
RESEARCH ARTICLE Open Access

A new genomic library of melon
introgression lines in a cantaloupe genetic
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Abstract

Background: Genomic libraries of introgression lines (ILs) consist of collections of homozygous lines with a single
chromosomal introgression from a donor genotype in a common, usually elite, genetic background, representing the
whole donor genome in the full collection. Currently, the only available melon IL collection was generated using Piel
de sapo (var. inodorus) as the recurrent background. ILs are not available in genetic backgrounds representing other
important market class cultivars, such as the cantalupensis. The recent availability of genomic tools in melon, such as
SNP collections and genetic maps, facilitates the development of such mapping populations.

Results: We have developed a new genomic library of introgression lines from the Japanese cv. Ginsen Makuwa
(var. makuwa) into the French Charentais-type cv. Vedrantais (var. cantalupensis) genetic background. In order to
speed up the breeding program, we applied medium-throughput SNP genotyping with Sequenom MassARRAY
technology in early backcross generations and High Resolution Melting in the final steps. The phenotyping of the
backcross generations and of the final set of 27 ILs (averaging 1.3 introgressions/plant and covering nearly 100 %
of the donor genome), in three environments, allowed the detection of stable QTLs for flowering and fruit quality traits,
including some that affect fruit size in chromosomes 6 and 11, others that change fruit shape in chromosomes 7 and
11, others that change flesh color in chromosomes 2, 8 and 9, and still others that increase sucrose content and delay
climacteric behavior in chromosomes 5 and 10.

Conclusions: A new melon IL collection in the Charentais genetic background has been developed. Genomic regions
that consistently affect flowering and fruit quality traits have been identified, which demonstrates the suitability of this
collection for dissecting complex traits in melon. Additionally, pre-breeding lines with new, commercially interesting
phenotypes have been observed, including delayed climacteric ripening associated to higher sucrose levels, which is of
great interest for Charentais cultivar breeding.
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Background

Melon (Cucumis melo L., 2n = 2 × = 24) is one of the

most economically important fruit crops worldwide, with

a current total world production of over 29 million tons

[1]. For that reason, the development of new cultivars, not

only with higher yields, but also with higher fruit quality

standards and with attractive traits for consumers, is

essential. Over the last few decades, biotechnological

strategies have become indispensable tools for modern

and efficient breeding in this crop.

Several transcriptome sequencing projects have been

carried out in melon using Next Generation Sequencing

(NGS) technologies in a set of genotypes representing

the diversity of the species [2, 3]. The data generated

have enabled the identification of large SNP (Single

Nucleotide Polymorphism) and SSR (Single Sequence
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Repeats) collections (available at the [4]), which have fa-

cilitated the construction of consensus saturated maps

[5, 6]. Some of these collections have been implemented

in high-throughput genotyping platforms and have been

used for genetic diversity and association studies [7, 8].

Some of these markers have also been used to anchor

genetic and physical maps [6] on the melon genome se-

quence [9–11]. Other genomic tools available for melon

research and breeding include microarrays [12, 13] as

well as TILLING and EcoTILLING platforms [14–17].

These tools have allowed the genetic dissection of both

simple and complex traits [18–26].

In this context, introgression line (IL) generation is an

excellent breeding strategy for incorporating exotic

natural variation into modern breeding programs. ILs

are generated by backcrossing, starting from an F1 cross

between one selected donor genotype, usually exotic or

wild germplasm, and a common genetic background,

usually an elite cultivar. Marker-assisted selection

(MAS) of lines with target-donor introgressions and

recurrent genetic background is performed in each gen-

eration [27]. The existing genomic tools and the use of

genotyping platforms highly increases the efficiency of

MAS, significantly reducing the number of backcross

generations necessary to generate a collection of ILs that

have single introgressions and which represent the entire

donor genome [28]. Apart from the introduction of new

variability into crops for breeding purposes, ILs also

facilitate the detection of new QTLs. ILs have been

developed in many crops, such as tomato [28–31], barley

[32], lettuce [33] and rice [34], among others.

Melon is the most polymorphic cucurbit species

[35, 36], showing impressive diversity in important com-

mercial traits, such as fruit morphology, ripening behavior

and organoleptic and nutritional fruit quality. C. melo is

subdivided into two subspecies: ssp. melo and ssp. agrestis,

which can be further divided into 16 botanical groups

[37]: inodorus, cantalupensis, reticulatus, ameri, chanda-

lack, adana, flexuosus, chate, dudaim (within ssp. melo);

and acidulus, conomon, makuwa, chinensis, momordica,

chito and tibish (the latter two of which have been reclas-

sified according to molecular studies to be within the ssp.

agrestis [7, 8]).

The most important commercial cultivars belong to

the inodorus, reticulatus and cantalupensis groups, while

cultivars belonging to the subsp. agrestis are considered

“exotic” for applied breeding. The only IL collection re-

ported in melon to date was derived from the cross of

the Spanish cultivar Piel de Sapo (subsp. melo var.

inodorus) and the Korean donor accession PI 161375

(Songwan Charmi; subsp. agrestis var. chinensis), which

carries several pest- and disease-resistant genes [38].

This first IL population has been used for different

breeding purposes: root structure-related traits [21], fruit

quality, including fruit weight, shape and flesh color [20,

39], sugar and organic acid content [40], aroma profile

[41], climacteric behavior [24, 42] and resistance to path-

ogens, such as Cucumber Mosaic Virus (CMV) [43, 44].

However, until now there have been no melon ILs

generated in a cantalupensis genetic background. In the

current article, we report the development of a new IL

population derived from the cross between the French

cultivar Vedrantais (VED), a Charentais type, as

recurrent parent (subsp. melo var. cantalupensis) and

the Japanese Ginsen makuwa (MAK) cultivar (subsp.

agrestis var. makuwa). This donor genotype was selected

from the melon core collection built in the framework

of a previous project (MELRIP 2007–2010) [7, 15] due

to its interesting quality traits, especially its higher sugar

content compared to most agrestis types [8]. The IL

population has been used to identify QTLs related to

fruit morphology, ripening behavior and organoleptic

and nutritive quality. It also provides pre-breeding lines

with new phenotypes in a Charentais genetic back-

ground that could be useful for the development of new

cultivars.

Results and discussion

Development of the IL population

The two parents used to generate the IL population were

the cultivar Vedrantais (VED) (C. melo subsp. melo var.

cantalupensis, Charentais type) as recurrent parent and

Ginsen makuwa (MAK) (C. melo subsp. agrestis var.

makuwa) as donor parent (Additional file 1). Fifteen

BC1 plants derived from the cross VED x MAK were

backcrossed to the recurrent parent, thus producing fif-

teen BC2 families, each one with twenty eight plants.

The 420 BC2 seedlings were genotyped with the Seque-

nom array with 154 SNPs [3, 8, 9], from nine to twenty

per chromosome (Additional file 2). Seventy-five BC2

seedlings with the highest proportion of the recurrent

(VED) genome and with MAK introgressions covering

the entire donor genome were selected. These BC2 were

transplanted to the greenhouse for phenotyping and

twenty-two of them were backcrossed to VED in order

to generate the BC3 population. This BC2 set averaged

6.5 introgressions/plant and 88.2 % of the VED back-

ground genome (ranging from 76.2-96.3 %), representing

twice the entire MAK genome.

A total of 363 seedlings of the BC3 population were

genotyped with the same Sequenom array. One hundred

BC3 seedlings were selected according to their genotype

(following the same criteria as in the BC2) and were

transplanted to the greenhouse for phenotyping. Thirty-

three were selected and used to generate the IL popula-

tion. These selected BC3 plants presented an average of

3.4 introgressions/plant and 93.2 % of the VED back-

ground genome (range 84.1–98.2 %). The early selection
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in a large number of plants greatly facilitated the recov-

ery of the recurrent genetic background (an average

increase of 5 %), and the reduction of the number of in-

trogressions per plant (to about 3) in one backcross

generation.

