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Dedicated to PauI  Erdős on his seventieth birthdav
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-. L9t F_be a family of-k-subsets of an rr-set. Let s be a fixed integer satisfying k< s= 3k.
Suppose that for Fl,F2,&€g lp'uaunl= s implies FanFze| 4# g. katona asktd what is
the maximum cardinality, Í '@,k,s'}  of such a system. The Erdős-Ko-Rado theorem implies

/ -_1\
Í v'k,s): [ í -iJ 

"' 
s:3k and n= 2k. Inthis paper we show that f (n,k'"): Í í :1lholdsfor

nrno(k) if and only if s> 2k.
Equality holds only if every nrember of F contains a fixed element of the underlying set.
Furtherwesolvetheproblemfor k:3,s:-5,n= 3000. Thisresultsharpensatheoremof

Bo| | obás.

1. Introduction

The simplest version of the Erdős-Ko-Rado theorem is t lre follor,ving

T'heorem 1. [ 4]  Let fr be a collection of k-element subsets of dn n-set X. Suppose
F.F,+ g Jbr F, F,€.F. Then for n> 2k

(,) vt= (i).
an,d eqttality holds iff for sonte x€X we hat;e

(2) ,q :  { F C x| lF|  :  k, x€.P} .

In Frankl [ 5]  the following is proven

Theorem 2. Let F be a collection of k-element subsets of cm n-set X, ctnd let t> 2.
Sttppose thűt, .fo, euery F,, F,,..., Ft€F, .F'l n... nF,* g holds. Then for
n> -(tlt- 1)É  (1) holds. Equality is possible only for 3 satisfuing (2).

Katona raised the following problem, concerning the case t:3 of Theorem 2.
What happens if, for some integeÍ  J' we require F1.F2.4+ a on| y for triples
satisfying lf'1ufru&l< s? For which values of s cloes the condition entail (l)?
In this paper we investigate this problem lar n> ns(k). and show thar (l) holds whene-
Yer s= 2k.
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2. Results

Theorem 3. Let 3 be a collection of k-element subsets of the n-set X. Suppose t lnt
for any Fr, Fr, Fz(F, satisJ'1,irtg lFrUFrU Frl= zk Frnfrn Fr+ A hods. Then
tkere is a rumtber nr(k) suclt that, for n= no(k)

,G| .- í "-| .|t" |  - [ ii-t/ '

and equalit.v holds only d ? is a family consisting of all the k-subsets containing a

fixed element. Moreouer ro(3):5, no(k)= 112131r.

I t is somewhat surprising tlrat the extremal family í s unchanged in the range
2k.= s< 3k.

However for s-< Zk the situation is completely different, as it is shown by the
following construction.

Ler usconsiderapartit iorr ol Xintok sets X, . .. . X.* ith [ + l -g1l: [ i.|  t '.tk_l ' '' [ kJ
Let us deflne

(3) g:{ ccxllcnx,l : r for 1< i.= /c} .

Suppose now G.nG,nGs:O for Sotne G,, G2.G,€E. Then obviously í or
every l< i= k we have

| (G1UG,U q))Xí I  >  2.

Fronr this we imrnediatel), obtain lclUGrU GBl:= 2k, in other worcls lG.U G2UGBI

= 2k- l implies Gr)Gze]Gs+ ű, i.e. 9 satisfles the condition of Katona. Y4i

Í  nl^  ( n-| \
=  [ * J which is of greater order of magrritude than 

[ ;  _ ;  ,1.

Conjecture. Let 3 be a fainily of / c-subsets of X,lXl:n. Suppose F1 , Fz, Fz(F
lrlurru Frl= 2k- 1 implies rlnrrnFsl0. Then tor n> nr(k) and I  defined
abrrve 

I .? |  rg t.

with equality itr 9:9.

Theorem 4. I f k:3 anrt n-..3ooo ttren .f(tt.3.s): [+ l[= 11[ lsl' t3,lt 3 lL r r

This result is a sharpening oí  t lre following theorenr'

Theorem 5. (Bollobás L| D Let 3 be a Jamily oJ' 3-subsets oí  X,| X| :". Suppose
thaÍ .far F,, F,, F,(F we haae F,^  l-'G Fu([  denotes the symmetric dffirence).
Then i9i< | 9l wí t| l equality holding only if fr is isomorphic to 9.

