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A NEW GENERALIZATION OF THE OSTROWSKI
INEQUALITY AND APPLICATIONS

Mohammad Masjed-Jamei and Sever S. Dragomir

Abstract

A new generalization of the Ostrowski inequality for functions in Lp-spaces
is introduced and then applied to provide some estimates for the error value
of numerical quadrature rules of equal coefficients type.

1 Introduction

Denote by Lp [a, b] (1 ≤ p ≤ ∞) the space of p-power integrable functions on the
interval [a, b] with the corresponding norm:

‖f‖p =

(∫ b

a

|f(t)|pdt

) 1
p

. (1)

Also let L∞[a, b] be the space of all essentially bounded functions on [a, b] with the
related norm: ‖f‖∞ = ess sup

x∈[a,b]

|f(x)|.
For two absolutely continuous functions f, g : [a, b] −→ R such that f, g, fg ∈
L1[a, b], the chebyshev functional [1,6] is defined by

T (f, g) =
1

b− a

∫ b

a

(
f(x)− 1

b− a

∫ b

a

f(x)dx

)(
g(x)− 1

b− a

∫ b

a

g(x)dx

)
dx

=
1

b− a

∫ b

a

f(x)g(x)dx− 1
(b− a)2

(∫ b

a

f(x)dx

)(∫ b

a

g(x)dx

)
. (2)

A result related to Chebyshev functional is the Ostrowski inequality [8], i.e. if
f : [a, b] −→ R is a differentiable function with bounded derivative, then
∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤
(

1
4

+
(x− a+b

2 )2

(b− a)2

)
(b− a)‖f ′‖∞ for all x ∈ [a, b]. (3)
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This inequality plays a key role in numerical quadrature rules, see e.g. [3,4]. The
following theorem [7] is probably the most recent work about finding appropriate
bounds for the Chebyshev functional:

1.1 Theorem A Let f, α, β ∈ Lp[a, b] and g ∈ Lq[a, b] (1/p+1/q = 1, 1 ≤ p ≤
∞) be functions such that α(t)+β(t) is a constant function and α(t) ≤ f(t) ≤ β(t)
for all t ∈ [a, b]. Then we have the inequality

|T (f, g) | 6 1
2(b− a)

‖β − α ‖p

∥∥∥∥∥ g − 1
b− a

∫ b

a

g(t) dt

∥∥∥∥∥
q

. (4)

The main aim of this paper is to introduce a new generalization of the Ostrowski
inequality and apply it to find appropriate error bounds for numerical quadrature
rules of equal coefficients type. For this purpose, we first define the following kernel
on [a, b]:

Kw(x; t) =





t− (b− w)f(b)− af(a)
f(b)− f(a)

= t− θ1 t ∈ [a, x],

t− bf(b)− (a + w)f(a)
f(b)− f(a)

= t− θ2 t ∈ (x, b],
(5)

in which w ∈ R, f(b) 6= f(a) and θ2 − θ1 = w. After some computations, one can
directly conclude

∣∣∣∣∣
∫ b

a

f ′(t)Kw(x; t)dt

∣∣∣∣∣ =

∣∣∣∣∣wf(t)−
∫ b

a

f(x)dx

∣∣∣∣∣ . (6)

Thus, for w = b− a in (6), the left hand side of Ostrowski inequality is generated.
On the other hand, we have

∫ b

a

Kw(x; t)dt = wx−
(
(b− a)2 + 2aw

)
f(b) +

(
(b− a)2 − 2bw

)
f(a)

2 (f(b)− f(a))
. (7)

Consequently

(b− a) |T (Kw (x; t) , f ′(t)) | =

∣∣∣∣∣w f(x)−
∫ b

a

f(x) dx

−f(b)− f(a)
b− a

w x +

(
(b− a)2 + 2aw

)
f(b) +

(
(b− a)2 − 2bw

)
f(a)

2(b− a)

∣∣∣∣∣ .