Twenty-four of the selected BC3 plants had three or

fewer MAK introgressions/plant. These were selfed to

produce the BC3S1 generation. After BC3S1 seedling

screening with appropriate SNP markers, it was possible

to obtain single homozygous MAK introgression geno-

types in most cases. Ninety-six BC3S1 plants were

selected according to their genotype and transplanted to

the greenhouse for phenotyping. A second round of self-

ing (generation BC3S2) was necessary in some cases to

fix certain heterozygous markers and generate enough

seeds for further assays.

The remaining nine selected BC3 plants had four or

more introgressions, so they were used to produce an

additional backcross generation (BC4). Thirty four BC4

plants with single or double introgressions were then se-

lected and selfed once or twice to produce BC4S1 and

BC4S2 plants with single or double MAK homozygous

introgressions. The selection of plants with homozygous

target introgressions in all these generations (BC3S1,

BC3S2, BC4, BC4S1 and BC4S2) was carried out with

the SNPs of the corresponding introgressions by High

Resolution Melting.

A first core collection of 27 ILs, mostly with a single

introgression and a few with double introgressions, all

homozygous, representing most of the MAK genome

(Additional file 3), were subjected to further phenotyp-

ing in three trials, along with the VED and MAK parents

and their F1. This set represents the MAK genome quite

well, and has an appropriate size for performing accurate

phenotyping with climacteric fruits. This IL collection

has an average of 1.3 introgression/IL, representing

95.4 % of the VED background genome (range 89.8–

99.1 %). A total of 37 bins were defined with an average

of 2.8 bins/chromosome. The average size of the intro-

gressions was 30 cM. Some regions of the MAK genome

in chromosomes 1, 4, 5, 7 and 8 were not represented

(10 %) (Additional file 3).

Parent phenotypes

The two parents showed clear differences in a number

of traits related to flowering time, fruit morphology, fruit

ripening behavior and traits related to organoleptic and

nutritive value, such as flesh color and sugars content.

Additional file 4 depicts the mean values and standard

deviations, along with ANOVA results for means com-

parison of both parents, VED and MAK, and their F1

for each studied trait in the three trials in which they

were phenotyped along with the ILs. MAK showed earl-

ier and more female flowering than VED plants (with an

average across environments of 3.6 versus 1.6 female

flowers per plant 30 days after the opening of the 1st

flower, NFeF30), but no differences were observed for

the male flowering pattern (8.5 versus 7.5 male flowers

per plant, NMaF30). VED fruits were significantly heav-

ier (average Fruit weight (FW) 755.9 g) than MAK fruits

(243.9 g), which yielded more elongated fruits with

higher percentages of seminal cavity (Fruit shape (FS)

1.1 versus 0.92, and seminal cavity/fruit diameter ratio

(CW) 0.61 versus 0.45, respectively for MAK and VED).

The formation of an abscission layer at the time of

ripening (AL) and the occurrence of external aroma in

mature fruits (AR) were present in VED and absent in

MAK, these being indicators of the climacteric behavior

of the Charentais type. Differences in other traits, such

as rind thickness (RTh, 4.2 mm versus 1.7 mm in VED

and MAK, respectively) and rind netting (Net, present

in VED and absent in MAK) were also observed

(Additional file 4). Regarding the traits related to flesh

quality, VED is orange-fleshed, whereas MAK is white-

fleshed (Additional file 1), with different values for the

colorimeter parameters, such as higher luminosity Hl,

negative a* values and lower b* values in the MAK paren-

tal (FCHl 64.7, FCa −2.2, FCb 10.6 versus FCHl 53.6, FCa

11.1 and FCb 23.8, in MAK and VED, respectively)

(Additional file 4). Both parents are sweet melons,

with similarly high soluble solids content (SSC) in the

fruits (11.2° versus 11.7° brix degrees for VED and

MAK, respectively) and similar amounts of sucrose

and fructose, but with significantly lower levels of

glucose in the MAK fruits (Suc 248.2, Gluc 85.9 and

Fruc 87.5 versus Suc 232.7, Gluc 46.0 and Fruc 50.9

in μmol/gFW eq. Hexose) (Additional file 4).

Association analysis in backcross families

Table 1 shows significant associations (at p < 0.005)

identified by TASSEL, by both GLM and MLM analysis,

and those identified only by GLM, but which were also

identified in the IL analysis described below.

GLM identified several markers in chromosome 11

associated to FS. The SNP CMPSNP30 (66 cM) was

significant in two populations, BC2 and BC3 (R2 = 9.3

and 12.3 %); it was also significant in the BC3 according

to MLM (R2 = 8.4). In all cases, MAK alleles increased FS

values, resulting in more elongated fruits. CMPSNP65 on

chromosome 10 (14.4 cM) was found to be associated

with FF in both the BC2 and BC3 populations using both

GLM (R2 = 32.7–7.9 %) and MLM (R2 = 11.4 and 7.3 %)

analysis, with the MAK alleles resulting in firmer flesh

(Table 1). This characteristic is associated with the ripen-

ing behavior and may be related to postharvest conserva-

tion. The same effect of MAK alleles was identified by

GLM in both populations on chromosome 7 (SNPs

CMPSNP249 and CMPSNP262 at 11.3 cM and 30.5 cM).
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Table 1 Association analysis performed with TASSEL v.5, using GLM and MLM models in the BC2, BC3 and BC3S1 populations

GLM MLM

Trait Population Marker Chromosome Position (cM) p Marker_Rsq Allelic effect p Marker_Rsq Allelic effect Parental that increase
the trait value

IL

FS BC3 PSI_41-B07 11 27.6 0.003409612 0.08 −0.07 MAK MAK 11.2

BC2 CMPSNP30 11 66.0 0.004866798 0.09 −0.06 MAK MAK 11.2

BC3 CMPSNP30 3.45E-04 0.12 −0.09 0.004918 0.08 −0.11 MAK MAK 11.2

FF BC2 CMPSNP249 7 11.3 9.65975E-05 0.19 −2.47 MAK MAK 7.2

BC3 CMPSNP249 0.001718059 0.10 −1.87 MAK MAK 7.2

BC2 CMPSNP262 7 30.5 0.001993046 0.12 −2.47 MAK MAK 7.2

BC3 CMPSNP262 1.27E-05 0.18 −2.54 MAK MAK 7.2

BC3 CMPSNP1009 7 32.1 1.27E-05 0.18 −2.54 MAK MAK 7.2

BC3 CMPSNP287 7 35.3 2.77E-04 0.13 −2.15 MAK MAK 7.2

BC3 CMPSNP56 7 43.3 0.00119487 0.10 −1.69 MAK MAK 7.2

BC2 CMPSNP65 10 14.4 8.56312E-08 0.33 −3.09 0.004796 0.11 −2.22 MAK MAK 10.1

BC3 CMPSNP65 0.004653477 0.08 −1.41 0.004401 0.07 −1.28 MAK MAK 10.1

FCHl BC3S1 CMPSNP1077 9 19.2 0.002510183 0.09 −19.50 0.003482 0.10 −19.00 MAK MAK 9.2

FCa BC3 AI_14-H05 2 40.6 0.001120465 0.10 −2.73 0.000950 0.12 −3.59 MAK MAK 2.1

BC3S1 CMPSNP320 9 20.8 1.86E-10 0.38 15.02 VED MAK 9.2

BC3 CMPSNP144 9 22.4 9.75E-04 0.11 2.25 VED MAK 9.2

BC3S1 CMPSNP144 2.10E-10 0.39 17.86 VED MAK 9.2

BC3 CMPSNP1035 9 33.6 9.53E-05 0.15 2.31 VED MAK 9.2

BC3S1 CMPSNP1035 2.68E-16 0.51 17.98 VED MAK 9.2

BC3 CMPSNP159 9 36.8 2.20E-04 0.13 2.20 VED MAK 9.2

BC3S1 CMPSNP159 1.35E-13 0.48 18.11 VED MAK 9.2

BC3S1 CMPSNP1133 9 59.2 3.51E-12 0.44 17.64 0.003116 0.13 6.11 VED MAK 9.2

BC3S1 CMPSNP890 9 64.0 9.90E-10 0.36 17.64 VED MAK 9.2

FCb BC3S1 CMPSNP320 9 20.8 2.58E-06 0.24 6.09 VED MAK 9.2

BC3S1 CMPSNP144 9 22.4 5.49E-06 0.23 8.06 VED MAK 9.2

BC3S1 CMPSNP1035 9 33.6 3.57E-12 0.40 8.11 0.000031 0.20 9.20 VED MAK 9.2

BC3S1 CMPSNP159 9 36.8 2.21E-06 0.25 6.78 VED MAK 9.2

BC3S1 CMPSNP1133 9 59.2 1.77E-06 0.25 7.86 VED MAK 9.2

BC3S1 CMPSNP890 9 64.0 4.56E-06 0.23 7.86 VED MAK 9.2
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Table 1 Association analysis performed with TASSEL v.5, using GLM and MLM models in the BC2, BC3 and BC3S1 populations (Continued)

