A NEW GENERALIZATION OF THE ERDÔS-KO-RADO THEOREM

PETER FRANKL and ZOLTÁN FÜREDI

Dedicated to Paul Erdős on his seventieth birthday
Received 10 January 1983

Let \mathscr{F} be a family of k-subsets of an n-set. Let s be a fixed integer satisfying $k \leqq s \leqq 3 k$. Suppose that for $F_{1}, F_{2}, F_{3} \in \mathscr{F}\left|F_{1} \cup F_{2} \cup F_{3}\right| \leqq s$ implies $F_{1} \cap F_{2} \cap F_{3} \neq \emptyset$. Katona asked what is the maximum cardinality, $f(n, k, s)$ of such a system. The Erdős-Ko-Rado theorem implies $f(n, k, s)=\binom{n-1}{k-1}$ for $s=3 k$ and $n \geqq 2 k$. In this paper we show that $f(n, k, s)=\binom{n-1}{k-1}$ holds for $n>n_{0}(k)$ if and only if $s \geqq 2 k$.

Equality holds only if every member of \mathscr{F} contains a fixed element of the underlying set. Further we solve the problem for $k=3, s=5, n \geqq 3000$. This result sharpens a theorem of Bollobás

1. Introduction

The simplest version of the Erdös-Ko-Rado theorem is the following Theorem 1. [4] Let \mathscr{F} be a collection of k-element subsets of an n-set X. Suppose $F \cap F^{\prime} \neq \emptyset$ for $F, F^{\prime} \in \mathscr{F}$. Then for $n>2 k$

$$
\begin{equation*}
|\mathscr{F}| \leqq\binom{ n-1}{k-1}, \tag{1}
\end{equation*}
$$

and equality holds iff for some $x \in X$ we have

$$
\begin{equation*}
\mathscr{F}=\{F \subset X| | F \mid=k, \quad x \in F\} . \tag{2}
\end{equation*}
$$

In Frankl [5] the following is proven
Theorem 2. Let \mathscr{F} be a collection of k-element subsets of an n-set X, and let $t \geqq 2$. Suppose that, for every $F_{1}, F_{2}, \ldots, F_{t} \in \mathscr{F}, F_{1} \cap \ldots \cap F_{t} \neq \emptyset$ holds. Then for $n=(t / t-1) k(1)$ holds. Equality is possible only for \mathscr{F} satisfying (2).

Katona raised the following problem, concerning the case $t=3$ of Theorem 2. What happens if, for some integer s, we require $F_{1} \cap F_{2} \cap F_{3} \neq \emptyset$ only for triples satisfying $\left|F_{1} \cup F_{2} \cup F_{3}\right| \leqq s$? For which values of s does the condition entail (1)? In this paper we investigate this problem for $n \geqq n_{0}(k)$, and show that (1) holds whenever $s \geqq 2 k$.

AMS subject classification (1980): 05 C 35,05 B 30

2. Results

Theorem 3. Let \mathscr{F} be a collection of k-element subsets of the n-set X. Suppose that for any $F_{1}, F_{2}, F_{3} \in \mathscr{F}$, satisfying $\left|F_{1} \cup F_{2} \cup F_{3}\right| \leqq 2 k \quad F_{1} \cap F_{2} \cap F_{3} \neq \emptyset$ holds. Then there is a number $n_{0}(k)$ such that, for $n>n_{0}(k)$

$$
|\mathscr{F}| \leqq\binom{ n-1}{k-1},
$$

and equality holds only if \mathscr{F} is a family consisting of all the k-subsets containing a fixed element. Moreover $n_{0}(3)=5, \quad n_{0}(k) \equiv k^{2}+3 k$.

It is somewhat surprising that the extremal family is unchanged in the range $2 k \leqq s \leqq 3 k$.

However for $s<2 k$ the situation is completely different, as it is shown by the following construction.