(8)

The result (8) is important for us because for w = b− a it changes to [2,9]:

|T (Kb−a(x; t), f ′(t))| =
∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(x)dx− f(b)− f(a)
b− a

(
x− a + b

2

)∣∣∣∣∣ . (9)
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To present our main theorem we still need to consider some further corollaries.
1.2 Corollary 1. we have

max
t∈[a,b]

|Kw(x; t)| = max
(

max
t∈[a,b]

|t− θ1|; max
t∈[a,b]

|t− θ2|
)

=

max
∀x∈[a,b]

(|x− θ1|, |a− θ1|, |x− θ2|, |b− θ2|) =
1

|f(b)− f(a)| max
∀x∈[a,b]

{|(a− b + w)f(b)|,

|(a− b + w)f(a)|, |(x− b + w)f(b) + (a− x)f(a)|,
|(x− b)f(b) + (a + w − x)f(a)|}, (10)

in which θ1 and θ2 are the same values as defined in the kernel (5).
For instance, if w = 0 in (10) then

max
t∈[a,b]

|K0(x; t)| = max
t∈[a,b]

(∣∣∣∣t−
bf(b)− af(a)
f(b)− f(a)

∣∣∣∣
)

=

b− a

|f(b)− f(a)| max (|f(b)|, |f(a)|) . (11)

By using this result one can immediately conclude that if f(b) 6= f(a) then
∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f ′(t)K0(x; t)dt

∣∣∣∣∣ ≤
b− a

|f(b)− f(a)| max (|f(b)|, |f(a)|) ‖f ′‖1. (12)

Similarly, since

∫ b

a

K2
w(x; t)dt = wx2−w

(2b− w)f(b)− (2a + w)f(a)
f(b)− f(a)

x+
1
3
w3+

w
((b− w)f(b)− af(a))(bf(b)− (a + w)f(a))

(f(b)− f(a))2
, (13)

and for w = 0,

∫ b

a

K2
0 (x; t)dt =

∫ b

a

(
t− bf(b)− af(a)

f(b)− f(a)

)2

dt =

(b− a)3

3
f2(b) + f2(a) + f(a)f(b)

(f(b)− f(a))2
, (14)

therefore:
1.3. Corollary 2. If f(b) 6= f(a) then

∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ ≤
(b− a)3

3
f2(b) + f2(a) + f(a)f(b)

(f(b)− f(a))2
‖f ′‖2. (15)
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2 Main Theorem

Let f : I → R, where I is an interval, be a function differentiable in the interior I0

of I, and let [a, b] ⊂ I0. Suppose that f ′, α, β ∈ Lp[a, b] are functions such that
α(t) + β(t) is a constant function and α(t) ≤ f ′(t) ≤ β for all t ∈ [a, b]. Then we
respectively have the following inequalities

∣∣∣∣∣wf(x)−
∫ b

a

f(x)dx

∣∣∣∣∣ ≤





(∫ x

a

|t− θ1|qdt +
∫ b

x

|t− θ2|qdt

)1
q

‖f ′‖p, (1 ≤ p < ∞;
1
p

+
1
q

= 1),

(∫ x

a

|t− θ1|dt +
∫ b

x

|t− θ2|dt

)
‖f ′‖∞, (p = ∞, q = 1),

max
∀x∈[a,b]

(|x− θ1|, |a− θ1|, |x− θ2|, |b− θ2|) ‖f ′‖1, (q = ∞; p = 1),

(16)
and∣∣∣∣∣ w f(x)−

∫ b

a

f(x) dx− f(b)− f(a)
b− a

w x +

(
(b− a)2 + 2aw

)
f(b) +

(
(b− a)2 − 2bw

)
f(a)

2(b− a)

∣∣∣∣∣

6 1
2
‖β(t)− α(t) ‖p ×

(∫ x

a

∣∣∣∣∣ t− θ1 − 1
b− a

(
wx−

(
(b− a)2 + 2aw

)
f(b) +

(
(b− a)2 − 2bw

)
f(a)

2 (f(b)− f(a))

)∣∣∣∣∣

q

dt

+
∫ b

x

∣∣∣∣∣ t− θ2 − 1
b− a

(
wx−

(
(b− a)2 + 2aw

)
f(b) +

(
(b− a)2 − 2bw

)
f(a)

2 (f(b)− f(a))

) ∣∣∣∣∣

q

dt

)1/q

.