SSC BC2 CMPSNP731 1 80.4 0.000782493 0.14 1.62 VED

BC3 CMPSNP731 1 80.4 0.000468736 0.12 2.07 VED

BC3S1 CMPSNP731 1 80.4 0.002121734 0.10 4.11 VED

BC3 CMPSNP204 1 86.8 0.001202906 0.10 2.32 VED

BC2 CMPSNP65 10 14.4 1.65953E-06 0.27 −3.26 0.004937 0.11 −2.22 MAK MAK 10.1

SUC BC3S1 CMPSNP731 1 80.4 0.004606327 0.11 117.72 VED MAK 1.2

BC3S1 CMPSNP204 1 86.8 0.00454631 0.11 117.19 VED MAK 1.2

GLUC BC3S1 60 k41.243 5 73.4 0.004036775 0.12 −81.06 0.004423 0.13 −84.40 MAK MAK 5.2

BC3S1 AI_13-H12 5 89.4 0.004036775 0.12 −81.06 0.004423 0.13 −84.40 MAK MAK 5.2

FRUC BC3S1 CMPSNP1133 9 59.2 0.000596137 0.20 37.26 0.004122 0.17 20.61 VED

BC3S1 CMPSNP890 9 64.0 0.000596137 0.20 37.26 0.004122 0.17 20.61 VED

Only associations at p < 0.005 observed in both GLM and MLM analysis or in GLM and IL analysis (Additional file 5, Figs. 2, 3, 4, 5 and 6) are shown. For each trait (FS fruit shape index, FF flesh firmness, FCHl, FCa and

FCb L, a* and b* Hunter coordinates of flesh color, SSC soluble solid concentration in flesh, SUC, GLUC and FRUC sucrose, glucose and fructose content in flesh) with significant association, the backcross population

where it was identified, the significant marker with its chromosome and genetic position in cM, the statistical significance of the association (p), the percentage of phenotypic variance explained by the marker (R2),

the allelic effect (negative when MAK alleles increase the trait value), and the IL that showed a significant effect in the trait and carried the marker introgressed from MAK (identified with the Dunnet’s test in the IL

analysis), are also indicated
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However, this association could not be confirmed by

MLM.

Flesh color was associated with several genomic

regions (Table 1). The most important effects were

observed on chromosome 9, significant in populations

BC3 and BC3S1, with a main effect in the interval

between markers CMPSNP1035-CMPSNP1133 (33.6–

59.2 cM), with the GLM/MLM models explaining up

to 51.1/13.4 % and 40.4/20.1 % of the variation found

for the a* and b* parameters (FCa and FCb). Also

found in chromosome 9 was a significant association of

CMPSNP1077 with Hl, in both GLM and MLM models.

VED alleles increased the a* and b* parameters and

reduced Hl, which resulted in orange-fleshed fruits. Add-

itionally, SNP AI_14-H05 (located on chromosome 2 at

40.6 cM) was found to be associated to FCa by both GLM

and MLM analysis in the BC3 population (R2 = 10.4 and

11.9 %, respectively), but interestingly, this time the MAK

alleles increased FCa.

Four regions that affected variation of the sugars content

were detected on chromosomes 1, 5, 9 and 10 (Table 1).

The region on chromosome 1 (CMPSNP731, 80.4 cM) was

only detected with GLM, with the MAK alleles decreasing

flesh soluble solids content (SSC) in all backcross genera-

tions (BC2, BC3 and BC3S1) and sucrose content (SUC) in

BC3S1. Even though this association could not be verified

by MLM, it was validated later on in the IL analysis (see

below). On chromosome 9, MAK alleles of CMPSNP1133

and CMPSNP890 (positions 59.2 and 64.0 cM, respect-

ively) were associated with a reduction in fructose content

by both GLM and MLM analysis. More interestingly,

MAK alleles of CMPSNP65 (on chromosome 10, position

14.4 cM) and of 60 k41243 and AI_13-H12 (on chromo-

some 5, positions 73.4 and 89.4 cM) were associated to an

increase of SSC and glucose content in BC2 and BC3S1,

respectively, using both GLM (R2 = 27.1 and 11.4 %) and

MLM (R2 = 11.5 and 12.7 %) analysis.

QTL analysis in the IL population

The Dunnett’s test of the IL population phenotyped in

the three environments allowed the detection of a

number of QTLs (Additional file 5 and Figs. 1, 2, 3, 4, 5

and 6) as described in the next section.

Flowering and maturity time

The IL population showed high variability for flowering

traits (NMaF30 ranging from 1.1 to 36.1 and NFeF30

from 0 to 5.5) (Additional file 4). We found low to mod-

erate heritabilities for both traits (h2 = 0.26 to 0.40 and

0.15 to 0.26, for male and female flowering, respectively)

and significant G x E interaction (19.6 and 18.3 %, re-

spectively). This interaction was probably a consequence

of the high temperatures reached in the Pap14 trial,

which accelerated plant development, making more

frequent pruning necessary, which in turn likely affected

flowering scoring. Also, the time from pollination to

maturity was highly variable among the ILs (DMat from

27 to 52.1 days). This trait was measured only in the two

assays where hand pollination was used (UPV15 and

Paip14). Heritabilities for this trait were slightly higher

(h2 = 0.26 to 0.48), and G × E interaction represented

10.1 % of total variance.

Despite the high interaction effect, several ILs showed

consistent significant differences with the VED recurrent

parent in at least two localities (Fig. 2), thereby defining

6 QTLs (nmaf30.5, nmaf30.7, nfef30.6, nfef30.7, dmat.1

and dmat.6) (Additional file 5, Fig. 1). MAK_5-2 pro-

duced more male flowers, whereas MAK_6-2 developed

a higher number of female flowers. Interestingly,

MAK_7-1 produced more of both male and female

flowers (Fig. 2). Apart from the effect on the number of

female flowers, MAK_6-2 showed a ripening cycle that

was shorter than that of VED. These two traits found

together in MAK_6-2 are interesting, as they could be

useful for developing cultivars with abundant and early

yield. The effect of a shorter cycle was also observed in

MAK_1-2 (Fig. 2).

Fruit morphology

Traits related to fruit size and shape (fruit weight,

length, diameter and shape (FW, FL, FD and FS)),

presented moderate heritability (h2 = 0.38 to 0.55), and

all had a low or non-significant G x E interaction (6.2–

8.1 %) (Additional file 4). FS was the trait with the lowest

environmental effects, which was consistent with the in-

formation reported in previous studies [20]. Another trait

related to fruit morphology is percentage of fruit cavity

(CW). CW had lower heritability (h2 = 0.08 to 0.29) and

higher G x E effects (11.8 %) (Additional file 4).

FW was positively correlated to fruit length and

diameter (FL and FD) in all localities (r = 0.77 to 0.93)

(Additional file 6). In fact, most of the ILs that showed

significant effects on FW also showed effects in both FL

and FD (Fig. 3). MAK_1-1 and MAK_6-2 significantly

decreased FW in at least two environments (from 32.5

to 46.7 %), whereas MAK_2-1 and MAK_11-1 increased

FW (from 33.3 to 58.1 %), even though MAK showed

smaller fruits than VED, which demonstrates the power

of the current population to uncover hidden genetic

variability. These four ILs also presented significant ef-

fects on FL and FD, with MAK alleles having the same

direction of effect. Therefore, these changes in FW were

due to variation in two dimensions at the same time and

had no effect on fruit shape. These lines defined four

FW QTLs that co-localize with those of FL and FD

(fw.1-fl.1-fd.1, fw.2-fl.2-fd.2, fw.6-fl.6-fd.6. and fw.11-fl.11-

fd.11) (Fig. 1 and Additional file 5). Representative fruits
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Fig. 1 QTL locations in the map of [9]. Markers found to be associated in the backcross populations (underlined) are indicated (for each associated
region all the markers significant with both GLM and MLM analysis and those markers significant with MLM and having the highest R2 values are
shown). QTLs found in the ILs assay with the Dunnett’s test in at least two trials are shown in brackets. In red QTLs in which MAK alleles decrease the
value of the trait and in black those in which MAK alleles increase the value of the trait. Color bar at the left of the chromosomes show the MAK
introgressions of each IL
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of the two lines with the largest effects on FW, MAK_6-

2 and MAK 11–1, are shown in Fig. 7.