Let us consider a partition of X into k sets X_{1}, \ldots, X_{k} with $\left[\frac{n}{k}\right] \leqq\left|X_{i}\right| \leqq\left[\frac{n}{k}\right]+1$. Let us define

$$
\begin{equation*}
\mathscr{G}=\left\{G \subset X| | G \cap X_{i} \mid=1 \quad \text { for } \quad 1 \leqq i \leqq k\right\} . \tag{3}
\end{equation*}
$$

Suppose now $G_{1} \cap G_{2} \cap G_{3}=\emptyset$ for some $G_{1}, G_{2}, G_{3} \in \mathscr{G}$. Then obviously for every $1 \leqq i \leqq k$ we have

$$
\left|\left(G_{1} \cup G_{2} \cup G_{3}\right) \cap X_{i}\right| \geqq 2 .
$$

From this we immediately obtain $\left|G_{1} \cup G_{2} \cup G_{3}\right| \geqq 2 k$, in other words $\left|G_{1} \cup G_{2} \cup G_{3}\right|$ $\equiv 2 k-1$ implies $G_{1} \cap G_{2} \cap G_{3} \neq \emptyset$, i.e. \mathscr{G} satisfies the condition of Katona. $|\mathscr{G}|$ $\geqq\left[\frac{n}{k}\right]^{k}$ which is of greater order of magnitude than $\binom{n-1}{k-1}$.

Conjecture. Let \mathscr{F} be a family of k-subsets of $X,|X|=n$. Suppose $F_{1}, F_{2}, F_{3} \in \mathscr{F}$ $\left|F_{1} \cup F_{2} \cup F_{3}\right| \leqq 2 k-1$ implies $F_{1} \cap F_{2} \cap F_{3} \neq \emptyset$. Then for $n \geqq n_{0}(k)$ and \mathscr{G} defined above

$$
|\mathscr{F}| \equiv|\mathscr{G}|,
$$

with equality iff $\mathscr{F}=\mathscr{G}$.
Theorem 4. If $k=3$ and $n \geqq 3000$ then $f(n, 3,5)=\left[\frac{n}{3}\right]\left[\frac{n+1}{3}\right]\left[\frac{n+2}{3}\right]$.
This result is a sharpening of the following theorem.
Theorem 5. (Bollobás [1]) Let \mathscr{F} be a family of 3-subsets of $X,|X|=n$. Suppose that for $F_{1}, F_{2}, F_{3} \in \mathscr{F}$ we have $F_{1} \Delta F_{2} \not \subset F_{3}$ (Δ denotes the symmetric difference). Then $|\mathscr{F}| \leqq|\mathscr{G}|$ with equality holding only if \mathscr{F} is isomorphic to \mathscr{G}.

Thus Bollobás excludes the configuration when F_{1}, F_{2}, F_{3} are three different 3 -subset of a 4 -set, while Theorem 4 permits it. However Bollobás's result holds for every n while we assume $n \geqq 3000$, and our theorem is definitely not true for $n \leqq 10$.

As for $k=3, s \leqq 4$, trivially $f(n, 3, s)=\binom{n}{3}$ holds, therefore Katona's problem is solicd for $k=3$, except when $s=5, n<3000$.

3. The proof of Theorem 3

When $k=2, \mathscr{F}$ is a simple graph containing no triangles or path of length 3 , so it is the union of vertex disjoint stars, thus Theorem 3 is true. From now on assume that $k \geqq 3$.

We proceed in a similar way as in Frankl [6]. First we prove that (1) holds asymptotically. Let $m(n, k, 1)$ denote the maximum number of k-subsets of an n-set, such that no two intersect in a singleton.

Then we have:
Lemma 1. If \mathscr{F} satisfies the conditions of Theorem 3, then

$$
\begin{equation*}
|\mathscr{F}| \leqq\binom{ n}{k-1}+m(n, k, 1) . \tag{4}
\end{equation*}
$$

Proof. Let \mathscr{F}_{0} be the family of those subsets of \mathscr{F} which contain a $(k-1)$-subset not contained in any other member of \mathscr{F}, i.e. $\mathscr{F}_{0}=\left\{F \in \mathscr{F}\left|\exists G \subset F,|G|=k-1, G \subset F^{\prime} \in \mathscr{F}\right.\right.$ implies $\left.F^{\prime}=F\right\}$, and define $\mathscr{F}_{1}=\mathscr{F}-\mathscr{F}_{0}$.

