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A new genomic blueprint of the human 
gut microbiota
Alexandre Almeida1,2*, Alex l. Mitchell1, Miguel Boland1, Samuel c. Forster2,3,4, Gregory B. Gloor5, Aleksandra tarkowska1, 
trevor D. lawley2 & robert D. Finn1*

The composition of the human gut microbiota is linked to health and disease, but knowledge of individual microbial 
species is needed to decipher their biological roles. Despite extensive culturing and sequencing efforts, the complete 
bacterial repertoire of the human gut microbiota remains undefined. Here we identify 1,952 uncultured candidate 
bacterial species by reconstructing 92,143 metagenome-assembled genomes from 11,850 human gut microbiomes. 
These uncultured genomes substantially expand the known species repertoire of the collective human gut microbiota, 
with a 281% increase in phylogenetic diversity. Although the newly identified species are less prevalent in well-studied 
populations compared to reference isolate genomes, they improve classification of understudied African and South 
American samples by more than 200%. These candidate species encode hundreds of newly identified biosynthetic gene 
clusters and possess a distinctive functional capacity that might explain their elusive nature. Our work expands the 
known diversity of uncultured gut bacteria, which provides unprecedented resolution for taxonomic and functional 
characterization of the intestinal microbiota.

For the past decade, studies of the human gut microbiota have shown 
that the interplay between microbes and host is associated with various 
phenotypes of medical importance1,2. Shotgun metagenomic analysis 
methods can infer both taxonomic and functional information from 
complex microbial communities, guiding phenotypic studies aimed 
at understanding their potential roles in human health and disease. 
However, various strategies used for analysis of metagenomic datasets 
rely on high-quality reference databases3. This highlights the need for 
extensive and well-characterized collections of reference genomes, 
such as those from the Human Microbiome Project (HMP)4,5 and 
the Human Gastrointestinal Bacteria Genome Collection (HGG)6–8. 
Despite a new wave of culturing efforts, there is still a substantial but 
undetermined degree of unclassified microbial diversity within the 
gut ecosystem6,8–11. Whereas these unknown community members 
may have eluded current culturing strategies for a variety of reasons 
(for example, owing to lack of nutrients in growth media or their low 
abundance in the gut), they are likely to perform important biological 
roles that remain undiscovered. Thus, having access to a comprehensive 
catalogue of representative genomes and isolates from the intestinal 
microbiota is essential to gain new mechanistic insights.

Culture-independent and reference-free approaches have proved to 
be successful strategies for species discovery and characterization12–16. 
The most common approach is to perform de novo assembly of shot-
gun metagenomic reads into contig sequences and place them into 
different bins on the basis of sequence coverage and tetranucleotide 
frequency15—a process that enables the recovery of potential genomes, 
termed metagenome-assembled genomes (MAGs). Several studies have 
applied these methods to reconstruct large numbers of MAGs13,17–19, 
one of the most prominent being the recovery of thousands of genomes 
revealing new insights into the tree of life16.

Here we generated and classified a set of 92,143 MAGs from 11,850 
human gut metagenome assemblies to expand our understanding 
of gut-associated microbiome diversity. We discovered 1,952 uncul-
tured bacterial species and investigated their association with specific 

geographical backgrounds, as well as their unique functional capacity. 
This enabled new insights into which species and functions within this 
uncharacterized bacterial community might have underappreciated 
roles in the human gut environment.

Large-scale discovery of uncultured species
To perform a comprehensive characterization of the human gastrointes-
tinal microbiota, we retrieved 13,133 human gut metagenomic datasets 
from 75 different studies (Supplementary Table 1 and Extended Data 
Fig. 1). Samples were collected mainly from North America (n = 6,869, 
52%) or Europe (n = 4,716, 36%), reflecting a geographical bias in 
current human gut microbiome studies. The majority of datasets with 
available metadata were from diseased patients (n = 4,323, 33%) and 
adults (n = 3,053, 23%).

Following assembly with SPAdes20,21, 11,850 of the 13,133 metagen-
ome assemblies produced contigs that could undergo genomic binning 
by MetaBAT15, generating a total of 242,836 bins. The quality of each 
bin was evaluated with CheckM22 according to the level of genome 
completeness and contamination (Extended Data Fig. 2). On the basis 
of these metrics, 40,029 MAGs with more than 90% completeness 
and less than 5% contamination were obtained (hereafter referred 
to as ‘near-complete’16). We also generated 65,671 medium-quality23 
MAGs (at least 50% completeness and less than 10% contamina-
tion), 52,347 of which had a quality score16 (QS) above 50 (defined as 
completeness – (5 × contamination)). The robustness of our MAGs 
was evaluated with two independent assembly/binning methodolo-
gies24,25 (see Supplementary Discussion and Extended Data Fig. 3), 
which showed the MAGs to be highly reproducible, independent of 
the method used for assembly or binning.