(17)
Note that to compute the integrals of the right hand side of inequalities (16)

and (17) we can use the following general identity:

∫ d

c

|t− θ|qdt =





(d− θ)q+1 + (c− θ)q+1

q + 1
, if c < θ < d,

(d− θ)q+1 − (c− θ)q+1

q + 1
, if θ < c < d,

−(d− θ)q+1 + (c− θ)q+1

q + 1
, if c < d < θ,

(18)

in which c < d, q ≥ 1 and θ ∈ R.
Proof. The proof of (16) is straightforward if we apply the well-known Hölder′s
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inequality [6]:

‖fg‖1 ≤ ‖f‖p‖g‖q (
1
p

+
1
q

= 1), (19)

for identity (6) and then refers to the defined kernel (5). For instance, by noting
(13), we can apply the Cauchy-Schwarz inequality for p = q = 2 in (19) to obtain

∣∣∣∣∣ w f(x)−
∫ b

a

f(x) dx

∣∣∣∣∣ 6
(

wx2 − w
(2b− w)f(b)− (2a + w)f(a)

f(b)− f(a)
x +

1
3
w3

+w
((b− w)f(b)− af(a)) (bf(b)− (a + w)f(a))

(f(b)− f(a))2

)1/2

‖f ′‖2 .

(20)

Note that the inequality (20) can still be optimized for

xmin =
(2b− w)f(b)− (2a + w)f(a)

2(f(b)− f(a))
, (21)

if and only if w > 0.
Similarly, to prove (17) one should refer to (8) and then use theorem A and relation
(7).
Remark 1. Although α(t) ≤ f ′(t) ≤ β(t) is a general condition in the main the-
orem, however sometimes one might not be able to easily obtain both bounds of
α(t) and β(t) for f ′. In this case, we should consider two analogues for the main
theorem 1. In the first case, the corresponding theorem would be useful when f ′ is
unbounded above (i.e. α(t) = α∗ ≤ f ′(t)) and in the second case, the corresponding
theorem is useful when f ′ is unbounded below i.e. f ′(t) ≤ β(t) = β∗.

2.1. Theorem 2. Let f : I → R, where I is an interval, be a differentiable
function in the interior I0 of I, and let [a, b] ⊂ I0. If f ′ is a function such that
α∗ ≤ f ′(t) for any t ∈ [a, b] and the constant number α∗, then we have
∣∣∣∣∣wf(x)−

∫ b

a

f(x)dx− α∗
(

wx− ((b− a)2 + 2aw)f(b) + ((b− a)2 − 2bw)f(a)
2(f(b)− f(a))

)∣∣∣∣∣

≤ f(b)− f(a)− α∗(b− a)
|f(b)− f(a)| max

∀x∈[a,b]
{|(a− b + w)f(b)|, |(a− b + w)f(a)|,

|(x− b + w)f(b) + (a− x)f(a)|, |(x− b)f(b) + (a + w − x)f(a)|}. (22)

Proof. By noting relations (6) and (7) we have
∣∣∣∣∣wf(x)−

∫ b

a

f(x)dx− α∗
(

wx− ((b− a)2 + 2aw)f(b) + ((b− a)2 − 2bw)f(a)
2(f(b)− f(a))

)∣∣∣∣∣

=

∣∣∣∣∣
∫ b

a

Kw(x; t)(f ′(t)− α∗)dt

∣∣∣∣∣ ≤ max
t∈[a,b]

|Kw(x; t)|
∫ b

a

(f ′(t)− α∗)dt
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= max
∀x∈[a,b]

(|x− θ1|, |a− θ1|, |x− θ2|, |b− θ2|)(f(a)− f(a)− α∗(b− a)). (23)

Now, substituting (10) in (23) proves the theorem.

2.2. Theorem 3. Let f : I → R, where I is an interval, be a differentiable
function in the interior I0 of I, and let [a, b] ⊂ I0. If f ′ is a function such that
f ′(t) ≤ β∗ for any t ∈ [a, b] and the constant number β∗, then we have
∣∣∣∣∣wf(x)−

∫ b

a

f(x)dx− β∗
(

wx− ((b− a)2 + 2aw)f(b) + ((b− a)2 − 2bw)f(a)
2(f(b)− f(a))

)∣∣∣∣∣

≤ β∗(b− a)− f(b) + f(a)
|f(b)− f(a)| max

∀x∈[a,b]
{|(a− b + w)f(b)|, |(a− b + w)f(a)|

|(x− b + w)f(b) + (a− x)f(a)|, |(x− b)f(b) + (a + w − x)f(a)|}. (24)

3 Application to numerical quadrature rules of equal
coefficients type

Consider the following kind of weighted quadrature rules [5,10]:

∫ b

a

w(x)f(x)dx =
n∑

i=1

wif(xi) +
m∑

k=1

vkf(zk) + Rn,m[f ], (25)

where w(x) is a positive function on [a, b]; {wi}n
i=1, {vk}m

k=1 are unknown coeffi-
cients; {xi}n

i=1 are unknown nodes; {zk}m
k=1 are pre-determined nodes and Rn,m[f ]

is the error value denoted by

Rn,m[f ] =
f (2n+m)(ζ)
(2n + m)!