Clearly $\left|\mathscr{F}_{0}\right| \leqq\binom{ n}{k-1}$. Hence it suffices to prove $\left|\mathscr{F}_{1}\right| \leqq m(n, k, 1)$. Suppose the contrary, then we can find $F_{1}, F_{2} \in \mathscr{F}_{1}$ such that $\left|F_{1} \cap F_{2}\right|=1$. Let $F_{1} \cap F_{2}=\{x\}$. As $F_{1} \notin \mathscr{F}_{0}$ there is an $F_{3} \in \mathscr{F}, F_{1} \neq F_{3}$ such that $\left(F_{1}-\{x\}\right) \subset F_{3}$. But in this case $F_{1} \cap F_{2} \cap F_{3}=\emptyset$ and $\left|F_{1} \cup F_{2} \cup F_{3}\right| \leqq\left|F_{1} \cup F_{2}\right|+1=2 k$, a contradiction.

The problem of determining $m(n, k, 1)$ was raised by Erdős and Sós (see [2]), who determined $m(n, 3,1)$, in particular they proved $m(n, 3,1) \leqq n$, and conjectured $m(n, k, 1)=\binom{n-2}{k-2}$ for $n \geqq 2 k$. This was proved by Frankl [7] for $n>n_{0}(k)$. Since $\binom{n}{k-1}=\binom{n-1}{k-1}+\binom{n-1}{k-2}$, Lemma 1 yields
Corollary 1. If \mathscr{F} satisfies the conditions of Theorem 3 , then for $n>n_{0}(k)$

$$
\begin{equation*}
|\mathscr{F}| \leqq\binom{ n-1}{k-1}+\binom{n-1}{k-2}+\binom{n-2}{k-2}<(1+3 k / n)\binom{n-1}{k-1} . \tag{5}
\end{equation*}
$$

In the proof of Lemma 1 we used only:
Proposition 0. If $F_{1}, F_{2} \in \mathscr{F}$ and $F_{1} \cap F_{2}=\{x\}$ then there are no sets F_{1}^{\prime} or F_{2}^{\prime} in \mathscr{F} satisfying $\left(F_{1}-\{x\}\right) \subset F_{1}^{\prime}$ or $\left(F_{2}-\{x\}\right) \subset F_{2}^{\prime}$.

For $x \in X$ let $\mathscr{D}(x)$ denote the family of sets $F \in \mathscr{F}$ with $x \in F$, and $\mathscr{D}_{0}(x)$ the family of sets $F \in \mathscr{F}$ with $x \in F$ such that $F-\{x\}$ is not contained in any other $F^{\prime} \in \mathscr{F}$. Let further $|\mathscr{D}(x)|=d(x),\left|\mathscr{D}_{0}(x)\right|=d_{0}(x)$. Clearly we have

$$
\begin{align*}
& \sum_{x \in X} d(x)=k|\mathscr{F}|, \tag{6}\\
& \sum_{x \in X} d_{0}(x) \leqq\binom{ n}{k-1} . \tag{7}
\end{align*}
$$

In view of Proposition 0 we have
Proposition 1. Suppose $F_{1}, F_{2} \in \mathscr{F}$ and $F_{1} \cap F_{2}=\{x\}$. Then $F_{1}, F_{2} \in \mathscr{D}_{0}(x)$.
Let us set $\mathscr{A}(x)=\left\{F-\{x\} \mid F \in\left(\mathscr{D}(x)-\mathscr{D}_{0}(x)\right)\right\}=\{F-\{x\} \mid x \in F \in \mathscr{F}$ and $\exists F^{\prime} \in \mathscr{F}$ with $\left.(F-\{x\}) \subset F^{\prime}\right\}$. Then Proposition 1 yields:
Proposition 2. For $A, A^{\prime} \in \mathscr{A}(x)$ we have $A \cap A^{\prime} \neq \emptyset$.
We will use the following theorem of Hilton and Milner:
Theorem 6. [9] Let \mathscr{A} be a collection of r-element subsets of an n-set, $n \geqq 2 r$. Suppose that $A \cap A^{\prime} \neq \emptyset$ for $A, A^{\prime} \in \mathscr{A}$ and $|\mathscr{A}|>\binom{n-1}{r-1}-\binom{n-r-1}{r-1}+1$. Then there exists an element y such that $y \in A$ for every $A \in \mathscr{A}$.
Proposition 3. If $r \geqq 2, n \geqq 2 r$, then

$$
\begin{equation*}
\binom{n-1}{r-1}-\binom{n-r-1}{r-1}+1 \leqq r\binom{n-2}{r-2}+1 . \tag{8}
\end{equation*}
$$