As CheckM is unable to evaluate non-prokaryotic genomes, we inves-
tigated separately how many of our bins represented known eukaryotes 
or viral sequences (see Supplementary Discussion and Supplementary 
Table 2). However, for the main set of analyses, we focused on the 
39,891 near-complete MAGs that CheckM resolved to bacterial lineages 
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(Supplementary Table 3), excluding the remaining 139 MAGs that 
were assigned to the archaeal domain. To determine how many of the 
MAGs belong to species that have been isolated from pure bacterial 
cultures (that is, isolate genomes), we attempted to assign each MAG to 
a human-specific reference (HR) database, composed of 2,468 isolate 
genomes combined from the HMP catalogue and the HGG8 (Fig. 1). 
This dataset consisted of 956 individual species (553 specifically cul-
tured from the gastrointestinal tract), defined according to previously 
reported genome thresholds for species delineation26,27 (at least 95% 
average nucleotide identity over at least 60% of the genome). In order 
to broaden the classification potential, we also compared the MAGs to 
the 8,778 complete bacterial genomes in RefSeq (Fig. 1b). Of the 39,891 
MAGs, we were able to assign 26,898 to the HR dataset, and 12,970 to 
RefSeq, using a criterion of at least 60% of the MAG aligned with at least 
95% average nucleotide identity (ANI). There was good coverage across 
different taxonomic groups within HR (Extended Data Fig. 4), with the 
three most frequent genomes assigned to the species Ruminococcus bro-
mii (n = 1,255), Alistipes putredinis (n = 1,142) and Eubacterium rectale 
(n = 839). All are known colonizers of the human gut28, confirming that 
these species are common members of the intestinal microbiota.

We subsequently focused on the 11,888 near-complete bacterial 
MAGs (30%) that were not assigned to HR or RefSeq (Fig. 1b). MAGs 
were dereplicated at an estimated species level (see Supplementary 
Discussion and Extended Data Fig. 5), yielding a total of 1,175 
near-complete metagenomic species (MGS) with a median complete-
ness of 96.5% (interquartile range (IQR) = 93.8–98.4%) and contami-
nation of 0.8% (IQR = 0.0–1.5%) as estimated by CheckM.

With this dataset of 1,175 MGS, we assessed how much of our original 
collection of human gut MAGs still remained unassigned by extending 
the analysis to both near-complete and medium-quality bacterial MAGs 
with a QS above 50 (n = 92,143, Extended Data Fig. 2). This resulted 
in identification of an additional 893 bacterial species with medians 
of 77.8% completeness (IQR = 68.9–85.8%) and 1.1% CheckM con-
tamination (IQR = 0.2–2.0%), hereafter referred to as medium-quality 
MGS. Therefore, together with the 1,175 near-complete MGS, our anal-
ysis uncovered a total of 2,068 MGS (Extended Data Fig. 6), represent-
ing good-quality bacterial genomes absent from human-specific and 
high-quality reference databases (see Supplementary Discussion for 
further details on MAG quality assessment).

Species characterization and distribution
Having identified 2,068 MGS in the human gut, we sought to deter-
mine their taxonomic classification and extend the analysis to more 

comprehensive reference databases. By complementing the phyloge-
netic inference method of CheckM with protein searches against the 
UniProt Knowledgebase (UniProtKB)29, we attempted to assign the most 
likely taxonomic lineage to each MGS. This approach, which utilizes 
both multiple marker genes and protein-level matches, is similar to those 
used by various analysis tools30–32 and provides a more reliable method 
for taxonomic assignment compared to traditional single-marker gene 
classifications (for example, based on the 16S rRNA gene). Using a spe-
cies-level threshold26,33 (at least 60% of the proteins with at least 96% 
amino acid identity), we found that 94% of the MGS (n = 1,952) did 
not match any isolate genome within UniProtKB, and therefore rep-
resent uncultured candidate species. Of these 1,952 unclassified MGS 
(UMGS), 74% correspond to entirely ‘novel’ genomes as of August 2018 
(see Supplementary Discussion and Supplementary Table 4). We were 
able to assign 98% and 94% of the UMGS at the phylum and class levels, 
respectively, and 91% to a known order (Fig. 2a). Interestingly, 26% of 
the UMGS were unassigned at the family level, while almost half (40%) 
could not be classified to a known genus, meaning that a substantial 
portion of the UMGS may belong to new families and/or genera. The 
three most frequently assigned families were Coriobacteriaceae (20.6%), 
Ruminococcaceae (9.9%) and Peptostreptococcaceae (7.4%), whereas 
the top genera were Collinsella (17.7%), Clostridium (7.3%) and Prevotella 
(4.4%). These data suggest that despite being known colonizers of the 
intestinal microbiota, these clades still contain considerable uncultured 
diversity. The Clostridium genus has been acknowledged as highly poly-
phyletic, with recent phylogenetic estimates suggesting that this group 
may span 121 genera belonging to 29 families34. Therefore, the detection 
of many uncultured species assigned to this genus may reflect current 
taxonomic limitations rather than a biological signal.