FW was not correlated to Fruit shape (FS) (r = 0.18 or

non-significant). However, FS was positively correlated

to FL (r = 0.53 to 0.59) (Additional file 6), as previously

observed [20, 45]. MAK_7-2 and MAK_11-2 yielded

fruits with an increase in the FS ratio, which were more

elongated than VED (between 12.5 and 25 % longer), but

had no significant variation in diameter (Figs. 3 and 8),

which defined QTLs for FL and FS in these regions (fl.7-

fs.7 and fl.11-fs.11) (Fig. 1 and Additional file 5).

One QTL involved in variation of CW was identified

in chromosome 2, cw.2. Fruits of MAK_2-2 had higher

CW values (from 16.7 to 20.2 %) than the VED parental

line (Fig. 3). The effect of this QTL is shown in Fig. 9.

The introgression of MAK_2-2 totally overlapped with

that of MAK_2-1 and partially with that of MAK_2-3

(Additional file 3). MAK 2–1 also had CW values that

were higher than those of VED in one environment,

whereas MAK_2-3 did not differ from the recurrent par-

ent in this trait (Fig. 3), thus suggesting that this QTL is

in the region that is common to both MAK_2-1 and

MAK_2-2.

In summary, with the current IL population we have

identified several QTLs involved in FW, FS and CW.

Nearly 60 and 30 QTLs have been described to date for

FW and FS [6, 46], respectively. In the current report,

QTLs fw.2 and fw.11 may correspond to the metaQTLs

FWQM2 and FWQM11 described by [46]. This study

[46] suggested that members of the CNR/FW2.2 and

SlKLUH/FW3.2 gene families are strong gene candidates

for melon FW QTLs. Among the QTLs detected with

the current IL collection, the fw.6 and fw.11 chromosomal

regions include the CNR melon member CmCNR-6 and

the SlKLUH melon member CmCYP78A-4, respectively.

However, further studies using subILs with smaller intro-

gressions are necessary to analyze the contribution of

these genes.

FS QTLs have previously been mapped in all chro-

mosomes, except in chromosome 5, and metaQTLs

had been defined on chromosomes 1, 2, 8, 11 and 12.

In the current report, fs.11 may correspond to the

metaQTL FSQM11. Regarding the QTL defined on

chromosome 7, several FS QTLs had been detected

previously in that genomic region, mainly in PI161375

(a Korean accession closely related to makuwa cultivars,

[7]) × “Piel de Sapo” (inodorus type) populations, sug-

gesting that this QTL may be specific to Far-Eastern

melon cultivars. The candidate genes CmOFP-8

(member of the Ovate Family Proteins) and CmSUN-

Fig. 2 Comparison of the means of the set of ILs with the mean of the recurrent parent (VED) using the Dunnett’s test. The means and standard
errors are shown for each trial (Paiporta 2015, UPV 2015 and Paiporta 2014). Gray bars show significantly different (p < 0.05) IL and VED means.
Traits evaluated are: NMaF30 and NFeF30 = Number of male/female flowers 30 days after the appearance of the first flower and Dmat = days to
maturity. For Dmat, only two trials are shown (UPV 2015 and Paiporta 2014)
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16 (member of the SUN family) are located in the

region of the QTL.

QTLs involved in fruit flesh content or cavity have

been studied in a very small number of works. Neverthe-

less, [47] found QTLs for these traits on LG II, which

could be allelic to the QTL observed in MAK_2-2.

Ripening behavior

Ripening behavior is one of the most important factors

involved in fruit quality in melon. We analyzed three

ripening-related traits: the presence of abscission layer,

flesh firmness and external aroma (AL, FF and AR). All

three traits presented moderate heritability (h2 = 0.30 to

0.5) with a strong genotype effect (which accounted for

29.2 to 35.9 % of the total variation), a low or non-

significant environmental effect and moderate G × E

interaction (9.1–11.5 %) (Additional file 4).

Most ILs developed fully climacteric fruits, like VED,

forming an abscission layer at the time of maturity; two

exceptions were MAK_7-2 and MAK_10-1, in which

most of the fruits did not form an abscission layer at full

maturity (Figs. 4 and 10). MAK_10-1 has a single intro-

gression, defining the QTL al.10 (Fig. 1 and Additional

file 5), whereas MAK_7-2 has a major introgression on

chromosome 7, and also an additional one in the region

of al.10 (Additional file 3), which could be causing the

Fig. 3 Comparison of the means of the set of ILs with the mean of the recurrent parent (VED) using the Dunnett’s test. The means and standard
errors are shown for each trial (Paiporta 2015, UPV 2015 and Paiporta 2014). Gray bars show significantly different (p < 0.05) IL and VED means.
Traits evaluated are: FW = fruit weight in grams, FL = fruit length in mm, FD = fruit diameter in mm, FS = fruit shape as the ratio between fruit
length and fruit diameter and CW = cavity width (as the ratio between the width of the seminal cavity and the fruit diameter)
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effects on the abscission layer. Therefore, the possible

presence of an al QTL on chromosome 7 needs to be

confirmed by separating these two introgressions into

independent lines.

Along with the lack of fruit abscission, MAK_7-2

and MAK_10-1 showed firmer flesh (FF increased

about twofold compared to VED, 4.2 and 4.9 versus

2.0 kg/cm2) and less external aroma at maturity (ff.10

and ar.10, Fig. 4), probably as a result of the different

ripening behaviors, as these two traits have been re-

ported to be influenced by climacteric/non-climacteric

ripening [42, 48]. The same possible confounding

effects between chromosome 7 and chromosome 10

introgressions on MAK_7-2 may be causing the

increase in FF as well as the aroma decrease observed

in this IL.

None of the QTLs found in this study correspond to

previous QTLs associated to ripening. For example, the

major genes Al-3 and Al-4 that control fruit abscission

and autocatalytic ethylene production map in different

chromosomes (3 and 9, respectively [49]). Additional

QTLs involved in ethylene production and or in fruit

flesh firmness [8, 24, 49, 50] map in different regions of

chromosomes 1, 2, 3, 6, 11 and 12. [50] reported an in-

creased FF in ILs with introgressions of chromosome 10,

derived from the cross of PI161375 (whose climacteric

behavior is similar to that of MAK) × “Piel de Sapo”

(inodorus, non-climacteric), which is most likely allelic

Fig. 4 Comparison of the means of the set of ILs with the mean of the recurrent parent (VED) using the Dunnett’s test. The means and standard
errors are shown for each trial (Paiporta 2015, UPV 2015 and Paiporta 2014). Gray bars show significantly different (p < 0.05) IL and VED means. Traits
evaluated are: FF = flesh firmness in kg/cm2, AL = presence or absence of abscission layer, AR = presence or absence of external aroma, RTh = rind
thickness in mm and Net = presence or absence of rind netting
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to the QTL detected in MAK_10-1 (ff.10). The fruit flesh

of the Piel de Sapo cultivar actually has a high FF value,

so much so that increasing FF in this genetic background

would probably not be necessary or even desirable,

whereas an increase of FF in cantalupensis cultivars could

be very interesting. Thus, delayed ripening and increased

flesh firmness could extend fruit shelf life, which is a

major objective for cantaloupe breeding.