Proof. It follows from

$$
\binom{n-1}{r-1}-\binom{n-r-1}{r-1}=\sum_{i=0}^{r-1}\binom{n-2-i}{r-2} .
$$

Proposition 4. If $|\mathscr{A}(x)|>k\binom{n-3}{k-3}$ then there exists $y \in(X-x)$ such that $y \in F$ for every $F \in \mathscr{D}(x)$.

Proof. In view of Propositions 2 and 3 we can find $y \in(X-x)$ such that $y \in A$ for every $A \in \mathscr{A}(x)$. Suppose that for some $F \in \mathscr{D}_{0}(x)$ we have $y \notin F$. In view of Proposition 1 for every $A \in \mathscr{A}(x)$ we have $A \cap F \neq 0$, yielding $|\mathscr{A}(x)| \leqq k\binom{n-3}{k-3}$, a contradiction.

Call the point $x \in X$ good if there exists a $y \neq x$ such that $x \in F \in \mathscr{F}$ entails $y \in F$. If x is good then fix one such y and denote it by $f(x)$.

Corollary 2. If $|\mathscr{A}(x)|>k\binom{n-3}{k-3}$ then x is good.
We assume from now on that $|\mathscr{F}| \geqq\binom{ n-1}{k-1}$ and that there is no vertex $z \in X$ which is contained in every member of \mathscr{F}.
Lemma 2. If x is good then $d(x) \equiv\binom{n-2}{k-2}-(k-1)\binom{n-k-2}{k-3}$.
Proof. By the indirect assumption there exists $F_{0} \in \mathscr{F}$ with $f(x) \notin F_{0}$. As x is good and $f(x) \notin F_{0}$ we have $x \notin F_{0}$. Let us consider k-subsets of the following form: $F=G \cup\{y\} \cup\{x, f(x)\}$, where $y \in F_{0}, G \subset X-\left(F_{0} \cup\{x, f(x)\}\right),|G|=k-3$. The total number of such k-sets is $k\binom{n-k-2}{k-3}$. As for given G_{0} and $y_{1}, y_{2} \in F_{0}$ the intersection
of the three sets $F_{0}, G_{0} \cup\left\{y_{1}, x, f(x)\right\}, G_{0} \cup\left\{y_{2}, x, f(x)\right\}$ is empty and their union of cardinality less than $2 k$, so at most one set of the form $G_{0} \cup\{y, x, f(x)\}\left(y \in F_{0}\right)$ belongs to \mathscr{F}. Consequently, at most $\binom{n-k-2}{k-3}$ sets of the form $\{G \cup\{y, x, f(x)\}$ $\left.y \in F_{0}, G \subset\left(X-F_{0} \cup\{x, f(x)\}\right),|G|=k-3\right\}$ belong to \mathscr{F}. This means that at least $(k-1)\binom{n-k-2}{k-3}$ sets are missing from the $\binom{n-2}{k-2}$ possible k-sets containing $\{x, f(x)\}$.
Lemma 3. If $n>k^{2}-k$ then there exists at least one good vertex x.
Proof. Suppose the contrary then using (6), (7) and Corollary 2 we deduce

$$
k\binom{n-1}{k-1} \equiv k|\mathscr{F}|=\sum_{x \in X} d(x)=\sum_{x \in X} d_{0}(x)+\sum_{x \in X}|\mathscr{A}(x)| \equiv\binom{n}{k-1}+n k\binom{n-3}{k-3} .
$$

It is easy to see that the right hand side is less than $k\binom{n-1}{k-1}$ for $n>k^{2}-k$, a contradiction.

We prove Theorem 3 for $k=3, n \geqq 5=n_{0}(3)$. For $n=5,6$ it follows from Theorem 2. We apply induction on n.