In order to determine the prevalence and abundance of the uncul-
tured candidate species within each gut microbiome, we compared 
the raw reads from the original 13,133 metagenomic datasets to the 
UMGS collection. Prevalence was estimated by how many samples each 
genome was found in by taking into account the level of genome cover-
age, mean read depth and evenness (Extended Data Fig. 7). Half of the 
UMGS were found in at least 12 metagenomic samples (Extended Data 
Fig. 7c). The most frequently observed UMGS belong to the family 
Ruminococcaceae and the Faecalibacterium genus, and include mostly 
members from the Clostridia class (Fig. 2b).

To place these uncultured species in context with the known bacterial 
colonizers of the human gut, we then positioned the UMGS within 
the gut-specific species from the HR database, hereafter referred to as 
the human gut reference (HGR). A maximum-likelihood phylogeny 
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of the 1,952 UMGS and the 553 HGR genomes was built on the basis 
of the 40 marker genes extracted with specI32 (Fig. 3a). Phylogenetic 
analysis showed that the UMGS genomes expand the known diver-
sity of the human gut bacterial lineages by 281%, on the basis of total 
branch lengths, with the largest increase within the Firmicutes phylum  
(Fig. 3b). Several uncultured genomes showing high phylogenetic 

similarity were retrieved belonging to Actinobacteria, particularly the 
Collinsella genus. This suggests that the genome-based boundaries 
between species and genus within this group are more tenuous com-
pared to other human gut bacterial clades. Of note is that the UMGS 
included genomes belonging to Cyanobacteria (Gastranaerophilales), 
Saccharibacteria, Spirochaetes and Verrucomicrobia. These are likely 
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Fig. 2 | Taxonomy of the most prevalent uncultured gut bacterial 
species. a, Taxonomic composition of the 1,952 UMGS, with ranks 
ordered from top to bottom by their increasing proportion among the 
UMGS collection. Only the five most frequently observed taxa are shown 
in the legend, with the remaining lineages grouped as ‘other classified taxa’. 

b, Top 20 most prevalent UMGS genomes across the 13,133 metagenomic 
datasets, inferred from the level of genome coverage, read depth and 
evenness. Each species is coloured according to class, with the predicted 
taxon indicated in brackets.
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to correspond to rarer or more difficult-to-culture clades from the  
human gut, as none had a representative isolate genome in the HGR 
database.

Subsequently, we correlated the prevalence and abundance of each 
UMGS and HGR genome with the geographical origin of the sample 
to infer any associations (Fig. 4). We investigated how many samples 
from the different continents each species was found at a relative abun-
dance of more than 0.01% (Fig. 4a). In the majority of the sampled 
populations, the UMGS were less prevalent than the HGR genomes, 
a possible indication of why they have not been detected in previous 
genomic studies. However, the UMGS were more frequent, compared 
to the HGR genomes, among understudied samples from Africa and 
South America with non-Western lifestyles (Fig. 4a). This was par-
ticularly evident for a subset of 75 and 120 UMGS that were present 
at an abundance of more than 0.01% in more than 20% of the samples 
from Africa and South America, respectively (Fig. 4b). This was only 
the case for 6 and 16 HGR genomes, respectively, suggesting that some 
of our newly identified UMGS better represent the gut diversity pres-
ent in the small number of samples from these two underrepresented 
populations.

To further evaluate the improvements provided by the UMGS for 
classification of the full metagenomic datasets, we assessed the percent-
age of reads that we were able to assign to HR, RefSeq and our UMGS 
dataset. With all the available genomes (HR, RefSeq, plus all UMGS), 
we observed a median classification of 72.8% (IQR = 65–81.1%). This 
represents an improvement of 23% over the use of a database compris-
ing just HR, and of 17% over a combined set with HR and RefSeq. As 
the UMGS collection comprises over three times the number of gut 

species present in the HR database, this modest increase again suggests 
that the majority of these uncultured organisms are present at a lower 
abundance in most samples, compared to the gut isolate genomes.

After partitioning the data according to geographical origin, the 
small number of datasets from Africa (n = 21) and South America 
(n = 36) saw an improvement in read assignment of 215% and 278%, 
respectively (Fig. 4c). This confirms that some UMGS are much more 
abundant in these specific gut communities. In order to deduce how 
much diversity might remain undetected, we built an accumulation 
curve based on the number of UMGS retrieved as a function of the 
number of samples obtained from each continent (Fig. 4d). European 
and North American populations showed the greatest coverage, trend-
ing towards a saturation point. Conversely, in samples outside North 
America and Europe, new uncultured species are still detected at a 
consistent rate. These results underscore the importance of sampling 
underrepresented regions to continue to uncover the global diversity 
of the human gut microbiota.