Thus tscllobás excludes the configuration when F,., F,, Fu are three different
3.subset of a 4-set, while Theorem 4 permits it. However Bollobás's result holds tbr
every r? while we assume n = 3000, and our theorem is definitely not true for n <  i0.

As for t:3, s< 4, tí ivially í (n,,,',: (] ) r'o'a,. thereFore Katona,s pro-

blcnr is soli,; il foi" / r:3, except when s:5, n= 3000.
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3. The proof of Theorem 3

When fr :  2, F is a simple graph containing no triangles or path of length 3,
so it is tho union of vertex disjoint stars, thus Theorem 3 is true. From now on assume
that k> 3.

We proceed in a similar way as in Frankl [ 6] . First we prove that (1)

asyrnptotically. Let m(n, k, 1) denote the maximum number of k-subsets of an
such that no two intersect in a sinsleton.

Then we have:

Lemma t rf F sdtí sfies the conclití otts of Theorem 3 ' then

holds
n-set,

(4) isl = (k:r)+ nt(n,k,ty.
Proof. Let.F(, be the í arnily of those subsets of F which contain a (/ c- l)-subset not
contained in any other member of .F, i.e. go: { F(F11G c F, lGl: t - 1, G c F'(F
implies F':F\ , and define 3t:3* 3o.

Clearly | g,| = í : I ) Hence it suffices to prove | ,F,1.: tlt(tt,/ .. t). Suppose

the contrary, then we can find F1, F2€g1 such that lr' n r''|  :  1 . Let r' n rl:  { .r} .As Frt!F, there is an Fs(F, Fr# Fz such that (Fr-{ x} )cd. But in this case
r'n'Frn Fs:O and lrtUAU-&l= lrrU F2l+ 1:21c, a contradiction. I

The problem of determining m(n, k' 1) was raised by Erdős and Sós (see [ 2] ),
who determined m(n,3, l), in particular they proved m(n,3,1)= n, and conjectured

( n 
-)\nt(n.lc,t\ : l';_;) for n> 2k. This was proved by Frankt [ 7]  for n> no(k). Since

(* 1,) : (; -i).(; -)), Lemma , vie,c,s

Corollary 1. I f g satisfies the conditions of Tlrcorem 3, thenfor n> -nr(l; )

In the proof of Lemma I  we used only:

Proposition 0, I f 4, F2(F and F1)Fr:{ x) t lten there are no sets Fl or F{  in g
satisfying (r. - { r} ) c Fi or (Fr- { x} ) c. F! . I

For x€X (et 9(x) denote the family of sets F(F wtth x(F, and go(x)
t lre | arrrily of sets F€F witÍ t x€F such that F_{ x}  is not contained irr any other
F'(.F. Let t-urther l?(x11:41* | ,, lgr(x)l:do{ x'). Ctearly we have

Z d(x):  klFI ,

(n\
) d,,r,x1 

=  l,_", l.
.Y€x \ '\ -l,/

(5) 1o1= (i_i)-'(;_j) .U-_:r)= g+ zktn)(;_:)

(6)

(7)



(; - i ) -( ; : ; ' ) 
* ' = ,(', -1)* ,

(8)
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In view of Proposition 0 we have

Proposition ^ l'. Suppose F;-, Fz€g and F,)r': { "} . Then F', F,(9,(x). l
Let l| S set .ú  | x\ : { F_ { .r} |  r€ (g(x)-g,(x)D: { F- | x} |  x( F(9 and

= F'(9 
with (F-{ x} )cF'} . Then Proposirion lyields:

Proposition 2. For A,Á,(,ú (x) we haxe AnA,+ g. l
We will use the following theorem of Hilton and Milner:

Theorern 6. | 9)Let,ú  be c collectiotl oJ' r-element subsets of an n-set, n> = 2r. Sup-

pose that AnA,+ a for A,Á,€,ú  and | ú | = (,,-)-("; : ;1)+ t. r: t,u, ,l,,,n

exists an eleruent y such that y€Á for eaery A(ú . t
Proposition 3. I f r> 2, n> 2r, then

Proof. I t foilows from

í n-l) (,-,* l\  
- 

'_'(n* )-i\
(,-;J-[ ""- 1 ): ,a [ ' ,_ r') ' )

Proposition l. I J,| ú (x)l= o(x_-i) thett there exists y€(X* x) such that y€F for
eaery F(9(x).