Let \mathscr{F} be a family satisfying the assumptions but not the statement. As $n \geqq 7$, by Lemmas 2 and 3 , wa can find $x \in X$ with $d(x)<(n-2)$. Then $\mathscr{F}-\mathscr{D}(x)$ is a family satisfying the assumptions on $X-\{x\}$. We may use the induction hypothesis $|\mathscr{F}-\mathscr{D}(x)| \leqq\binom{ n-2}{2}$, yielding $|\mathscr{F}|<\binom{n-2}{2}+(n-2)=\binom{n-1}{2}$ which concludes the proof.

From now on we assume that $k \geqq 4$. Let us suppose $n>k^{2}-k$. Suppose the statement of the theorem is false for \mathscr{F}. Then by $n>k^{2}-k$ there exists $x \in X$ with $d(x) \leqq\binom{ n-2}{k-2}-(k-1)\binom{n-k-2}{k-3}$. Let $X_{1}=X-\{x\}$, and $\mathscr{F}_{1}=\mathscr{F}-\mathscr{D}(x)$. If X_{i}, \mathscr{F}_{i} are defined with $\left|\mathscr{F}_{i}\right|>\binom{X_{i} \mid-1}{k-1}$ then let $x \in X_{i}$ with $d(x) \leqq\binom{\left|X_{i}\right|-2}{k-2}-(k-1)$. $\cdot\binom{\left|X_{i}\right|-k-2}{k-3}$ (such a vertex exists certainly for $\left|X_{i}\right|>k^{2}-k$.)

Let $X_{i+1}=X_{i}-\{x\}, \mathscr{F}_{i+1}=\mathscr{F}_{i}-\mathscr{D}(x)$. Let j be the index for which $\left|X_{j}\right|$ $=k^{2}-k$, i.e., $j=n-k^{2}+k$. Then we have
(9) $\left|\mathscr{F}_{j}\right| \equiv|\mathscr{F}|-\sum_{i=0}^{j-1}\left(\binom{n-2-i}{k-2}-(k-1)\binom{n-k-2-i}{k-3}\right) \equiv\binom{n-1}{k-1}-\sum_{i=0}^{j-1}\binom{n-2-i}{k-2}$

$$
+(k-1) \sum_{i=0}^{j-1}\binom{n-k-2-i}{k-3}=\binom{k^{2}-k-1}{k-1}+(k-1)\left(\binom{n-k-1}{k-2}-\binom{k^{2}-2 k-1}{k-2}\right) .
$$

On the other hand \mathscr{F}_{j} is a family of k-subsets of the $\left(k^{2}-k\right)$-element set X_{j}, thus by Lemma 1

$$
\begin{equation*}
\left|\mathscr{F}_{j}\right| \equiv\binom{k^{2}-k}{k-1}+m\left(k^{2}-k, k, 1\right) \tag{10}
\end{equation*}
$$

Proposition 5. For $n>2 k_{1}$ we have

$$
m(n, k, 1) \leqq \frac{n}{k}\binom{n-2}{k-2} .
$$

Proof. Let \mathscr{G} be a family of k-subsets of an n-set which does not contain two members intersecting in a singleton. Then for every vertex $x, \mathscr{G}_{x}=\{G-\{x\}: x \in G \in \mathscr{G}\}$ is an intersecting family of $(k-1)$-subsets of an $(n-1)$-set. Thus by the Erdős-Ko-Rado theorem (Theorem 1) we have $\left|\mathscr{G}_{x}\right| \equiv\binom{n-2}{k-2}$. Therefore

$$
|\mathscr{G}|=\frac{1}{k} \sum_{x}\left|\mathscr{G}_{x}\right| \equiv \frac{n}{k}\binom{n-2}{k-2} .
$$

Combining (10) with Proposition 5, we obtain

$$
\begin{equation*}
\left|\mathscr{F}_{j}\right| \leqq\binom{ k^{2}-k}{k-1}+(k-1)\binom{k^{2}-k-2}{k-2} . \tag{11}
\end{equation*}
$$

However, for $n \geqq k^{2}+3 k$, (11) contradicts (9), which concludes the proof of Theorem 3.
Remark 1. Proposition 4 remains true for $|\mathscr{A}(x)|>\binom{n-2}{k-2}-\binom{n-k-1}{k-2}+1$. Using this one can prove Lemma 3 for $n>k^{2} /(1.5 \log k)$ and in this way the upper bound $n_{0}(k) \leqq k^{2}+3 k$ can be improved to $n_{0}(k)<k^{2} / \log k$. But it is still far from the real value of $n_{0}(k)$ which we conjecture to be $[3 k / 2\rceil$. We can prove this for $k=4,5$.