∫ b

a

w(x)
m∏

k=1

(x− zk)
n∏

i=1

(x− xi)2dx (a < ζ < b). (26)

For m = 0, the formula (25) is reduced to an n-point Gauss quadrature rule as:

∫ b

a

w(x)f(x)dx =
n∑

i=1

wif(xi) +
f (2n)(ξ)
(2n)!

∫ b

a

w(x)
n∏

i=1

(x− xi)2dx. (27)

According to definition, the precision degree of formula (27) is 2n− 1, because for
any polynomial of degree 2n− 1 we have f (2n)(ξ) = 0.
One of the special cases of Gauss quadrature formula is when w1 = w2 = · · · =
wn = Cn. This case is called weighted quadrature rules of equal coefficients and is
represented as ∫ b

a

w(x)f(x)dx ∼= Cn

n∑

i=1

f(xi), (28)
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where Cn is a constant number in terms of n and {xi}n
i=1 are quadrature nodes.

For instance, when w(x) = (1− x2)
−1
2 and [a, b] = [−1, 1], the rule (28) is reduced

to ∫ 1

−1

(1− x2)
−1
2 f(x)dx ∼= π

n

n∑

j=1

f

(
cos

(
2j − 1

2n
π

))
, (29)

which is known in the literature as the first kind of GaussChebyshev quadrature
rule and has the highest precision degree 2n− 1 [5,10].
Another type of formula (28) is the well known trapezoidal rule for n = 2, w(x) = 1,
x1 = a, x2 = b and Cn = b−a

2 , i.e.

∫ b

a

f(x)dx ∼= b− a

2
(f(a) + f(b)). (30)

And the third sample can be any random formula of type (28). For instance, the
following approximation

∫ 1

0

f(x)dx ∼= f(0) + f(
1
2
) + f(

√
2

2
) + f(0.86), (31)

obeys the rule (28) for n = 4, [a, b] = [0, 1], w(x) = 1, x1 = 0, x2 = 1
2 , x3 =

√
2

2 ,
x4 = 0.86 and Cn = 1.
In this section, we apply inequality (16) (for p = q = 2 as a sample) to obtain
error bounds for quadrature rules of equal coefficients type in which w(x) = 1,
f ∈ C1[a, b] and f ′ ∈ L2[a, b] respectively.
For this purpose, let In = {a = x0 < x1 < · · · < xn = b} be a given subdivision of
the interval [a, b] such that f(xi+1) 6= f(xi). By applying the introduced inequality
(20) to the subinterval [xi, xi+1] and taking x = pi ∈ [xi, xi+1] we get
∣∣∣∣
∫ xi+1

xi

f(t) dt− w f(pi)
∣∣∣∣ 6

(
wp2

i − w
(2xi+1 − w)f(xi+1)− (2xi + w)f(xi)

f(xi+1)− f(xi)
pi +

1
3
w3

+w
((xi+1 − w)f(xi+1)− xif(xi)) (xi+1f(xi+1)− (xi + w)f(xi))

(f(xi+1)− f(xi))2

)1/2 (∫ xi+1

xi

(f ′(t))2dt

)1/2

.

(32)
Now, summing the above inequality over i from 0 to n − 1 and using the well

known triangle inequality yield
∣∣∣∣∣
∫ b

a

f(t) dt− w

n−1∑

i=0

f(pi)

∣∣∣∣∣ 6 ‖f ′‖2 ×



n−1∑

i=0

(
wp2

i − w
(2xi+1 − w)f(xi+1)− (2xi + w)f(xi)

f(xi+1)− f(xi)
pi +

1
3
w3

+w
((xi+1 − w)f(xi+1)− xif(xi)) (xi+1f(xi+1)− (xi + w)f(xi))

(f(xi+1)− f(xi))2

)1/2


 ,

(33)
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because for any i = 0, 1, · · · , n− 1 we have

0 6
(∫ xi+1

xi

(f ′(t))2dt

)1/2

6
(∫ b

a

(f ′(t))2dt

)1/2

.
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