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Abstract 

Istanbul is a mega city with various coastal utilities located on the northern coast of the Sea of Marmara. At Yenikapı, 
there are critical vulnerable coastal utilities, structures, and active metropolitan life. Fishery ports, commercial ports, 
small craft harbors, passenger terminals of intercity maritime transportation, waterfront commercial and/or recrea-
tional structures with residential/commercial areas and public utility areas are some examples of coastal utilization 
that are vulnerable to marine disasters. Therefore, the tsunami risk in the Yenikapı region is an important issue for 
Istanbul. In this study, a new methodology for tsunami vulnerability assessment for areas susceptible to tsunami is 
proposed, in which the Yenikapı region is chosen as a case study. Available datasets from the Istanbul Metropolitan 
Municipality and Turkish Navy are used as inputs for high-resolution GIS-based multi-criteria decision analysis (MCDA) 
evaluation of tsunami risk in Yenikapı. Bathymetry and topography database is used for high-resolution tsunami 
numerical modeling where the tsunami hazard, in terms of coastal inundation, is deterministically computed using 
the NAMI DANCE numerical code, considering earthquake worst case scenarios. In order to define the tsunami 
human vulnerability of the region, two different aspects, vulnerability at location and evacuation resilience maps were 
created using the analytical hierarchical process (AHP) method of MCDA. A vulnerability at location map is composed 
of metropolitan use, geology, elevation, and distance from shoreline layers, whereas an evacuation resilience map is 
formed by slope, distance within flat areas, distance to buildings, and distance to road networks layers. The tsunami 
risk map is then computed by the proposed new relationship which uses flow depth maps, vulnerability at location 
maps, and evacuation resilience maps.
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Introduction
Tsunamis are the giant waves mostly triggered by earth-
quakes and/or submarine landslides. Despite the rare 
occurrence of tsunamis, they have been of interest to 
worldwide media since the early twenty first century 
with the repetition of mega earthquakes (Cartwright and 
Nakamura 2008; Mas et al. 2014). �ere are many asso-
ciations researching and developing models to forecast 

tsunamis and create tsunami inundation and evacua-
tion maps all over the world. �e scientific and techni-
cal approaches for tsunami risk assessment are still in 
development despite the progress made after the Indian 
Ocean tsunami of 2004. In the last two decades, there 
have been considerably more studies related to hazard, 
risk, and vulnerability (Alexander 2000; Wisner et  al. 
2004). Many models have been developed to understand, 
assess, and map these three concepts (Fischer et al. 2002; 
Gambolati et al. 2002; Cheung et al. 2003). Validation of 
these models is required in order to make an accurate 
estimation of the real effects of natural disasters. �e 
requisite of validation of hazard, risk, and vulnerability 

Open Access

*Correspondence:  yalciner@metu.edu.tr 
2 Civil Engineering Department, Middle East Technical University, Ankara, 
Turkey
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-016-0507-0&domain=pdf


Page 2 of 22Cankaya et al. Earth, Planets and Space  (2016) 68:133 

models is crucial, as the models based on these will form 
the foundation of the outputs used to define land use 
zoning and planning, emergency response actions, dis-
aster planning, and insurance premiums (Tüfekci 1995; 
Jenkins 2000; Dominey-Howes and Papathoma 2007). 
Geographic Information Systems (GIS) are used in vul-
nerability assessment models for many types of natural or 
industrial hazards. Starting with the 2004 Indian Ocean 
tsunami, different methodologies have been developed 
to evaluate vulnerability to various types of natural haz-
ards, including tsunamis (Papathoma et al. 2003; Ghoba-
rah et  al. 2006; Dominey-Howes and Papathoma 2007; 
Reese et al. 2007; Taubenböck et al. 2008; Dall’Osso et al. 
2009a, b; Koshimura et al. 2009a, b; Wood 2009; Omira 
et  al. 2010; Pendleton et  al. 2010; Atillah et  al. 2011; 
Leone et al. 2011; Murthy et al. 2011; Sinaga et al. 2011; 
Valencia et al. 2011; Eckert et al. 2012; Ismail et al. 2012; 
Suppasri et al. 2012a, b; Tarbotton et al. 2012; Usha et al. 
2012; Suppasri et  al. 2013; Santos et  al. 2014; Benchek-
roun et  al. 2015). In order to create appropriate models 
for hazard assessments, GIS tools are required for ana-
lyzing large amounts of data while generating thematic 
maps. �e integration of various data sources can be per-
formed, and the results obtained from the models can be 
presented as integrated with spatial and thematic data 
of selected region. In coherence with this approach, GIS 
tools are used in this study for further generating vulner-
ability assessment models while analyzing and integrat-
ing the results of numerical models.