A distinctive functional repertoire
With access to 2,505 human gut species (1,952 UMGS and 553 HGR), we 
performed a comprehensive and in-depth functional characterization  
of the collective gut bacterial population. Using antiSMASH35, we screened  
for the presence of secondary metabolite biosynthetic gene clusters 
(BGCs) encoded within both the UMGS and HGR (Supplementary 
Table 5). We detected over 200 BGCs coding for sactipeptides,  
nonribosomal peptide synthetases (NRPSs) and bacteriocins (Extended 
Data Fig. 8a). Notably, 85% and 70% of the total BGCs detected in 
the UMGS and the HGR, respectively, represented novel clusters (that 
is, without a positive match in the Minimum Information about a 
Biosynthetic Gene (MIBiG) cluster database; Extended Data Fig. 8b). 
This suggests the potential presence of many undiscovered natural 
compounds produced by the intestinal microbiota with possible anti-
microbial and/or biotechnological applications for future study.

We next applied complementary approaches to identify the most 
distinguishing traits between the UMGS and HGR genomes. First, from 
the predicted protein-coding sequences, we used InterProScan36 to gen-
erate annotations that were translated to 1,199 Genome Properties37,38 
(GPs) and 115 metagenomics Gene Ontology39,40 (GO) slim terms—a 
summarized classification of GO annotations from metagenomic 
data41. Each GP—a functional attribute predicted to be encoded in a 
genome—was determined to be present, partially present or absent, 
depending on the number of proteins that were detected to be involved 
in that property. In parallel, we used GhostKOALA42 to generate KEGG 
Orthology (KO) annotations to track the differential abundance of spe-
cific functional categories across the UMGS and HGR sets. Globally, by 
analysing the repertoire of GPs according to the taxonomic composi-
tion, we observed a good separation by phylum (ANOSIM R = 0.42, 
P < 0.001), with the Bacteroidetes and Proteobacteria taxa in particu-
lar displaying very distinctive functional profiles (Fig. 5a). We further 
investigated the separation between the UMGS and HGR genomes 
within each phylum, which revealed a strong differentiation among 
Actinobacteria, Firmicutes, Proteobacteria and Tenericutes (ANOSIM 
R ≥ 0.30, Extended Data Fig. 9a). In particular, we detected 182, 207, 
115 and 68 GPs particularly enriched in the UMGS genomes from 
Actinobacteria, Firmicutes, Proteobacteria and Tenericutes, respec-
tively (χ2 test, adjusted P < 0.05), with only eight functions enriched 
within the Bacteroidetes group. Properties involved in iron metabolism 
and transport were among the 21 functions consistently enriched in 
the UMGS across these four most distinctive phyla (Extended Data 
Table 1).

Subsequently, by assessing the frequency of the GO and KO anno-
tations, we were able to apply a quantitative approach to compare the 
HGR and UMGS functional repertoires. In general, KEGG pathways 
involved in carbohydrate metabolism were the most differentially 
abundant between the UMGS and HGR genomes, indicating distinct 
metabolic affinities between the cultured and uncultured species 
(Extended Data Fig. 9b). In the case of GO terms, less abundant genes 
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(Wilcoxon rank-sum test, adjusted P < 0.05) within the UMGS were 
particularly associated with antioxidant and redox functions (Fig. 5b), 
indicative of lower tolerance to reactive oxygen species. If the UMGS 
correspond to strict anaerobes more sensitive to ambient oxygen, 
they are likely to be more difficult to isolate and culture. Conversely, 
in accordance with the GP results, we also observed an enrichment 
of genes coding for iron–sulfur and ion binding among the UMGS 
genomes, in addition to a variety of other functions. In anoxic con-
ditions, the ferrous form of iron (Fe2+) that favours both sulfur and 
nitrogen ligands is most abundant43. An enrichment of iron–sulfur 
binding genes again suggests the UMGS may be better adapted to spe-
cific niches of the gastrointestinal tract with particularly low oxygen 
tension or high iron concentration, both of which generate high levels 
of ferrous ions in their environment43. Overall, these data show that 
the uncultured species described here carry specific functions that 
could explain their elusive nature, while raising awareness of biolog-
ical traits underrepresented in current reference genome collections 
derived from pure bacterial cultures.

Discussion
The human gut microbiota is one of the most studied microbial envi-
ronments, but technical and practical constraints hinder our ability to 
isolate and sequence every constituent species. Metagenomic methods 
provide access to the uncultured microbial diversity, and here we have 
used these approaches to uncover 1,952 uncultured candidate bacterial 

species. Almost half of these putative species could not be classified at 
the genus level, suggesting that a substantial degree of bacterial diversity 
remains uncultured. This resource further expands and complements 
a recent study investigating the unexplored diversity of body-wide 
human microbiomes44.

As a result of our work, we now have representative genomes of 
92,143 MAGs reconstructed from human gut assemblies and are able 
to classify 73% of the underlying read data. Nevertheless, both cultur-
ing and de novo analysis methods are inherently biased towards the 
most abundant organisms, meaning consistently less abundant spe-
cies may still be missed. Furthermore, geographical regions such as 
Africa and South America are severely underrepresented in current 
studies. Therefore, expanding this analysis to large cohorts worldwide 
will be imperative for obtaining a complete overview of the human 
intestinal microbiota landscape. In addition, our work focused mainly 
on the study of bacterial genomes owing to the availability of more 
comprehensive reference databases and well-established standards and 
tools. However, as also shown here, metagenome assemblies gener-
ated from the gut microbiota include a wide range of other organisms 
such as archaea, eukaryotes and viruses that warrant a more thorough 
investigation.