Rind characteristics

Rind characteristics, such as rind thickness and netting

(Rth and Net) can be associated with shelf life and resist-

ance to storage and shipping. Despite this potential, the

study of their genetics has been scarce [23, 42]. These

traits have moderate heritability (h2 = 0.33–0.49) with

important genotype contributions for both traits (29–

35.8 %), and moderate and low E and G × E effects, in

Rth and Net, respectively (Additional file 4).

MAK_2-3 and MAK_6-2 produced fruits with thicker

and thinner rinds, respectively, than VED (average of

6.6 mm and 2.6 mm versus 4.2 mm in VED, Figs. 4 and 11)

in at least 2 environments. These lines defined the rth.2

and rth.6 QTLs (Fig. 1 and Additional file 5). Rth.6 co-

localized with net.6 (Fig. 1, Additional file 5), which

accounted for fruits of the IL MAK_6-2 being less netted

than those of VED (Figs. 4 and 11). This phenotype can be

seen as either a benefit, fruits with more edible flesh, or a

liability, more problems in harvesting and storage. Two

other QTLs were associated to netting reduction (net.5 and

net.7) (Additional file 5), as observed in MAK_5-2 and

MAK_7-2 fruits with reduced netting intensity (Fig. 4).

Flesh color

Flesh color is important as a consumer preference trait,

and can also be associated to carotenoid content, which

is related to the nutritional quality of the fruit. Our IL

population showed important variability for flesh color, as

was expected due to the contrasting phenotypes of the

founder parents for this trait (Additional files 1 and 4). All

the measured traits related to flesh color displayed a very

strong genotype effect (29.1–75.7 %), with heritabilities

from moderate in FCHl (h2 = 0.32 to 0.36) to high in the

FCa and FCb (h2 = 0.60 to 0.83 and h2 = 0.43 to 0.47,

respectively). The E effects (1.5–7.9 %) and G × E interac-

tions (3.6–9.5 %) were low and even non-significant for

the b* parameter (Additional file 4).

The main effect in flesh color was observed in

MAK_2-1 and MAK_9-2, which yielded fruits with

green flesh (Fig. 12), with significantly lower and higher

values for the a* and Hl parameters, respectively, in the

Fig. 5 Comparison of the means of the set of ILs with the mean of the recurrent parent (VED) using the Dunnett’s test. The means and standard
errors are shown for each trial (Paiporta 2015, UPV 2015 and Paiporta 2014). Gray bars show significantly different (p < 0.05) IL and VED means. Traits
evaluated are: Hunter coordinates, FCHl = flesh color luminosity, FCa = flesh color a* parameter, FCb = flesh color b* parameter and CIR = color of the
inner rind scored visually

Perpiñá et al. BMC Plant Biology  (2016) 16:154 Page 11 of 21



Fig. 6 Comparison of the means of the set of ILs with the mean of the recurrent parent (VED) using the Dunnett’s test. The means and standard
errors are shown for each trial (Paiporta 2015, UPV 2015 and Paiporta 2014). Gray bars show significantly different (p < 0.05) IL and VED means.
Traits evaluated are: SSC = soluble solids content in Brix degree, SUC = sucrose, GLUC = glucose and FRUC = fructose, all in μmol/gFW eq. Hexose.
For SUC, GLUC and FRUC, the mean of Paiporta 2014 is presented

Fig. 7 Effect of MAK introgressions in chromosomes 11 and 6 affecting fruit size. Top: VED parental (FW = 614–933 g; FL = 98.6–112.7 mm; FD = 107.6–
126.3 mm). Middle: melons of MAK_11-1 (FW = 971.2–1208.1 g; FL = 117.30–133.3 mm; FD = 122.5–127.4 mm). Bottom: melons of MAK_6-2
(FW = 366.9–579.2 g; FL = 75.8–99.7 mm; FD = 89.8–106.1 mm). Both lines show significant differences in FW, FL and FD with VED in two or three trials
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three environments (Fig. 5). Fruits of MAK 9_2 also had

b* values that were significantly lower than VED. These

lines define a major QTL affecting flesh color in

chromosome 9 (fchl.9-fca.9-fcb.9) (Additional file 5). The

MAK_2.1 has a major introgression on chromosome 2, and

an additional one in the region of fchl.9-fca.9-fcb.9 (36.8–

64 cM/CMPSNP159-CMPSNP890, Additional file 3),

which could be causing the effects on flesh color. There-

fore, the occurrence of a flesh color QTL on chromosome

2 requires confirmation by the characterization of lines with

single introgression.

The other ILs were all orange-fleshed, but some vari-

ation in the orange tone was observed. Fruits of MAK_6-1

and MAK_8-2 have a paler orange color, with higher Hl

values (Figs. 12 and 5) (fchl.6 and fchl.8) (Fig. 1, Additional

file 5). The fruits of MAK_8-2 presented a yellow color in

the internal rind, which was different from the green that

is usually found in most ILs and in VED fruits (Fig. 12).

This trait appeared in some fruits of other lines. It was

scored as present or absent (CIR, color of the inner rind)

and analyzed. Mainly MAK_8-2, but also MAK_6-1 and

MAK_12-1, yielded fruits with yellow internal rind. The

MAK_8-2 line has a single introgression (46.5–79.2 cM/

CMPSNP281-CMPSNP1006), but both MAK_6-1 and

MAK_12-1 have a second introgression, in addition to

their main one, in common with MAK_8-2 in chromo-

some 8 (Additional file 3), suggesting that the CIR effect is

due to the MAK introgression in chromosome 8 (cir.8).

Fig. 8 Effect of MAK introgressions in chromosomes 7 and 11 affecting fruit shape. Top: VED parental (FS = 0.89–0.94). Bottom: melons of the line
MAK_7-2 (FS = 1.08–1.14) and melons of the line MAK_11-2 (FS: 0.97–1.08)

Fig. 9 Wider cavities found in fruits of MAK_2-2 (Bottom: CW = 0.50.–0.54) compared to the recurrent VED parental (Top: CW = 0.42–0.49)

Perpiñá et al. BMC Plant Biology  (2016) 16:154 Page 13 of 21



Only one line presented a significant increase in the b*

parameter in at least two environments (Fig. 5).

MAK_2-3 have orange-fleshed fruits with increased b*

values, with more yellowish flesh (Fig. 12), defining the

fcb.2 QTL (Fig. 1 and Additional file 5).

Carotenoid content has been studied in several previ-

ous works and has been reported to be independent of

ripening behavior [48]. In these previous studies, QTLs

for carotene content co-locate with the major flesh color

genes gf (green flesh) and wf (white flesh), located in

chromosomes 8 and 9, respectively. Classic studies indi-

cate that these genes interact epistatically: wf + −/gf + −

and wf + −/gfgf allelic combinations have orange flesh,

wfwf/gf + − white flesh and wfwf/gfgf green flesh [51]. In

our population, the effect of MAK introgressions con-

taining these genes also altered fruit color. Fruits of

MAK_9-2 (with a single introgression on chromosome 9

in the region of the wf ) showed green flesh (Additional

file 3 and Fig. 12). MAK fruits are white-fleshed, so this

cultivar has the gf and wf allele combination that leads

to white flesh (wfwf/gf + gf+). On the other hand, the

VED cultivar has the orange allele for wf and the green

allele for gf (wf + wf+/gfgf ) [19]. Thus, MAK_9-2 would

have the combination of wfwf (from MAK) and gfgf

(from VED), leading to green-fleshed fruits. We also ob-

served the epistatic interaction between the two genes in

Fig. 10 Fully mature fruits of VED with abscission layer (top) and of line MAK 10.1 (bottom) without abscission layer

Fig. 11 Variation in rind thickness observed in the IL Population. Top: Thicker rinds of line MAK_2-3 (Rth = 5.8–7.7 mm) and Bottom: thinner rinds
of line MAK_6-2 (Rth = 1.3–3.5 mm). Right: detail of netted and non-netted rind
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fruits of MAK_8-2. This line has a VED genotype in

chromosome 9, wf + wf+, but contains a MAK introgres-

sion in chromosome 8 in the region of gf, gf + gf+. This

combination is, as expected, orange-fleshed. However,

the effect of the gf gene is not totally masked, as previ-

ously suggested, by the presence of wf + alleles, and the

allelic combination found in MAK_8-2, wf + wf+/gf + gf+,

resulted in a different orange phenotype than the VED

allelic combination, wf + wf+/gfgf, with higher luminosity

in the orange color, and a characteristic yellow color in

the internal part of the rind. This combined effect of the

wf and gf genes should be considered in Charentais

breeding programs to recover the orange flesh/green

inner rind phenotype characteristic of this type of

melons (Fig. 12).