�e aim of this study is to further develop existing 
approaches, yielding a new methodology for GIS-based 
tsunami risk analysis, and thereby (i) to use high resolu-
tion (1  m) GIS-based data in tsunami numerical mod-
eling and inundation analysis (hazard assessment), (ii) 
propose a new human vulnerability assessment method 
by further improving known vulnerability assessment 
aspects (locational vulnerability) and introducing new 
resilience assessment features (evacuation resilience), and 
(iii) propose a further developed tsunami risk evaluation 
equation by integrating the result of meter-size gridded 
high-resolution tsunami numerical models of different 
scenarios in the Yenikapı region in Istanbul, in order to 
obtain human vulnerability assessments.

Study area: the sea of Marmara and Yenikapı
Apart from its amazing historical sites and natural attrac-
tions, Turkey has a crucial geopolitical position with 
economically significant places. Turkey is surrounded by 
seas on three sides and is shaped by active faults, result-
ing in inevitable interactions, yielding tsunami potential. 
Some of those active faults are in the Sea of Marmara. 
Istanbul is one of the most important metropolitan cities 
in the world, and is located near the faults in the Sea of 

Marmara. Based on Altınok et al. 2011, there were more 
than 134 tsunamis impacting Turkey and its surround-
ing coasts from the seventeenth century BC to 1999 AD. 
�ose tsunamis were triggered by earthquakes and/or 
submarine landslides. �e Sea of Marmara is an inland 
sea which connects the Black Sea to the Aegean Sea, and 
also separates Asia from Europe. It is connected to the 
Black Sea by the Bosporus strait and to the Aegean Sea by 
the Dardanelles. It occupies an area with the approximate 
dimensions of 275 km (E–W direction) and 80 km (N–S 
direction). �e maximum depth reaches around 1200 m; 
it is a large-scale intercontinental sea (Smith et al. 1995; 
Yalçıner et al. 2002). �e locations of the historical tsuna-
mis (120–1999 AD) in the Sea of Marmara are shown in 
Fig. 1, in which the numbers are in chronological order.

As shown in Fig. 2, Yenikapı, which is in the Fatih dis-
trict, is located in the southern part of Haliç, the Euro-
pean side of Istanbul. One of the ancient city walls of 
Istanbul is located on the Yenikapı coast. Yenikapı station 
hosts a suburban railway, subway line, and undersea rail-
way connection (Marmaray) between Europe and Asia. 
�e entrance to the Eurasia Undersea Highway Tunnel 
on the European side is also located near the coast of 
Yenikapı.

Tsunamigenic scenarios and numerical modeling
Mitigation of tsunami impact can be achieved by provid-
ing faster evacuation for humans and by increasing the 
resistivity and performance of structures against tsuna-
mis. Tsunami modeling is one of the important phases 
of tsunami hazard assessment. �e source mechanisms, 
bathymetric, and topographical data in adequate resolu-
tion, as well as selection of probable tsunami scenarios, 
are used in tsunami numerical modeling (Aytöre et  al. 
2014; Aytöre 2015; Aytöre et al. 2015).

In this study, the critical tsunami scenarios that may be 
effective for Yenikapı are selected from different reports 
and papers considering seismic mechanisms (Yalçıner 
et al. 2002; Hebert et  al. 2005; OYO-IMM Report 2008; 
Ayca 2012). However, the origin of tsunami waves due 
to submarine landslides and turbidity currents, espe-
cially along the steep submarine slopes north of Yalova 
and south of Yenikapı may be a considerable threat to the 
Istanbul coast, which have not included in this study. In 
terms of seismic activity, there are six potential sources 
that may be responsible for the generation of tsunamis 
in the Sea of Marmara. �ey are the Prince’s Islands (PI) 
(oblique-normal) fault, Prince’s Islands (PIN) (normal) 
fault, Ganos (GA) (oblique-normal and oblique-reverse) 
fault, Yalova (YAN) (oblique-normal and normal) fault, 
Central Marmara (CMN) (normal) fault, and the com-
bination of PI and GA. Among these, the PIN and YAN 
are selected as critical sources that may cause tsunamis 
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with higher water levels, flow depth, and strong current 
velocities at Yenikapı. �e rupture parameters of each 
segment of PIN and YAN are given in Table 1 (Ayca 2012; 
Özdemir 2014).