Proof. In vierv of Propcsitions 2 and 3 we can find y€(X-x) such that y(,4 for
every Á€,ú  (x). Suppose that for same F(On(x) we have y{  F. In view of Propo-

sition ]  forevery A€il(x}  welrave AnF+ 0, yielding | ,ú (x)]< k(| "--i), a con-

tradiction. I
Call the point x(X gaad it there exists a y+ x such that x(F{ ,F entails

} '€ F. I f x is gooci then fix one sttch 1. and denote it by / (x).

Corollary 2. rf | .ú (x)r= k(,i--1) t!rctt x i,s good, t
(n_ l\

We assume from now on that | g| = | ,i_i) and that there is no vertex e€X

which is contained in every member of .f.

Lemma 2. rf .r is goott thcn tt(.rt= ('; : -")-(k- r r("i!; ')

Proof. By the indirect assumption there exists Fo(F with Í @){ Fo. As x is good
and / (x)(Fo we have x{ Fo. Let us consider k.subsets of the í ollowing form:
F:GU { r} U{ ","f(")} , where } ,(Fo, G cx-(]76U{ ","f(* )} )' lcl: / í -3. Thetotal

number of such k-sets is o('; !,'). As for given Go and yr, yr( F6 the intersection
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of the three sets F0, GoU { y,,x,Í (x)), GoU{ .y,, x,,f(x)}  is empty and their union
of cardinality less than 2k, so at most one set of the form Go U { .r,, x, / (x)}  (y€ 'F.)

belongs to F. Consequently, at rnost ('o!; ') sets of rhe fornr { cU{ r, x.f(x\ } l
y(Fo, Gc(x-RU{ ","f(")} ), icl:e* 3}  beiong to 3. This means that at leasr
.. ,. (n-k -2\  (n-2\
(k - l) 

[  

"t 
_ S 

-J sets are missing from the 
lk _ rJ possible k-sers containing

{ x,f(x)} . I
Lernma 3. I f n> -kz-k then t lrcre exists at least one good L-ertes, x.

Proof. Suppose the contrary then using (6), (7) ancl Corollary 2 we deduce

,(,-| )'',,-. s '/  \  \ ]  ', \  /  tt \  'í rr-3)kU_i ):  rlr :  Z dlx):  
* Z 

dot\+ ,Z ,dtx\ | . tr._ ,)* ilrl* _tJ.
I t is easy to see that the ri.sht hand side is iess than r(í  

-,,) 
for ,l= k,_ k, a contra-

diction. I
We prove Theorem 3 for É :3, n> - 5:no(3). For n:5,6 it follows fror:r

Theorem 2. We appiy induction on r.

Let F be a famitry satisfying the assumptions but not the statement. As
n:= 7, by Lemmas 2 and 3, wa can find x€X with d(x)-(n_2). Tben F _9(x)
is a family satisfying the assumptions on X- { "} .We may use the induction hypothesis

(n_?\  í n_)\  / n- l\
| 9 _9(x)] -= [  

' 
-J. yielding | .oÉ |  z-)+ t,-zl:  [ .. z'J which concludes the

proof.
From now on we assume that k> 4. Let us suppose n:-kz-k. Suppose the

statement of the theorem is false for F. Then by n:-k2-k there exists x€X with
(n-)\  l,r-k-)\

d(x)- 
| i -,)-(Á - 

l) 
[  

.t 
-: .J . Let Xt:  X- { x). and Fl:  F -9(* ). ] r Xt. 1

are c| efined with ,,,,= (| x)-| ) then | et x€Xi with ,J(fl4r\ : : )-.o-'l
(x,l-k -2\'[ ' 'L-3 J (sucn a vertex exists certtrinly fbr lxt]= k2-k.)