Having access to comprehensive collections of bacterial genomes 
provides the ability to perform precise and computationally efficient 
reference-based genome analysis to achieve a detailed classification of 
microbial ecosystem composition. Our research is aimed at generating 
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high-quality reference genomes, from pure cultures to MAGs, which 
will serve as a blueprint for metagenomic analysis of the human micro-
biota. The ability to leverage almost 2,000 additional species in future 
association and mechanistic studies will bring unprecedented power to 
investigate the impact of the microbiota in human health and disease.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
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MEthOdS
No statistical methods were used to predetermine sample size. The experiments 
were not randomized. The investigators were not blinded to allocation during 
experiments and outcome assessment.
Metagenomic datasets. We extracted 13,133 sequencing runs classified as human 
gut metagenomes in the European Nucleotide Archive (ENA), encompassing 75 
different studies (Supplementary Table 1). Metadata (location, age, health status 
and antibiotic usage) for each individual sampled was retrieved through the ENA 
API with the mg-toolkit (https://pypi.org/project/mg-toolkit/) and further curated 
by inspecting the publications linked to each project when available. Samples were 
classified as having been obtained from healthy individuals only if explicitly stated 
in their original study.
De novo assembly and binning. Raw reads from each run were first assembled 
with SPAdes v.3.10.020 with option --meta21. Thereafter, MetaBAT 215 (v.2.12.1) 
was used to bin the assemblies using a minimum contig length threshold of 2,000 
bp (option --minContig 2000) and default parameters. Depth of coverage required 
for the binning was inferred by mapping the raw reads back to their assemblies 
with BWA-MEM v.0.7.1645 and then calculating the corresponding read depths 
of each individual contig with samtools v.1.546 (‘samtools view -Sbu’ followed by 
‘samtools sort’) together with the jgi_summarize_bam_contig_depths function 
from MetaBAT 2. The QS of each metagenome-assembled genome (MAG) was 
estimated with CheckM v.1.0.722 using the lineage_wf workflow and calculated 
as: level of completeness − 5 × contamination. Ribosomal RNAs (rRNAs) were 
detected with the cmsearch function from INFERNAL v.1.1.247 (options -Z 1000 
--hmmonly --cut_ga) using the Rfam48 covariance models of the bacterial 5S, 16S 
and 23S rRNAs. Total alignment length was inferred by the sum of all non-over-
lapping hits. Each gene was considered present if more than 80% of the expected 
sequence length was contained in the MAG. Transfer RNAs (tRNAs) were iden-
tified with tRNAscan-s.e. v.2.049 using the bacterial tRNA model (option -B) and 
default parameters. Classification into high- and medium-quality MAGs was 
based on the criteria defined by the minimum information about a metagenome- 
assembled genome (MIMAG) standards23 (high: >90% completeness and <5% 
contamination, presence of 5S, 16S and 23S rRNA genes, and at least 18 tRNAs; 
medium: ≥ 50% completeness and <10% contamination). Given that only 240 of 
the MAGs with >90% completeness and <5% contamination passed the MIMAG 
thresholds regarding the presence of rRNA and tRNA genes due to known issues 
relating to the assembly of rRNA regions16,50, we refer to our highest quality MAGs 
as ‘near complete’16 instead. VirFinder v.1.151 was used to predict the presence 
of viral contigs within the 13,133 human gut assemblies generated with SPAdes. 
This tool uses a k-mer-based, machine-learning approach to detect distinguishing 
signatures between virus and host (prokaryotic) sequences. Expected P values for 
the presence of viral sequences were calculated for each contig with ≥5 kb length 
and subsequently corrected for multiple testing using the Benjamini–Hochberg 
method with a FDR threshold of 10%.
Assignment of MAGs to reference databases. Four reference databases were used 
to classify the set of MAGs recovered from the human gut assemblies: HR, RefSeq, 
GenBank and a collection of MAGs from public datasets. HR comprised a total of 
2,468 high-quality genomes (>90% completeness, <5% contamination) retrieved 
from both the HMP catalogue (https://www.hmpdacc.org/catalog/) and the HGG8. 
From the RefSeq database, we used all the complete bacterial genomes available 
(n = 8,778) as of January 2018. In the case of GenBank, a total of 153,359 bacterial 
and 4,053 eukaryotic genomes (3,456 fungal and 597 protozoan genomes) depos-
ited as of August 2018 were considered. Lastly, we surveyed 18,227 MAGs from the 
largest datasets publicly available as of August 201813,16–19, including those depos-
ited in the Integrated Microbial Genomes and Microbiomes (IMG/M) database52. 
For each database, the function ‘mash sketch’ from Mash v.2.053 was used to convert 
the reference genomes into a MinHash sketch with default k-mer and sketch sizes. 
Then, the Mash distance between each MAG and the set of references was calcu-
lated with ‘mash dist’ to find the best match (that is, the reference genome with 
the lowest Mash distance). Subsequently, each MAG and its closest relative were 
aligned with dnadiff v.1.3 from MUMmer 3.2354 to compare each pair of genomes 
with regard to the fraction of the MAG aligned (aligned query, AQ) and ANI.
Genome dereplication. To dereplicate the collection of unclassified bacterial 
MAGs (AQ <60% or ANI <95% against the target references), high-level sim-
ilarity clusters were first generated with Mash53. In brief, a MinHash sketch was 
created for these genomes to perform an all-against-all comparison. Then, a hier-
archical clustering was built from the Mash distance relationships and individual 
clusters were defined at a cut-off of 0.2. Each cluster was subsequently dereplicated  
with dRep v.2.2.255 to extract the MAGs displaying the best quality and representing  
individual metagenomic species (MGS). dRep was run with options -pa 0.9 (pri-
mary cluster at 90%), -sa 0.95 (secondary cluster at 95%), -cm larger (coverage 
method: larger), -con 5 (contamination threshold of 5%). For the near-complete 
MAGs, the -nc parameter was set to 0.60 (coverage threshold of 60%), whereas 
for the medium-quality MAGs with a QS >50 this was changed to 0.30 (coverage 