Tsunami source PIN is the normal component of the 
first four oblique-normal segments of tsunami source PI. 
In the simulations, it is assumed that four segments of 
PIN rupture have been broken entirely and generated the 
tsunami source. Tsunami source YAN consists of eight 
segments, of which three are oblique-normal and five are 
normal faults. In the simulations, it is assumed that eight 
segments of YAN have been broken entirely and gener-
ated the tsunami source.

Tsunami numerical simulations are performed using 
the NAMI DANCE code (NAMI DANCE 2015). �e 
model solves nonlinear forms of shallow water equations 
with a friction term. �e duration of simulations used is 
90 min, and the time step is set as 0.005 s. Since the larg-
est tsunami waves hit the study area in the first 50 min, 
the 90 min simulation duration is sufficient to obtain the 
major tsunami impact in Yenikapi, including additional 
reflections from all boundaries. In this study, the bottom 
friction coefficient is taken as zero in order to be on the 
safe side in the vulnerability analysis, which computes 
further inundation.

�e nested domains are created to be high resolu-
tion, covering the Yenikapı region and surroundings. 
�ree nested domains (from large to small B, C, and D) 
are selected with different resolutions. �e corner coor-
dinates of each domain is given as 40.210°–41.260°N, 
26.542°–30.020°E; 40.971°–41.041°N, 28.920°–29.045°E; 

and 40.9949°–41.0050°N, 28.9520°–29.9794°E for B, C, 
and D, respectively. �e largest domain (B) covers the 
whole Marmara with a resolution of about 90  m, the 
medium domain (C) covers the Yenikapı region with a 
resolution of 30  m, and the smaller domain (D) with a 
resolution of 10 m.

Since the tsunami computational tool NAMI DANCE 
allows a grid nesting ratio of three, at least five domains 
should be created for the high-resolution analysis 
(90 > 30 > 10 > 3.3 > 1.1 m). �is process takes a very long 
computational time (up to a few months) even with a 64 
processor computer. In order to save time, it is preferred 
to run the tsunami numerical model once for the nested 
domains (B, C, and D) and to obtain the water level 
change at the border of the smallest domain (Domain D). 
Afterwards, a very high resolution (1 m grid size) Domain 
D is developed using GIS implementation considering 
buildings, transportation networks, and infrastructure. 
At the final stage, a single domain (Domain D with 1 m 
grid size) simulation using the wave input from the bor-
der (computed from nested simulations) is applied.

In order to perform higher-resolution numerical mod-
eling, necessary implementations for the dataset are 
performed. Two different types of data are used in this 
study. �ey are: (i) the topographical data in XYZ (longi-
tude, latitude, and elevation) format made of 5 m spaced 
points to construct the natural topography of the Istan-
bul region and (ii) the building and infrastructure vec-
tor data with elevations to construct the metropolitan 
topography. A very high-resolution metropolitan digi-
tal elevation model with 1 m grid size is constructed by 

Fig. 1 The seismotectonic map and the locations of the past tsunamis in the sea of Marmara. Modified from Yaltırak et al. (2000) and Yalçıner et al. 
(2002)
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combining these two data sources, which are then joined 
with high-resolution bathymetry data to produce a seam-
less bathymetry and land topography input for detailed 
tsunami numerical model runs.

Two preliminary tsunami simulations are performed 
considering PIN and YAN earthquake sources (Table 1). 
�e nested domains are created with high resolution 
(1 m), covering the Yenikapı region and environs. �ree 
nested domains (from large to small B, C, and D) are 
selected in different resolutions. �e grid model of the 
smallest domain (D) for simulations of tsunami propa-
gation in the European part of Istanbul from Yenikapı to 
Kumkapı extends from 40.9949°N to 41.0050°N and from 
28.9520°E to 29.9794°E. �e distribution of maximum 

water elevations in domains B and C at the end of the 
90 min simulation and the tsunami sources PIN and YAN 
are presented in Fig. 3.

