO”ﬁ;m) (byc;z) = exp(z)cb;“’ﬁ;’”’ (c—b;c;—2)

Proof. Using the definition of new generalized confluent hypergeometric func-
tion (21), we have

1
(0Bsm) oy . 1 /b—l c—b—1 N 4

o = 1— F
» (byc;2) Blb.c—b) J 77 (1—-1) ey 1<a,ﬁ,tm(1_t)m>dt

replacing t — ¢t — 1, we get the result. O

Remark 3.13. For oo = 8 and p = 0 we get Kummer’s first transformation
formula.

3.5. Summation Formula

Theorem 3.14. For new generalized hypergeometric function we have the fol-
lowing summation formula

Bg,a‘ﬁ;m) (b,c—a—D>)

F*P™ (a,bie;1) = B(b,c—b)

Proof. Setting z =1 in (20), we have the following relation between new gen-

eralized hypergeometric and beta function:
. 1
Fp(a’ﬁ’m)(a,b;c;l) _ moftbfl(l_t)cfafbfllpl <a;ﬁ;ﬁ) dt,

. (a.Bm) ey
BP0 (a,bie;1) = B,

when oo = 8 and p = 0, we get Gauss’s summation formula. O
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4. Concluding remarks

In this present paper, generalizations of gamma, beta, hypergeometric and con-
fluent hypergeometric functions are introduced.The special cases of these gen-
eralizations include the extension of gamma, beta, hypergeometric and conflu-
ent hypergeometric functions which were proposed in [1, 2, 8, 10, 11], respec-
tively.Some properties of these generalized functions are investigated in this
paper and most of which are analogous with their original functions. Most of
the special functions of mathematical physics and engineering can be expressed
in terms of these generalizations. Therefore, the corresponding generalizations
of several other familiar special functions are expected to be useful and need to
be investigated.
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