4. The proof of Theorem 4.

With the family \mathscr{F} let us associate the graph \mathscr{A} whose vertex set is X and whose edges are all the 2 -sets which are contained in some $F \in \mathscr{F}$.

Let us recall now a result of Erdős [3]. For simplicity we state it only for a special case.

Theorem 7. [3] Let \mathscr{F} be a family of 3-subsets of $X,|X|=n$. Suppose that \mathcal{A} contains no complete subgraph on 4 vertices. Then for \mathscr{F} the assertion of Theorem 4 holds.

Let s be the greatest number for which \mathscr{A} contains a complete subgraph on s vertices.

If $s=3$ then Theorem 7 yields the statement of our theorem. For $s \geqq 4$ we will proceed in a similar way as with the proof of Theorem 3. Let $t=\min (s, 5)$. Let x_{1}, \ldots, x_{t} be the vertices of a complete subgraph of \mathscr{A}. By Turán's theorem [9] we have for $t=s=4$

$$
\begin{equation*}
|\mathscr{A}| \leqq \frac{3}{8} n^{2}, \tag{12}
\end{equation*}
$$

Let $\mathscr{B}_{1}, \mathscr{B}_{2}, \mathscr{B}_{3}$ be the collection of members B of \mathscr{F} for which $\left|B \cap\left\{x_{1}, \ldots, x_{t}\right\}\right|$
$=1,2,3$, respectively. Obviously, we have

$$
\begin{equation*}
\left|\mathscr{B}_{3}\right| \leqq\binom{ t}{3} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mathscr{B}_{2}\right| \leqq\binom{ t}{2}(n-t) . \tag{14}
\end{equation*}
$$

For $1 \leqq i<j \leqq t$, let us choose $z_{i, j} \in X$ such that $\left\{x_{i}, x_{j}, z_{i, j}\right\} \in F$. This is possible since $\left\{x_{i}, x_{j}\right\} \in \mathscr{A}$. Let Z be the set of different $z_{i, j}$ s. Of course $|Z| \equiv\binom{t}{2}$.

Proposition 6. If for $1 \leqq i<j \leqq t$, and for $y_{1}, y_{2} \in X$ both $\left\{x_{i}, y_{1}, y_{2}\right\}$ and $\left\{x_{j}, y_{1}, y_{2}\right\}$ belong to \mathscr{F}, then either y_{1} or y_{2} belongs to Z.

Proof. Let us write $z=z_{i, j}$. By definition $\left\{x_{i}, x_{j}, z\right\} \in \mathscr{F}$. Then $\mid\left\{x_{i}, x_{j}, z\right\}$ $\cup\left\{x_{i}, y_{1}, y_{2}\right\} \cup\left\{x_{j}, y_{1}, y_{2}\right\} \mid \equiv 5$, consequently the intersection of the 3 sets is nonempty, i.e., $z=y_{1}$ or $z=y_{2}$, as desired.

Proposition 7.

$$
\begin{equation*}
\left|\mathscr{B}_{1}\right|<2\binom{t}{2}(n-t)+\frac{t-1}{8} n^{2} . \tag{15}
\end{equation*}
$$