�en, the high-resolution (1 m grid size) single domain 
simulations are conducted. �e water level change at the 
southern border of Domain D computed from nested 
simulations for PIN and YAN sources separately are 
given in Fig. 4. �e wave at the border of Domain D from 
source YAN (red line) has a leading depression charac-
teristic; however, the wave coming from source PIN (blue 
line) has a leading elevation characteristic.

�e wave input to domain D (1  m grid size) is simu-
lated for a duration of 90  min, and all necessary tsu-
nami parameters (mainly maximum water elevations, 

Fig. 2 a General view of Istanbul, and b study area within Yenikapı district



Page 5 of 22Cankaya et al. Earth, Planets and Space  (2016) 68:133 

maximum current speed, maximum flow depth, and 
maximum fluxes) are computed separately for Yenikapı 
using NAMI DANCE. Among those parameters, flow 
depth is one of the major parameter for risk analysis. It 
is plotted in Fig. 5 as the results of simulations using the 
PIN and YAN tsunami sources.

As seen in Fig. 5a, maximum flow depth exceeds 6 m 
near the shoreline east of the Yenikapı Fishery Port; it 
is represented in purple according to the simulation of 
the PIN source. Figure 5b shows the distribution of flow 
depth computed by simulation of the YAN source. In this 
simulation, the flow depth exceeds 6 m not only near the 
shore, but also in front of the high historical city wall 
which prevented water flow and caused accumulation 
of water volume in front. Hence, higher flow depths are 
observed in front of the historical city wall.

When the results of simulations of PIN and YAN 
sources are compared, it is observed that tsunami source 
YAN causes relatively longer inundation distances and 
higher flow depths at Yenikapı than tsunami source PIN. 
�erefore, results of the simulation of the YAN source 
(Fig. 5b) are reliable for use in the tsunami vulnerability 
analysis. �ese results are used as hazard intensity input 
in the next steps of this study.

Tsunami human vulnerability assessment 
at Yenikapi region
Datasets used to compute vulnerability at location 

and evacuation resilience

�ere are two datasets available to use in the determina-
tion of tsunami human vulnerability at Yenikapı. �e first 
one is the vector dataset of the entire Istanbul region, 
prepared by the Istanbul Metropolitan Municipality 

(IMM), and dates back to 2006 (Fig. 6). �is raw dataset 
is composed of hundreds of points (e.g., utilities, single 
graves, billboards), polylines (e.g., retaining walls, walk-
ing-tracks, scarps), and polygons (e.g., decorative pools, 
greenhouses, penthouses) representing all available met-
ropolitan structures and infrastructure, with their eleva-
tions. �e second available dataset is a DEM with 5  m 
resolution, created from aerial photogrammetric tech-
niques based on 2006 data, also obtained from IMM 
(Fig. 7).

In the context of the two available sources, it was 
decided to produce eight parameters as vulnerability and 
resilience related layers for MCDA. Two different cat-
egories were produced from eight parameter layers. �ey 
are (i) the spatial distribution of vulnerability due to dis-
tance to shoreline, geology, elevation, and metropolitan 
use, and (ii) the spatial distribution of resilience based on 
ease of evacuation because of distance to buildings, slope, 
distance to road networks, and distance to flat areas. 
�e hierarchical structure used to prepare the tsunami 
human vulnerability assessment map is given in Fig. 8. It 
was used to allot weight and rank values to the layers and 
classes of each thematic map in the AHP method.

Assumptions for vulnerability at location and evacuation 

resilience assessments

In order to make the models more realistic yet sim-
ple enough to solve the case, a number of practi-
cal assumptions were made throughout the MCDA 
implementations:

  • �e earthquake is assumed to be a precursor to a tsu-

nami, which warns people to consider the imminent 

Table 1 Estimated rupture parameters and initial wave amplitudes for tsunami sources PIN and YAN (Ayca 2012)

Fault Type Longitude 
(ED_50)

Latitude 
(ED_50)

Depth 
from sea bot-
tom

Strike Dip Rake Length Width Vertical dis-
placements

Initial wave 
amplitude

Degree Degree m, GL- Degree Degree Degree m m m Max (m) Min (m)