Sugars content

Sugar content is one of the most important traits for seed

companies and producers, as it is related to the organolep-

tic value of the fruits. Melon germplasm can be divided

into sweet and non-sweet melons, which has been attrib-

uted to variability in a sucrose accumulator gene [52], but

a large number of QTLs have been detected in sugar accu-

mulation traits, demonstrating that this trait has a very

complex genetic control in melon [5].

Soluble solids content, SSC, measured in the three en-

vironments, presented variable, low-to-moderate, values

of heritability (h2 = 0.08 to 0.5), with the genotype effect

being relatively modest (16.8 % of the total variation) but

higher than the environmental effect (3.3 %) (Additional

file 4). An important G x E interaction was detected in

SSC (15.9 %). The content of specific sugars (sucrose,

fructose and glucose) was measured in one environment,

and also had low heritability values (h2 = 0.29, 0.15, and

0.22, respectively for each sugar).

Despite the G × E interactions, fruits of the IL

MAK_10-1 had significantly higher SSC values than

VED in the three environments (12.5 to 24.4 %) (Fig. 6).

This QTL, ssc.10, co-localizes with suc.10, which

increases the sucrose amount of MAK_10.1 fruits by

27.7 % compared to VED. Sugar accumulation is inde-

pendent of climacteric behavior; in fact, non-climacteric

cultivars are among the sweetest melons. However, some

climacteric melons, such as the Charentais VED, suffer a

rapid decay of sugar content after reaching full maturity.

The major QTL on chromosome 10 co-localized with

the region in which the ripening process was delayed

(al.10-ff.10- ar.10) (Fig. 1), so this higher sugar content

could be related to the delay in the ripening process.

Another line with significantly different sugar content

than that of the recurrent parent was MAK_5-2, which

yielded fruits with significantly higher sucrose (17.9 %)

and lower glucose (−8.6 %) and fructose (−5.8 %) (suc.5,

gluc.5 and fruct.5) (Fig. 6 and Additional file 5). [53] de-

fined a QTL in chromosome 5 that affects sugar content

in the PI 161375 × “Piel de sapo” population, but in this

case, the alleles of PI161375 reduced the sucrose con-

tent. To our knowledge, suc.10 and suc.5 are the first

Fig. 12 Variability in flesh color in different introgressions lines. Columns Left to right: VED, MAK_2-3, MAK_8-2, MAK_2-1 and MAK_9-2
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QTLs in which exotic alleles have been reported to in-

crease the level of sucrose in melon.

Two other MAK regions were found to be involved in

sugar variation. MAK_1-2 had significantly reduced

sucrose content (−39.4 %) and higher levels of glucose

(18.3 %) than VED (Fig. 6) (suc.1. and gluc.1) (Additional

file 5). The introgression from MAK on chromosome 1

includes a Sulfur susceptibility gene [54]. Sulfur dust is

used to control powdery mildew in greenhouses, causing

severe leaf necrosis and consequently has major effects

on fruit development. The fact that MAK carries the

susceptible allele could lead to the reduction in fruit

sugar content resulting from a pleiotropic effect of

Sulfur susceptibility. A similar effect was found in

MAK_11-2 with reduced sucrose (−15 %) and increased

glucose (38 %) and fructose contents (22.3 %) (suc.11,

fruc.11 and gluc.11), but this line is not sulfur sensitive

(Additional file 5, Fig. 6).

Variation of sugar accumulation in sweet melons is

controlled by a large number of QTLs, which have been

mapped in all chromosomes, but are more frequent in

chromosomes 2, 3, 5 and 8. Our results confirm the

large effect of the G × E interaction reported in previous

studies [20], but despite this effect, we can confirm the

region previously found in chromosome 5, and suggest

the existence of additional regions in chromosomes 1,

10 and 11. The major effect found in chromosome 10,

which could be related to a delay in ripening, is of inter-

est for maintaining an optimal sugar level during the

ripening process in Charentais melons. The fact that no

clear co-localization of QTLs with genes involved in

sugar metabolism has been reported up to now [8, 23]

makes the identification of candidate genes difficult.

Stability of QTL detection in backcrosses and ILs

The developed IL population was, as expected, more

effective at detecting QTLs than the backcrosses. For

example, none of the QTLs related to flowering and

maturity time detected in the IL populations were

detected in the backcross populations (Table 1). This

result could be explained in part by the occurrence of a

high G × E interaction (as observed for NMaF30,

NFeF30 and Dmat, Additional file 4). A similar situation

occurred with the QTLs related to fruit size, FW, FD

and FL. However, in this case, the G × E interaction was

not so important, suggesting that the results are more

likely due to the different genetic structures of the popu-

lations. FW QTLs usually show an additive gene action

[55], so the power to detect them in backcross popula-

tions is lower than in IL populations.

Conversely, the major QTL related to fruit shape,

fs.11, was stable across populations (Table 1 and

Additional file 5). This high stability of FS QTLs com-

pared with FW may be explained by the common

dominant gene action observed in melon FS QTLs [55],

making their detection in backcrosses easier. A similar

situation was found with QTL ff.10, which is involved in

flesh firmness variation. This trait, just like fruit shape,

had a very low environmental effect and an only moder-

ate G × E interaction. In addition, the strong genotype

effect found for the flesh color traits, associated with

almost no G x E interaction, along with the dominance

of the major genes reported to be involved in flesh color,

might account for the stability of the fchl.9, fca.9 and

fcb.9 QTLs.

We were also able to find several stable QTLs for SSC

and specific sugars in chromosomes 1, 5 and 10 (Fig. 1,

and Additional file 5). This stability may facilitate their

introduction in breeding programs.

Conclusion

This work presents the first collection of ILs in a canta-

loupe genetic background. This strategy of obtaining

pre-breeding lines with characteristics of interest will

encourage breeding in Charentais melons, one of the

most commercially important types. The 27 ILs, selected

after several cycles of backcrossing, selfing and marker-

assisted selection, represent most of the MAK genome,

with an average of 1.3 introgressions per line. This IL

collection, phenotyped in three different environments

and genotyped with a medium-throughput platform, has

allowed us to study important traits in this crop and

their association to certain genomic regions. The QTL

detection performed using this IL collection has been

demonstrated to be more effective compared to other

populations, such as backcrosses. In total, 47 QTLs,

significant in at least two IL assays, have been identified

for traits related to fruit quality. Many have been

detected in this work for the first time, while others con-

firm previously reported QTLs. The results presented

herein, related to flowering and maturity time traits,

fruit morphology, ripening behavior, rind characteristics,

flesh color and sugars content, will not only facilitate the

knowledge of the genetic control of these traits, but have

also provided interesting lines for breeding, such as the

one with delayed climacteric ripening behavior and

sweeter fruits, or the small-fruited lines. Further geno-

typing with new high-throughput methods, such as GBS

(Genotyping by sequencing), and new subIL sets with

smaller introgressions, will allow these results to be con-

firmed, and will expand our knowledge of the candidate

genes underlying these interesting QTLs.

Methods

Plant material

The two parents used to generate the IL population were

the French cultivar Vedrantais (VED) (C. melo subsp.

melo var. cantalupensis, Charentais type) as recurrent
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parent and the Japanese accession Ginsen makuwa

(MAK) (C.melo subsp. agrestis var. makuwa) as donor

parent. VED and MAK were selected from a core germ-

plasm collection established on the framework of a

previous project MELRIP 2007–2010 [7]. Accessions of

these core collection were multiplied and conserved in the

genebank at COMAV-UPV. The MAK parent derived

from accession PI 420176 (kindly provided by USDA,

NPGS) after several selfing cycles. Both VED and MAK

were morphologically characterized previously, along with

a larger collection of melons, to confirm their classifica-

tion in the corresponding horticultural group [8].