Let X,* ':y-trxI ,4* ,.:4-g@). .Í -et j  be the index | or which | Xu|: lcz-k, i.e., 1:p-Pz* k. Then we have

j  ,((n-z-i\  ( tt-k-2-,)) - í "- l)- ,'t (rz-2 i)(e) r7il= ,''-,2,[ [ "^ -t"J (k-l)l ii-3 )) (/ .-rl iuo\k_ 2)

+ { k_l) 
j> 'í n-k 2-i) 

- 
(li: -/ t-| ) ,u -,,í (,,-/ ..-ll-í k,-2k* 1)l,itrí ( k_3 ,: (k-l ,;  

rtt.''[ ( k 2 j-( k_2 ))

on the other hand F; is a family oí  k-subsets of the (fr2 - k)-element set X,, thus by
Lenrnra I

(10) ,u,1= (ku-l')* ,',(k2-li, k, 1).



346 P. FRANKL, z' FÜREDI

Froposition 5. For n= 2k* lwe- haue

tn(n. k.lt _=  1 Í -?l ''' - k\ k-2)'

Proofl. Let9 be a family of / c-subsets of an n-set which does not contain two meinbers
intersecting in a singleton. Then for every vertex x,9,:  { G-{ x} :  x(G(9\  is an
intersecting famiIy of (k - l).subsets of an (n - l).set. Thus by the Erdős-Ko-Rado

theorem (Theorern l) wc have | E,| = Í I -i). Thereí ore

i,e1 :+ zv.t= t{ i,_il t

Proposition 5. we ob[ainCombining (10) with

(11) LF. =t ' I  -

However, for n:= k2+ 3k, { lI )
rem 3.

the proof of Theo-

Remark l. Proposition 4 remains true lor pú (.rl| = (x 
-,,)_(,; ,: ; ')* '. u,','*

this one can prove Lemma 3 for n= k2l(1.51og / c) and in this way the upper bound
nr(k)= 71za3lc can be imprcved to no(k)-< k2lIogk. But it is still far from the real
value oí  no(/c) which we conjecture to be | 3lcl21. We can prove this for k:4,5.

4. The proof of Theorem 4"

With the Í 'arniiy F Iet Üs associate the graph ./  whose veftex set is X and
whose edges are all the 2-sets which are contained irr sorrre F€.í .

Let us recall now a result of Erdős [ 3] . For sirnplicí ty we state it only for a spe-
cial case.

Theorem 1, | 3) Let 3 be a family of 3-subsets of X,\X\ :n, Suppose that .ú
contains no complete subgraph on 4 aerÍ ices. Then 'for ,v the assertion of Theorem 4
holds,

Let s be the -qreatest number for which .4 contatns a complete subgraph on s
vertices.

I f s:3 then Theorem 7 yields the statement of our theorem. For s> 4 we
will proceed in a similar way as with the proof of Theorem 3. Let l:min (s, 5). Let
Í 1, ..., x, be the vertices of a ccmplete subgraph of .ú . By Turán's theorem [ 9]  we
have for t:s:4

(!2)

Let# ,,a,,fr,bethecollectionof mernbers B of F Í br which ]Bl{ x1 ,..,,X,} l

(T_i)+ (k- r(o'; !; ')

contradicts (9), which concludes

I
I .d =  1n','ö
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:1,2,3, respectively. Obviously, we have
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(13)

and

(14)

For

since

w,t = (,r),

1n,1 =  (,r)'_ 
'

l< i= j< t, let us choose zi,i(X such that { * ,, "; . 
z,',} €F. This.is possible

{ x,, x,| €"ú . Let Z bethe set of different z; ,,'s. Of course | ZI= (i),

Proposition 6. I f for l< i-= : j< t, and for !t,lzCX both { ,t,, lt,,vz}  and { x; , yr, yz\
belong to 3, then eí ther y, or y, belongs to Z.

Proof. Let us write z:Zt,i. By definition { ",, xj, z\ (.9. Then l{ x; , xr, : }

U { ",,l.,.yr} U { x; , y,,, yz} l= 5, consequently the intersection of the 3 sets is non-

enlpty, i.e., z:r't ar z:yz, as desired. il

Proposition 7.