PIN Normal 29.12942 40.75691 744 108.15 70 270.00 8753 17.027 5.00 1.05 −2.57

29.06928 40.78610 740 123.15 70 270.00 6024 17.027 5.00 0.94 −2.41

28.99465 40.81653 779 118.85 70 270.00 7148 17.027 5.00 0.98 −2.47

28.90432 40.87251 1210 129.90 70 270.00 9834 17.027 5.00 0.92 −2.36

YAN Oblique-
normal

29.47103 40.72115 1978 257.96 70 195.00 7058 17.027 5.00 0.49 −1.56

29.38946 40.7075 1960 261.14 70 195.00 6873 17.027 5.00 0.6 −1.65

29.30920 40.69751 1823 260.98 70 195.00 10.952 17.027 5.00 0.92 −2.35

Normal 29.18143 40.68121 1681 262.35 70 270.00 4448 17.027 5.00 0.52 −1.55

29.12936 40.6755 1557 273.96 70 270.00 4562 17027 5.00 1.03 −2.51

29.07551 40.67791 1252 283.78 70 270.00 10.021 17.027 5.00 0.53 −1.79

28.96007 40.69843 1219 294.84 70 270.00 3154 17.027 5.00 0.56 −1.77

28.92602 40.71005 1178 284.90 70 270.00 14.043 17.027 5.00 0.78 −2.15



Page 6 of 22Cankaya et al. Earth, Planets and Space  (2016) 68:133 

arrival of a tsunami (with enough time to move to 

safer locations).

  • Buildings are considered rigid and undamaged by 

tsunamis.

  • It is assumed that vertical evacuation is possible in 

every building, and the number of floors are greater 

than one, except prefabricated buildings.

  • Day and night populations are assumed to be constant.

  • It is supposed that tsunami waves arrive at the same 

time at all locations on the Yenikapı shoreline in the 

study area (an approximately 2  km segment of the 

Yenikapı shoreline).

  • �e duration of inundation is governed by the period 

of the tsunami wave.

  • According to the results of simulations using a criti-

cal scenario in a deterministic approach, the period 

of tsunami waves is estimated to be approximately 

10–15 min. In the vulnerability analysis, the duration 

of the tsunami inundation is sufficiently long.

Vulnerability analysis at location

�e tsunami vulnerability at location in Yenikapı is 
assessed by integration of metropolitan use, geology, 
elevation and distance from shoreline layers. �ese lay-
ers are produced from their raw data and combined in 

Fig. 3 The tsunami source and distribution of maximum water elevations computed at the end of 90 min simulations by NAMI DANCE for tsunami 
sources PIN (left) and YAN (right). a The tsunami sources. b The distribution of maximum water elevations at Domain B. c The distribution of maxi-
mum water elevations in Domain C

Fig. 4 Time histories of water level change at the southern border 
of Domain D computed from nested simulations for sources PIN and 
YAN
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the previously decided MCDA framework. �e input 
data and their relevant parameter maps/layers are as 
follows:

a) Metropolitan use layer

All the attributes of metropolitan use vector data are ana-
lyzed and grouped into meaningful units by gathering 

Fig. 5 Inundation (flow depth) maps at Yenikapı coastal site considering the earthquake sources a PIN and b YAN

Fig. 6 The view of the vector data for Yenikapı obtained from IMM
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Fig. 7 Digital elevation model (DEM) of Yenikapı with 5 m resolution

Fig. 8 The hierarchical structure used in the preparation of the vulnerability maps
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similar metropolitan use polygons. Here, 23 descriptive 
units are aggregated in an attribute table, which includes 
all buildings and structures, grouped into five main met-
ropolitan use groups against tsunami vulnerability. �ese 
are extremely important places, such as prefabricated 
buildings, gas stations, electricity transformers, pedestrian 
underpasses, the İDO-Istanbul Sea-bus Terminal (the 
glass-wall building), the entrance to the Eurasia (Avrasya) 
Undersea Highway Tunnel, ruins, assembly areas (e.g., reli-
gious facilities, sports facilities, schools, wedding halls), 
flat areas (e.g., asphalt roads, suburban railways, parking 
spaces, green fields, and medians), cultural heritage sites 
(e.g., stationary city walls, demolished city walls, histori-
cal places/buildings), and buildings (e.g., factories, small-
scaled production centers, buildings under-construction, 
residential areas/private homes, commercial buildings).