Proof. Our first claim is that the first term is an upper bound for the number of $F \in \mathscr{F}$ with $\left|F \cap\left\{x_{1}, \ldots, x_{t}\right\}\right|=1, F \cap Z \neq 0$. For $z \in Z$ let $m(z)$ denote the multiplicity of Z, i.e. the number of pairs $(i, j), 1 \leqq i<j \leqq t$ with $z=z_{i, j}$. For $z \in Z$ and $y \in X-\left\{x_{1}, \ldots, x_{t}\right\}$ let $D(z, y)$ denote the set of $x_{i}, 1 \leqq i \leqq t$ such that $\left\{z, y, x_{i}\right\} \in \mathscr{F}$. If $y \notin Z$ then by Proposition 6 for $x_{i}, x_{j} \in D(z, y)$ we have $z=z_{i, j}$. If $y \in Z$ then the only other possibility is $y=z_{i, j}$. Thus for $y \notin Z$ we have $m(z) \geqq\binom{\mid D(z, y)}{2}$, in particular $2 m(z) \geqq|D(z, y)|$ holds. Similarly, if $y \in Z$ then $2 m(z)+2 m(y)$ $\geqq|D(z, y)|$. Summing up these inequalities for all pairs $z \in Z, \quad y \in X-\left\{x_{1}, \ldots, x_{t}\right\}$, considering the pairs with $y \in Z$ only once and taking into consideration $\sum_{z \in Z} m(z)$ $=\binom{t}{2}$ we obtain our first claim. In view of Proposition 6 and (12) the second term is an upper bound for $|\mathscr{A}|$, which is at least the number of $F \in \mathscr{F}$ with $\left|F \cap\left\{x_{1}, \ldots, x_{t}\right\}\right|$ $=1, \quad F \cap Z \neq 0$.

Now summing (13), (14) and (15) we obtain

$$
\begin{align*}
\min _{1 \leqq i \leqq t} d\left(x_{i}\right) & \leqq \frac{1}{t} \sum_{i=1}^{t} d\left(x_{i}\right)=\frac{1}{t}\left(3\left|\mathscr{B}_{3}\right|+2\left|\mathscr{B}_{2}\right|+\left|\mathscr{B}_{1}\right|\right) \tag{16}\\
& \leqq\left\{\begin{array}{ll}
\frac{3}{32} n^{2}+6 n-21 & \text { for } \quad t=4 \\
\frac{1}{10} n^{2}+8 n-37 & \text { for } \quad t=5
\end{array}\right\} \leqq \frac{1}{10} n^{2}+8 n-37 \quad \text { (if } n \geqq 8 \text {). }
\end{align*}
$$

Suppose now that $n>3000,|\mathscr{F}| \geqq\left\lfloor\frac{n}{3}\right\rfloor\left\lfloor\frac{n+1}{3}\right\rfloor\left\lfloor\frac{n+2}{3}\right\rfloor$ and the theorem is false. By (16) we can take an $x_{1} \in X, \quad X_{1}=X-\left\{x_{1}\right\}$ and $\mathscr{F}_{1}=\left\{F \in \mathscr{F} \mid x_{1} \notin F\right\}$ such that $d\left(x_{1}\right)$ $\leqq \frac{1}{10} n^{2}+8 n-37$. Then, in view of (16), $\left|\mathscr{F}_{1}\right|>\left[\frac{n-1}{3}\right]\left[\frac{n}{3}\right]\left[\frac{n+1}{3}\right]=\left|\mathscr{G}_{n-1}\right|$ and we can argue in the same way for \mathscr{F}_{1} as we did for \mathscr{F}. Let q be the first integer with $\left|X_{q}\right|$ $\leqq 750$. Then $q=n-750$. For the cardinality of \mathscr{F}_{q} we deduce

$$
\begin{gather*}
\left|\mathscr{F}_{q}\right|>|\mathscr{F}|-\sum_{i=0}^{q-1}\left(\frac{1}{10}(n-i)^{2}+8(n-i)-37\right) \tag{17}\\
=|\mathscr{F}|-\frac{1}{10} \frac{n(n+1)(2 n+1)}{6}-4 n(n+1)+37 n+\frac{1}{10} \frac{750 \cdot 751 \cdot 1501}{6} \\
+4 \cdot 750 \cdot 751-37 \cdot 750 .
\end{gather*}
$$

Now using the assumption $|\mathscr{\mathscr { F }}| \geqq \frac{1}{27}\left(n^{3}-3 n-2\right)$ we obtain from (17), for $n>3000$, $\left|\mathscr{F}_{q}\right|>\frac{1}{270} n^{3}-4.1 n^{2}+16000000>\binom{750}{3}$, a contradiction, proving the theorem.