threshold of 30%). The 2,468 HR genomes were also dereplicated into 956 repre-
sentative species with dRep, using the criteria defined above for the near-complete 
MAGs. These included 553 species collected specifically from the human gut, 
referred to as HGR.
Phylogenetic and taxonomic analyses. Genes were predicted using prodigal 
v.2.6.356 (default single mode) and 40 universal core marker genes from each 
genome were extracted using specI v.1.032. Phylogenetic trees were built by con-
catenating and aligning the marker genes with MUSCLE v.3.8.31. Marker genes 
absent only from specific genomes were kept in the alignment as missing data. 
Maximum-likelihood trees were constructed using RAxML v.8.1.1557 with option 
-m PROTGAMMAAUTO. All phylogenetic trees were visualized in iTOL58. 
Phylogenetic diversity was quantified by the sum of branch lengths using the phy-
tools R package59.

Taxonomic classification of each MGS was performed with both CheckM 
and UniProtKB29. First, the function tree_qa from CheckM was used to infer the 
approximate phylogenetic placement of the MGS genome within the CheckM 
internal reference tree (which comprised 2,052 finished and 3,604 draft genomes). 
Those classified at least at the class rank were then compared with the taxonomic 
assignment deduced from protein alignments against UniProtKB (release 2018_04) 
using the blastp function of DIAMOND v.0.9.17.11860. A positive hit at the species 
level was inferred if ≥60% of the proteins had ≥80% of the sequence aligned with 
an amino acid identity of ≥96%, based on previously reported thresholds26,33. 
Genomes within UniProtKB were presumed to represent cultured species if 
labelled with a full species name lacking any of the following terms: uncultured, 
sp. or bacterium. For those MGS without an assigned species (UMGS), a genus-
level boundary was set with the following criteria, as previously defined61: at least 
50% of the proteins with an e value less than 1 × 10−5, a sequence identity of 
more than 40% and a query coverage above 50%. In case the taxon predicted with 
UniProt was missing from the CheckM reference database, the full lineage was 
manually inspected to determine the most likely annotation. Owing to possible 
mislabelling of the UniProt entries, the CheckM taxonomic lineage was kept if 
there were incongruences between both classifications. Lastly, the positioning of 
the UMGS genomes within the HGR phylogenetic tree was used to resolve further 
inconsistencies or misclassifications.
Technical reproducibility and cluster quality. A random subset of 1,000 metage-
nomes (Supplementary Table 1) was tested with two additional approaches to 
assess the reproducibility of the MAGs generated here. With one of the methods, 
metagenomes were assembled with MEGAHIT v.1.1.324 and subsequently binned 
with MetaBAT 2, MetaBAT 1 and MaxBin v.2.2.462. A refinement step was then 
performed using the bin_refinement module from MetaWRAP v.1.025 to com-
bine and improve the results generated by the three binners. The second method 
involved a modified co-assembly approach, in which individual assemblies from 
the same study were first merged and dereplicated with CD-HIT v.4.763 (cd-hit-est 
with option -c 0.99 defining a sequence identity threshold of 99%). Metagenomic 
datasets were then mapped to their merged, non-redundant assembly with BWA-
MEM to obtain co-abundance information for binning with MetaBAT 2 (with 
option --minContig 2000). The resulting MAGs with a QS >50 obtained with each 
method were compared to the MAGs recovered with our main pipeline (individual 
assembly with SPAdes, plus binning with MetaBAT 2) for the same 1,000 datasets, 
using the combined Mash and MUMmer workflow described above.