(1 s)

(16) ,Til,d(x) 
<

| Q,]  = ,(,; )o,_ ü+ !_1,,

Proof. our Í irst clairn is t lrat the first term is an upper bound for the nunrber o|
F€.F with IFo { x1' ...' x,} | :  L, F.Z* g. For zCZ Iet m(z) denote the multipli-
city ol Z, i.e. the number of pairs (i,i), l= i= j= t wrth z:zt,r' For z(Z and
y€-X-{ "',...,x,}  let D(,,y) denotethesetof x;, 1< i< /  suchthat { z,y,x} €F.
I f 1,{ Z ther-r by Proposition 6 í or x,, x;€D(z, -y) we have z:z,,,' I f ; '€Z then

the only other possibility is !:Z,j.Thus for .vdZ wehave m(z)= [ lOtz''t ')l),

in particular 2m(z)> | D(z, y)|  holds. Simiiarly, if y€Z then 2m{ z)+ 2mQ,)

= lb(z,y)i. Summing up these inequalit ies for all pairs z(2, y(X- { xr, ..., x,} ,

consiclering the pairs with y(Z only once and taking into conside tation ),m{ z)
I t I

:  
[ iJ * " obtain our f,rst claim. In view of Proposition 6 and (12) the second term is

anupperbound for | .ú | , whichis atleastthet'rumber oÍ  FCT with ]Fí l { * n, ..., x,} |

-1, FnZ+ $. I
Now summing (13), (14) and (15) we obtain

):  + GWBI+ zl,a2l+ 1s,1)
! * a* ,t.-

í 1
lu'"uu
{

ffi-rr'+ 8

4l
I

)
I

sl
)

n-2L

n -31

f^ . t-

for !:
=  { -n'+ 8n - 3T (if ru >  8).
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suppose now that n> 3000, lrl= L+ Jt+ l L+ l and the theorem is false. By

(16) we can take an x1(X, Xt:X*  { xt}  and fr:  { F(31x.{  F}  such that d(xr)
I

=  * nz+ Bn-37. 
rhen, in view of (16), W,É Pa)t+ ] [+ j : le,-,land we

can argue in the same w ay for Sras we did for fr .Let q be the first integer with lxql
< 750. Then q:n-75A. For the cardinality of frrwe deduce

(17) lgql:=  W1* ,T (*  Qt - i)2*  8 (r-,) *  3?)

t
r-'j10

n(n* Í )(2n* 1) _-4n(n+  r)+ 3zn+ * 750.751 . 1501

+ 4.750 .',i51-37 .',ls0.

Now using the assumpti on l9l= !{ r'_ 3n- 2) we obtain from (17} , for n= 3000"

t -lrsor

',rrl= ' h"" -4'7nz + 16 000 000> l 
; " ), " contradiction, proving the theorem-

5. Concluding remarks

Remark 2. Theorern 4 is not only a sharpening of Theorem 5, but the proof is entirely
new.

Remark 3. The problems considered in this paper beiong to the so-called Turán-type
problems, i.e. what is the maximum number of k-subsets of an n-set if it contains no
sub-system isomorphic to one member of a set of k-graphs V4, / { 2, ..., # r). This
maximum is usually denoted by ext (r, { ffr, tr, ..., trr} ).

Let us define Í f,: { { ",, X2. ..', xu} . { x', Xz. .... x* - r, xr* r} , { xu* ,.] .r* ', ...

.... * * )). fr: { { xt, xz. ....x0} , { x,, -yz. .....yr-r, xr* r} . { "* ."0.,,.,...."ru-r} } . lnthis

ierrninology we proved (Theorem 4) for /< :3 ext (n, { ti): t+ ] t+ ] t* ]
Moreover, the prooí  of Theorem 3 yields for n= no(k) the stronger result

(n_l\
ext (,,, t,(,. .t,\ } : lí - 

1 |

Refining the argurnent we could even obtain

Theorenr 8. For 11= rt1(k) we ltaue ext(n, { .31\ ): [ ; : i)

Finally a special case of a result of the first author -{ ives

Theorem 9. iB]  Let tr:  { H', H,, H"\  be aÍ ,, arbitrary k.gra1llt saí isf1l| ng

lH| )HzUHBl;zk, HrnHraVz+ O. Thenfor elery n, ext(n, { ff\ )o3n,tu-t.
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