5. Concluding remarks

Remark 2. Theorem 4 is not only a sharpening of Theorem 5, but the proof is entirely new.

Remark 3. The problems considered in this paper belong to the so-called Turán-type problems, i.e. what is the maximum number of k-subsets of an n-set if it contains no sub-system isomorphic to one member of a set of k-graphs $\left\{\mathscr{H}_{1}, \mathscr{H}_{2}, \ldots, \mathscr{H}_{q}\right\}$. This maximum is usually denoted by ext $\left(n,\left\{\mathscr{H}_{1}, \mathscr{H}_{2}, \ldots, \mathscr{H}_{q}\right\}\right)$.

Let us define $\mathscr{H}_{1}=\left\{\left\{x_{1}, x_{2}, \ldots, x_{k}\right\},\left\{x_{1}, x_{2}, \ldots, x_{k-1}, x_{k+1}\right\}, \quad\left\{x_{k+1}, x_{k+2}, \ldots\right.\right.$ $\left.\left.\ldots, x_{2 k}\right\}\right\}, \mathscr{H}_{2}=\left\{\left\{x_{1}, x_{2}, \ldots, x_{k}\right\},\left\{x_{1}, x_{2}, \ldots, x_{k-1}, x_{k+1}\right\},\left\{x_{k}, x_{k+1}, \ldots, x_{2 k-1}\right\}\right\}$. In this terminology we proved (Theorem 4) for $k=3 \operatorname{ext}\left(n,\left\{\mathscr{H}_{2}\right\}\right)=\left[\frac{n}{3}\right]\left[\frac{n+1}{3}\right]\left[\frac{n+2}{3}\right]$. Moreover, the proof of Theorem 3 yields for $n>n_{0}(k)$ the stronger result ext $\left(n,\left\{\mathscr{H}_{1}, \mathscr{H}_{2}\right\}\right)=\binom{n-1}{k-1}$.

Refining the argument we could even obtain
Theorem 8. For $n>n_{1}(k)$ we have $\operatorname{ext}\left(n,\left\{\mathscr{H}_{1}\right\}\right)=\binom{n-1}{k-1}$.
Finally a special case of a result of the first author gives
Theorem 9. [8] Let $\mathscr{H}=\left\{H_{1}, H_{2}, H_{3}\right\}$ be an arbitrary k-graph satisfying $\left|H_{1} \cup H_{2} \cup H_{3}\right| \geqq 2 k, H_{1} \cap H_{2} \cap H_{3} \neq \emptyset$. Then for every n, ext $(n,\{\mathscr{H}\})<3 e n^{k-1}$.

References

[1] B. Bollobás, Three-graphs without two triples whose symmetric difference is contained in a third, Discrete Math. 8 (1974) 21-24.
[2] P. Erdös, Problems and results in graph theory and combinatorial analysis, Proc. Fifth British Comb. Conf. 1975, Aberdeen 1975 (Utilitas Math. Winnipeg (1976), 169-172.
[3] P. Erdós, On the number of complete subgraphs contained in a certain graphs, Publ. Math Inst. of the Hungar. Acad. Sci. (SerA) 7 (1962) 459-464.
[4] P. Erdoos, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math Oxford (Ser. 2) 12 (1961) 313-320.
[5] P. Frankl, On Sperner families satisfying an additional condition. J. Combinatorial Th. A 20 (1976) 1-11.
[6] P. Frankl, On a problem of Chvatal and Erdös, J. Combinatorial Th. A, to appear.
[7] P. Frankl, On families of finite sets no two of which intersect in a singleton, Bull. Austral. Math. Soc. 17 (1977) 125-134.
[8] P. Frankl, A general intersection theorem for finite sets, Proc. of French-Canadian Combinatorial Coll., Montreal 1979, Annals of Discrete Math. 8 (1980), to appear.
[9] A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart J. Math. Oxford (2) 18 (1967) 369-384.
[10] P. Turán, An extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452 (in Hungarian).

Peter Frankl
C.N.R.S.

54 Bld. Raspail
75270 Paris, Cedex 06
France

Zoltán Füredi

Mathematical Inst. of the
Hungarian Academy of Sci.
1395 Budapest, Pf. 428
Hungary