VED represents one of the most important market

classes of cantaloupe melons. It produces medium-size,

oval-to-round, sutured and orange-fleshed fruits, with a

typical climacteric ripening behavior (with an autocata-

lytic production of ethylene during ripening), that are

aromatic and have a medium sugar content. MAK fruits

are small and oval. The flesh is white, sweet with little

aroma, and shows a certain level of climacteric ripening

behavior (Additional file 1). Makuwa cultivars are the

only melon landraces belonging to subspecies agrestis

that have a flesh sugar content similar to or even higher

than that of sweet melons from ssp.melo [8, 37].

Breeding scheme

The F1 generation derived from the cross between VED

and MAK was backcrossed with the recurrent VED par-

ent to generate the BC1 population. Fifteen BC1 plants

were then backcrossed with the recurrent parent thus

producing fifteen BC2 families. A total of 420 BC2

plants (28 per BC2 family) were genotyped at the seed-

ling stage using a Sequenom iPLEX® Gold MassARRAY

with a set of 154 SNPs evenly distributed throughout the

melon genome (see details below). A subset of the 420

genotyped BC2 seedlings was selected according to their

genotype: those having the highest proportion of the

recurrent (VED) genome, and which contained MAK

introgressions that, together, covered the entire donor

(MAK) genome at least twice. The selected BC2 plants

were grown in the greenhouse and backcrossed to

construct the BC3 population.

A total of 363 BC3 plants were genotyped with the

same set of SNPs, at the seedling stage, and were

selected according to their genotype to produce the next

generations. One set of selected BC3 plants, which had

three or fewer MAK introgressions, was grown at the

greenhouse and selfed. The BC3S1 offsprings were

genotyped with the SNPs in the corresponding target

introgressions by High Resolution Melting (HRM) [56]

in order to finally select plants with single homozygous

introgressions. The HRM genotype of the selected

BC3S1 plants was validated with the Sequenom array.

The number of BC3S1 plants that were necessary to

screen in each progeny to obtain single introgression

lines (p = 0.95) was calculated from the binomial distri-

bution of the allele segregation as previously described

[28]. Another set of selected BC3 plants, with four or

more MAK introgressions, was also used to generate

plants with single introgressions, but in two steps, as the

number of progenies that needed to be screened by dir-

ect selfing to separate the introgressions was too high in

this case. Then, these BC3 were first backcrossed and

the resulting BC4 plants with single or double introgres-

sions, identified by the HRM analysis, were then selfed

to generate the BC4S1.

In some cases, the BC3S1 and BC4S1 that were ultim-

ately selected were selfed again to remove a few

remaining heterozygous markers and to produce seeds

for the characterization assays. A first set of 27 ILs

(including BC3S1, BC4S1, BC3S2 and BC4S2 plants)

with single or double homozygous introgressions was

characterized in the present paper. The genotype of

these lines was validated again using the Sequenom

array. This is a medium-sized IL population, 2 to 3 lines

per chromosome, but it covers most of the MAK gen-

ome, having mostly single introgressions, and represents

a set good enough for evaluating the breeding potential

of the current population.

Markers and genotyping methods

Genomic DNA was extracted from young leaves following

the [57] method. The extracted DNA was dissolved in

Milli-Q water, and the final concentration was adjusted to

10 ng/μl for the Sequenom and 30 ng/μl for the HRM

genotyping.

SNPs were selected from those previously mapped in

the melon genetic map used to anchor the first version

of the melon genome [9]. This map was constructed

using a mapping population derived from the cross

C.melo ssp melo var inodorus Piel de sapo and C.melo

ssp agrestis var conomon Songwhan Charmi. The avail-

able map included 580 SNPs located in 249 different

genetic positions (20.8 per chromosome, with an average

genetic distance between markers of 4.1 cM, from 0.8 to

20.1 cM). A set of 144 of these mapped SNPs was se-

lected according to their genetic positions, and 135 met

the multiplexing requirements of Agena’s Assay Designer

used for the Sequenom iPLEX ® Gold MassARRAY and

could be implemented in the genotyping assay (repre-

senting 128 genetic positions, with an average distance

of 8.2 cM, from 1.6 to 22.4 cM). Three of these markers

could not be called accurately in the Sequenom assay,

and thirteen failed to show the expected polymorphism be-

tween the IL parents (VED and MAK) (Additional file 2).

An additional set of 35 SNPs was also added to the Seque-

nom array. These were selected from an SNP collection

that had been validated by Sequenom in the study by [8]
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and had been generated in a previous resequencing study,

using VED and MAK among other melon genotypes [3]

(Additional file 2). Most were located in candidate genes

involved in sugar and ethylene metabolism, and some were

found to be associated with these traits in [8]. All worked

with the Sequenom assay and were polymorphic between

VED and MAK. The final Sequenom array, with a total of

154 working and polymorphic SNPs, was used to genotype

the full BC2 and BC3 populations, as well as the selected

BC3S1 and the set of ILs selected for phenotyping. The

Sequenom genotyping was done at the Epigenetics and

Genotyping laboratory located at the Central Research

Unit of the Faculty of Medicine (UCIM) belonging to the

University of Valencia (Spain).

HRM genotyping with different subsets of these

markers was also used to accelerate the selection and

fixation of target introgressions during the construction

of the IL population in several specific BC4, BC3S1,

BC4S1, BC3S2 and BC4S2 offsprings. The PRIMER3

software program [58] was used to design the oligonu-

cleotides for the HRM analysis. A total of 97 SNPs, out

of the 154 employed in the full Sequenom platform,

were adapted for HRM analysis.

Agronomic evaluation and characters measured

The intermediate backcross populations generated

during the development of the IL population, BC2, BC3

and BC3S1, were fully genotyped at the seedling stage as

described previously. Some of these genotyped plants

were selected on the basis of their genotype (those with

the highest proportion of VED genome and which con-

tained MAK introgressions that, together, represented the

entire MAK genome) and were transplanted to the green-

house for phenotyping and for the generation of the next

generation. A total of seventy-five BC2, one hundred BC3

and ninety–six BC3S1 plants were phenotyped in 2011,

2012 and 2013, respectively, during the spring-summer

growing cycle at the greenhouse facilities of the Polytech-

nic University of Valencia (Valencia, Spain).

Additionally, twenty-seven lines of the final IL collection

were evaluated in three trials, all conducted under green-

house conditions. Two were conducted in spring-summer

of 2014 and 2015 in the facilities of the Fundacion Cajamar

in Paiporta (Valencia, Spain) (Paip14 and Paip15), and the

third at the Polytechnic University of Valencia during the

spring-summer of 2015 (UPV15). Each assay included six

to eight plants of each of the 27 ILs that were grown in a

fully randomized design along with five to ten plants of

each parental line (VED and MAK). Flowers were hand-

pollinated in Paip14 and UPV15, and insect pollination

was used in Paip15 to produce two fruits per plant.

The UPV’s greenhouse conditions used for all the

backcross and for the UPV15 IL phenotyping assays

were as follows: growing cycle from March to July in a

glass greenhouse with automatic control of temperature

with cooler and automatic window aperture (with a

temperature range of 8 to 15 °C and of 25 to 32 °C,

minimum and maximum during the whole growing

cycle). Plants were grown in 15-L pots with a substrate

of 100 % coconut fiber.

The greenhouse conditions of the Fundacion Cajamar,

used for the Paip14 and Paip15 IL phenotyping assays

were as follows: growing cycle from March to July in a

glass greenhouse with automatic control of temperature

with cooler and automatic window aperture (with a

temperature range of 10 to 25/10 to 20 and of 25 to 37/

18 to 35, minimum and maximum during the whole

growing cycle for Paip2014/2015, respectively). Plants

were grown in substrate bags of 29 kg (70 % coconut

fiber and 30 % coconut chips). In both cases, nutrients

were provided through the irrigation system and pruning

was done manually when necessary to regulate vegeta-

tive growth and flowering.

Each plant was phenotyped for traits related to

flowering, days to maturity and fruit quality. Regard-

ing flowering, the number of male and female flowers

30 days after the opening of the first female flower

on each plant was counted (NMaF30and NFeF30).

