Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016 Supporting Information ## New generation of highly sensitive luminescent thermometers operating in optical window of biological tissues Lukasz Marciniak†*, Artur Bednarkiewicz†, Diana Kowalska†, Wieslaw Strek† † Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland ## **Corresponding Author** *Lukasz Marciniak 1.marciniak@int.pan.wroc.pl Fig. S1. X-ray diffraction patterns of LiLaP₄O₁₂:Cr,Nd nanocrystals-a; and representative TEM image –b with grain size distribution-c. Fig. S2. Comparison of absorption and emission spectra of LiLaP₄O₁₂:1%Cr nanocrystals Fig. S 3. Comparison of absorption and emission spectra of LiLaP₄O₁₂:Cr,Nd nanocrystals with absorption of biological molecules Mel-melanine, NADH – Nicotinamide adenine dinucleotide, coll – collagen, PF – protophorphirin, O2Hb – oxygenated hemoglobin, Hb- deoxygenated hemoglobin, Bil-Billirubine, H2O - water Fig. S4. Emission spectra of LiLaP₄O₁₂:Cr nanocrystals with different concentration of Cr³⁺ ions –a and integral emission intensity as a function of Cr³⁺ concentration-b The crossing point between ground state parabola and 4T_2 parabola of Cr^{3+} ion in LiLaP₄O₁₂ nanocrystals (activation energy) was determined basing on temperature dependence of emission intensity of LiLaP₄O₁₂:Cr nanocrystals for different concentration of Cr^{3+} ions (Fig. S4) using following equation: $$I_{em} = \frac{I_0}{1 + \exp\left(\frac{\Delta E}{kT}\right)}$$ (S.1) where I_{em}- emission intensity I₀- emission intensity at the lowest temperature Δ E- activation energy T-temperature k- Boltzmann constant Fig. S5. Temperature dependence of emission intensity of LiLaP₄O₁₂:Cr nanocrystals Reproducibility of temperature measurement using LiLaP $_4$ O $_{12}$:1%Cr $^{3+}$,10%Nd $^{3+}$ nanocrystals as a luminescent thermometer was confirmed via 6 cooling-heating cycles measurements at two temperatures 0°C and 50°C. At each temperature emission spectra was recorded after 3 minutes. Fig. S6 Reproducibility of LIR measurements for LiLaP $_4$ O $_{12}$:1%Cr $^{3+}$,10%Nd $^{3+}$ nanocrystals in cooling-heating cycles.