To further assess the level of potential contamination of the MGS reported, we 
analysed the quality of the Mash clusters containing each MGS using the Matthews 
Correlation Coefficient (MCC). First, CompareM v.0.0.23 (https://github.com/
dparks1134/CompareM) was used to analyse the average amino acid identity (AAI) 
of the specI marker genes within and between Mash clusters. To be able to estimate 
the MCCs, true positives, false negatives, false positives and true negatives were 
determined based on three different AAI thresholds: 90%, 95% and 97%. For each 
pairwise comparison, we considered a true positive when both MAGs belonged to 
the same cluster and had an AAI equal to or above the threshold; false negatives 
if they belonged to the same cluster, but the AAI was below the threshold; false 
positives when the genomes were included in different clusters, but their AAI was 
equal to or above the threshold; and true negatives corresponded to genomes from 
different clusters with an AAI below the threshold. Thereafter, MCCs were calcu-
lated with the mcc function from the mltools64 R package. Possible values range 
from −1 to 1, with 1 indicating perfect agreement between the Mash clustering 
and the marker genes AAI.
Functional characterization. Functional prediction analyses were carried out 
for the 1,952 UMGS and the dereplicated set of 553 HGR genomes. Predicted 
genes were first functionally characterized with InterProScan v.5.27-66.036 with 
options -goterms and -pa. The presence of microbial BGCs was inferred with 
antiSMASH 435, using option --knowclusterblast to determine the number of 
BGCs that matched the MIBiG repository. GO39,40 annotations were deduced for 
each gene based on the InterPro (IPR) entries, and translated to GPs37,38 using the 
assign_genome_properties.pl script present in http://github.com/ebi-pf-team/

https://pypi.org/project/mg-toolkit/
https://www.hmpdacc.org/catalog/
https://github.com/dparks1134/CompareM
https://github.com/dparks1134/CompareM
http://github.com/ebi-pf-team/genome-properties
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genome-properties. GhostKOALA42 was used to generate KO annotations of the 
protein-coding sequences. Differential abundance analysis of GO slim and KO 
term frequencies between the UMGS and HGR genomes was performed with the 
compositional data analysis tool ALDEx265. Because we were evaluating genomes 
with differing lengths and degrees of completeness, this method was used to take 
into account discrepancies in total gene counts. The aldex.clr function was used 
with 128 Monte Carlo instances sampled from a Dirichlet distribution to gener-
ate a distribution of probabilities for each GO slim/KO term consistent with the 
observed data. These were subsequently converted to distributions of log ratios 
to account for the compositional nature of the data. The aldex.effect function was 
used to calculate the expected value of the difference between distributions of 
each group (median log2 difference), the expected value of the pooled group vari-
ance (median log2 dispersion) and the standardized effect sizes on the abundance 
difference of each GO/KO classification. The effect-size measure used is similar 
in concept to Cohen’s d but is calculated on the distributions themselves rather 
than on the summary statistics of those distributions, resulting in metrics that are 
relatively robust and efficient66. Lastly, the aldex.ttest was used to perform non-par-
ametric Wilcoxon rank-sum tests on the GO/KO frequencies between the two test 
groups (UMGS and HGR). GPs, classified as ‘yes’, ‘no’ and ‘partial’ were converted 
to 2, 0 and 1, respectively, and those more prevalent specifically among the UMGS 
genomes were detected with a two-tailed χ2 test. The expected P values from all the 
statistical tests were corrected for multiple testing with the Benjamini–Hochberg 
method. A PCA was carried out on the GP distributions of the HGR and UMGS 
genomes, using the FactorMineR67 package. Separation according to phylum and 
genome type was assessed with the ANOSIM test based on the Gower distances 
between the GP profiles.
Species prevalence and abundance. Read classification of the 13,133 human gut 
metagenomic datasets was performed with sourmash v.2.0.0a468 against the HR, 
RefSeq and UMGS genome collections. Signature files were generated for both the 
reference (FASTA) and query (FASTQ) files, with ‘sourmash compute --scaled 1000 
-k 31 --track-abundance’. For each set of references, a lowest common ancestor 
database was created (‘sourmash lca index --scaled 1000 -k 31’), with each genome 
representing a unique species lineage. Raw reads were then compared with ‘sour-
mash lca gather’ against each database. Species prevalence and abundance was 
determined with BWA-MEM, where species presence was inferred by assessing 
the level of genome coverage, mean read depth and depth evenness. First, we cal-
culated depth and variation penalty scores corresponding to the missing coverage 
(100% − genome coverage) multiplied by either the log(mean depth) or the depth 
coefficient of variation (defined as the standard deviation of read depth divided by 
the mean), respectively. These metrics allowed us to gauge both coverage and depth 
simultaneously, as genomes that have a high mean depth (or high depth variation) 
but are not well covered are less likely to be present in the sample than those that 
have the same level of coverage with lower read depth. Thresholds for determining 
genome presence were set at a minimum coverage of at least 60%, and both depth 
and variation penalty scores at a maximum of the 99th percentile (Extended Data 
Fig. 7). Relative abundance of each species was determined by the proportion 
of uniquely mapped and correctly paired reads (filtered using ‘samtools view -q 
1 -f 2’) out of the total read count. Accumulation curves based on the number 
of UMGS detected per geographical region were bootstrapped ten times at each 
sampling interval. Asymptotic regressions were performed using the SSasymp and 
nls functions from the R stats package69.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. Custom scripts used to generate data and figures are available 
at https://github.com/Finn-Lab/MGS-gut.
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Extended Data Fig. 1 | Metadata of the human gut datasets. Percentage of the 13,133 metagenomic datasets according to location, health state and age 
group of the individual sampled, as depicted in the figure key.
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Extended Data Fig. 2 | CheckM quality assessment of bins. a, Quality metrics estimated by CheckM for the 242,836 bins generated by MetaBAT.  
b, Number of bins recovered according to the level of genome completeness and contamination. QS = completeness – (5 × contamination).
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Extended Data Fig. 3 | Technical reproducibility of MAGs. a, MAGs 
resulting from the MetaWRAP pipeline (left, n = 9,552) and from a 
modified co-assembly approach (right, n = 4,404) compared to the 
original MAGs generated with SPAdes and MetaBAT for 1,000 random 
datasets. A good match was defined as ≥95% ANI over ≥60% of 