Also, the days to maturity (DMat), which is the num-

ber of days from the date of hand-pollination to the

harvest, were counted for each fruit. Two fruits per

plant were set and characterized at full maturity. The

following traits were measured for each fruit: fruit

weight (FW in grams, with digital scale), fruit length

and diameter (FL, FD in mm, with graduated rule),

fruit shape index (FS, as the ratio of fruit length to

fruit diameter), cavity width (CW, as the ratio of the

width of the seminal cavity to the fruit diameter),

flesh and rind thickness (Fth, Rth in mm, with elec-

tronic digital caliper, I.C.T, S.L., La Rioja, España),

rind and flesh firmness (RF, FF, measured as kg/cm2

with a fruit pressure tester, FT 327, with a plunger

diameter of 8 mm, Alfonsine, Italy), the formation of

an abscission layer, the external aroma of the whole

fruit and the netting occurrence (AL, AR, NET,

scored visually as 0, absent and 1, present), flesh

color measured with a CR-400 colorimeter, Konica

Minolta, Inc., Tokyo, Japan (coordinates Hunter Lab.

L* express luminosity (L = 0 black and L = 1 white), a*

expresses the color direction between red (positive)

and green (negative) and b* expresses the color direc-

tion between yellow (positive) and blue (negative))

(FCHl, FCa, FCb), color of the inner rind, CIR

(scored visually as 0, green and 1, yellow) and soluble

solids concentration (SSC) (measured as °Brix from

drops of juice with a hand-held “Pocket” refractom-

eter (PAL-α), Atago CO., LTD, Tokyo, Japan). Flesh

firmness, color and total soluble solids were measured
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at two points in the equatorial region of the mesocarp. In

addition to to SSC, sucrose, glucose and fructose (SUC,

GLUC and FRUC) were quantified (μmol/gFW eq. Hex-

ose) in fruits of the BC3, BC3S1 and Paip14 assays, where

flesh samples were taken from the same regions in the

equatorial slice of the fruit used for firmness, flesh color,

Brix and pH measurements. Flesh tissue was shock frozen

in liquid nitrogen and ground to homogeneity. Aliquots of

about 20 mg were weighted and sent to INRA Bordeaux

on dry ice for analysis. Metabolites were extracted by

ethanolic fractionation as in [59]. Glucose, fructose and

sucrose were determined enzymatically in the ethanolic

supernatant as in [60]. Assays were performed in 96-well

polystyrene microplates using Starlet pipetting robots

(Hamilton, Villebon-sur-Yvette, France), and absorbance

was read at 340 nm in MP96 microplate readers (SAFAS,

Monaco).

Association analysis in backcross families

The phenotypic and genotypic data of the backcross

populations (BC2, BC3 and BC3S1) were used to detect

significant associations between markers and phenotypic

values. The association analysis was performed using

TASSEL v. 5 (Trait Analysis by aSSociation, Evolution

and Linkage) [61] for both approaches: a general linear

model (GLM) and a mixed linear model (MLM) analysis

using a kinship matrix as cofactor to avoid spurious as-

sociations due to relatedness and population structure.

Associations were considered statistically significant at

p < 0.005. We considered as associations those that

were significant with both the GLM and MLM ap-

proaches, or those that were significant with the GLM and

which were later validated in the IL analysis. Genotype

effects and percent of phenotypic variance explained by

each marker were also calculated.

QTL analysis in introgression lines

IL data in the three environments were analyzed using

an analysis of variance (ANOVA) that was performed in

order to examine the effects of genotype, environment

and genotype-×-environment interaction. Estimation of

heritability (h2 = VarG/(VarG + VarE) was performed for

each trait and environment by calculating the variance

components from the mean squares (MS) within and

between the ILs with a hierarchical ANOVA (MSbetw-

een = VarE + n VarG and MSwithin = VarE, where

VarG = genotypic variance, VarE = environmental vari-

ance, and n = number of plants per IL).

Furthermore, the mean of every IL in each environ-

ment was compared to the control VED mean with the

Dunnett’s test at p < 0.05. QTLs for each trait in the

MAK introgression were considered to exist in those

lines that had means that were significantly different

from VED in at least two localities.

Additional files

Additional file 1: Fruits of the two parents used to generate the IL
population and the corresponding F1. From left to right: the cultivar
Vedrantais (VED) (C. melo subsp. melo var. cantalupensis, Charentais type)
used as recurrent parent, Ginsen makuwa (MAK) (C. melo subsp. agrestis
var. makuwa) used as donor parent, and their F1. (PPTX 876 kb)

Additional file 2: SNPs used for the construction of the IL population.
Background SNPs Sequenom-HRM: These were selected from those
previously mapped in the melon genetic map used to anchor the first
version of the melon genome [9]. The map position is indicated according to
the map used to anchor the genome [9] as well as a new version of the gen-
etic map [11]. The physical position in the last version of the melon
genome (v3.5.1) available at [10] is indicated. The SNP and flanking sequence
is included for all the markers used in the Sequenom assay, and the primers
for those that were adapted to the HRM genotyping procedure are also pro-
vided. Markers that could not be accurately called in the Sequenom assay
and that failed to show the expected polymorphism between the IL parents
(VED and MAK) are marked as failed markers (f). SNPs in candidates:
Additional set of SNPs located in candidate genes reported to be involved in
sugar and ethylene metabolism. These markers were validated in [8] and had
been generated in a previous resequencing study, using VED and MAK
among other melon genotypes [3]. The physical position in the last version
of the melon genome (v3.5.1) available at [10] is indicated. The SNP and
flanking sequence is included for all the markers used in the Sequenom assay.
(XLSX 39 kb)

Additional file 3: Graphical genotype of the 27 ILs selected in this study
for agronomic characterization in three trials. Rows from top to bottom:
marker names, melon chromosome, genetic position according to [9] for the
background markers (the SNPs located in candidate genes are not mapped
and are located according to their physical position indicated in Additional
file 2), and the SNP allele (VED/MAK). Green boxes indicate MAK homozygous
introgressions, and blue lines VED genetic background. (XLSX 30 kb)

Additional file 4: Mean, standard deviation (SD) and range values of
the number of male and female flowers 30 days after the opening of the
first flower (NMaF30 and NFe30), days to maturity (DMat), fruit weight
(FW), fruit length (FL), fruit diameter (FD), fruit shape (FS), cavity width
(CW), flesh firmness (FF), presence of abscission layer (AL), aroma (AR),
rind thickness (RTh), netting (Net), flesh color parameters (FCHL, FCa and
FCb), color of the inner rind (CIR), soluble solids content (SSC), and
sucrose, glucose and fructose content (SUC, GLUC and FRUC) of both
parents, VED and MAK, their F1 and the IL population assayed in three
experiments. In the VED and MAK data, asterisks in rows indicate
significant mean differences between trials (p < 0.05), and in the columns
between parents; ns (not significant differences), na (not available).
Estimation of heritability (h2 = VarG/(VarG + VarE) was performed for each
trait and environment by calculating the variance components from the
mean squares (MS) within and between ILs with an ANOVA (MSbetween
= VarE + n VarG and MSwithin = VarE, where VarG = genotypic variance,
VarE = environmental variance, and n = number of plants per IL). Data of
the ILs in the three environments were analyzed using a two-factor
ANOVA that was performed to examine the effect of genotype,
environment and genotype-x-environment interaction. The percentage
of variance explained by each effect (genotype, environment and the
interaction) is indicated (*p < 0.05, **p < 0.001 and ns (no significant
differences)). (DOCX 43 kb)

Additional file 5: List of all QTLs detected with the Dunnet’s test in at
least two of the three trials performed with the selected IL collection.
Abbreviated trait name as in Additional file 4, QTL name, chromosome,
QTL position (cM) and flanking markers, according to the phenotype of
overlapping lines, number of trials in which the QTL was detected, MAK
effect relative to the VED parental (%) with positive/negative effects
indicating that MAK alleles increase/decrease the value of the trait, IL
introgression position (cM) and flanking markers. (XLSX 15 kb)

Additional file 6: Correlation coefficient (p < 0.05) of the traits used for
phenotyping the ILs in the three trials: Paip15, UPV15 and Paip14. Dark
grey represents positive correlations and light gray represents negative
correlations. Abbreviated trait name as in Additional file 4. (XLSX 15 kb)
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