alignment fraction, whereas an excellent match indicates ≥98% ANI 
over ≥80% alignment. b, Proportion of MAGs generated with each 
pipeline (MetaWRAP and co-assembly) coloured by their level of match to 
the original set.
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Extended Data Fig. 4 | Phylogenetic diversity of the human-specific isolate genomes. Phylogenetic tree of the 2,468 HR genomes, labelled according to 
class, with the bar graphs in the outer layer depicting the log-transformed number of near-complete MAGs matching that corresponding genome.
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Extended Data Fig. 5 | Analysis of Mash similarity clusters. Pearson 
correlation between the log-transformed number of MAGs and the 
corresponding number of distinct samples (a) or studies (b) per Mash 

cluster. Data points represent each of the 702 similarity groups (defined 
with a Mash distance <0.2). The coefficient of determination (R2) is 
depicted in each graph.



ArticlereSeArcH

Extended Data Fig. 6 | Quality metrics of the metagenomic species.  
a, Distribution of completeness (minimum: 55.5; Q1: 80.5; median: 92.3; 
Q3: 97.1; maximum: 100) and contamination levels (minimum: 0; Q1: 
0.1; median: 0.8; Q3: 1.7; maximum: 4.1) estimated by CheckM for the 

2,068 metagenomic species (MGS). b, Number of tRNAs coding for the 
20 standard amino acids detected across the MGS genomes. c, MCC 
calculated for all the 2,068 MGS, based on the Mash clustering structure 
and an average amino acid identity threshold of 97%.
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Extended Data Fig. 7 | Defining genome presence and prevalence 
distribution. a, b, Depth (a) and variation (b) penalty scores plotted 
against the level of genome coverage of the 1,952 UMGS across all 
13,133 metagenomic samples. The depth penalty score was calculated 
by multiplying the missing coverage (100 − genome coverage) by the 
log-transformed mean read depth. The variation penalty score was based 
on the missing coverage multiplied by the depth coefficient of variation 

(standard deviation of read depth divided by the mean). Dashed red lines 
correspond to the 99th percentile, set as the upper threshold used to define 
genome presence. c, Number of UMGS detected in the corresponding 
number of metagenomic samples. The distribution of UMGS found in up 
to 100 samples is illustrated as an inset. The vertical dashed line represents 
the median value of all data.
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Extended Data Fig. 8 | Biosynthetic gene clusters found in the human 
gut species. a, Number of BGCs found in the UMGS and the HGR 
genomes, subdivided by functional category. Only the 25 most abundant 

categories are depicted. PKS, polyketide synthases. b, Fraction of all BGCs 
that did not match the MIBiG database.
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Extended Data Fig. 9 | Functional capacity of cultured and uncultured 
species. a, PCA based on GPs of the 553 HGR genomes and the 1,952 
UMGS for the five most prevalent phyla (Actinobacteria, Bacteroidetes, 
Firmicutes, Proteobacteria and Tenericutes). b, Number of genes found to 

be enriched with an absolute effect size >0.2 in either the UMGS or HGR 
genomes across the analyses of each of the five major phyla, grouped by 
their corresponding KEGG functional category.
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Extended data table 1 | Genome Properties overrepresented in the UMGS genomes

Genome Properties found to be overrepresented among the UMGS compared to the HGR from Actinobacteria, Firmicutes, Proteobacteria and Tenericutes. Statistical significance was assessed with a 
two-tailed χ2 test on the proportion of functions with ‘partial’ and ‘yes’ in relation to the total counts of all the functions detected per genome type.
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