�e type or usage of each building is also considered 
separately while categorizing built-up environments 
and their relationship to vulnerability. In the ranking 
process, the possibly high occupancy of locations such 
as assembly areas is also taken into account in estimat-
ing the vulnerability score of the selected area. Accord-
ing to observations from the site visit, there are very few 
wooden buildings located near the suburban railway, and 
there are five prefabricated buildings located behind the 
glass-wall building. �is is why it is not feasible to clas-
sify the buildings according to their construction mate-
rials or to their resistivity to waves, as in previous TVA 
studies. �e map of metropolitan use is presented in 
Fig.  9a, where red, blue, green, purple, and yellow rep-
resent extremely important places, assembly areas, cul-
tural heritage sites, flat areas, and buildings, respectively. 
�e critical areas are prefabricated buildings, gas sta-
tions, electricity transformers, pedestrian underpasses, 
the glass-wall building and the entrance to the Eurasia 
Undersea Highway Tunnel, and historical ruins.

b) Geology layer

Tsunamis are mostly generated by earthquakes at inter-
plate subduction areas. Once the stability of geological 
units is altered by lateral or vertical forces, unwanted 
slope instabilities, ground deformation, and liquefac-
tion may occur. Furthermore, the geotechnical proper-
ties influencing local site conditions, and thus earthquake 
ground motion, may influence building damage and sta-
bility after stronger earthquakes, and thus building resis-
tivity to waves in case of high energetic tsunami waves.

Geological units in the study area are classified accord-
ing to their lithologies and ages. �ere are two formations 
older than the Quaternary: the Carboniferous Trakya and 
Miocene Çukurçeşme formations outcropping around 
Yenikapı. Furthermore, around the Yenikapı port, in 
addition to valley-filling alluviums, part of the sea has 

been filled with anthropogenic Quaternary fill (Fig.  10). 
�e geology layer is created by grouping the formations 
according to their behavior during earthquakes. �eir 
geotechnical behaviors during an earthquake have been 
intensively studied in various IMM studies, yielding the 
result that the Carboniferous Trakya formation is favora-
ble, while the Miocene Güngören Formation possesses 
different geotechnical problems during an earthquake. 
On the other hand, all natural or anthropogenic uncon-
solidated deposits in the Quaternary alluvium are classi-
fied as unfavorable ground (Fig. 9b).

c) Elevation (DEM) layer

When a tsunami reaches land, standing on higher ground 
will keep coastal buildings, structures and infrastructures 
safe, compared with being at low elevation near the shore. 
Not only elevation, but also the distance from the shore-
line is also used in the numerical computation of inun-
dation parameters. �ese are the two basic vulnerability 
parameters of inundation that should have to be taken into 
account, regardless of the type of marine-induced hazard.

�e natural terrain elevation dataset was produced by 
aerial photogrammetric techniques in 2006 by IMM with 
a 5 m pixel size. �e pixel size is reduced to 1 m by resa-
mpling the DEM in order to make it coherent with the 
building (metropolitan) topography that was used to cal-
culate the numerical tsunami models. Based on regional 
tsunami records and previous expertise, the elevation 
layer is divided into four classes: elevations lesser than 
3 m, 3–5 m, 5–8 m and elevations higher than 8 m. �e 
generated parameter layer is shown in Fig. 9c.

d) Distance from shoreline layer

In case of any tsunami threat, it would be good to be away 
from the shoreline. Structures near the shoreline would 
be in danger. Independent of the resistivity of the build-
ings and/or structures depending on material type, prox-
imity to the shore increases the probability of being close 
to or within inundation, which would affect vulnerability 
negatively. Hence, distance from shoreline is taken as a 
parameter to determine vulnerability (Çankaya 2015).

�is layer is calculated as the nearest perpendicular 
distance of each 1 m raster cell from the shoreline vector 
(Fig. 9d). �e computed continuous raster is then divided 
into five classes: distances less than 50 m, 50–100 m, 100–
200 m, 200–300 m and distances greater than 400 m.

Evacuation resilience analysis at Yenikapı region

Recently, research has indicated that a key concept in the 
assessment of tsunami events is resilience. As previously 
introduced, there are four layers in this group: distance to 
buildings, slope, distance to road networks, and distance 
within flat area layers. �e MCDA framework is created 
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Fig. 9 Parameter maps of vulnerability at location: a parameter map of metropolitan use layer: extremely important places (red), assembly areas 
(blue), cultural heritage sites (green), flat areas (purple), buildings (yellow); b Parameter map of geology layer; c The elevation DEM layer; d Parameter 
map of distance from shoreline layer
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to calculate the resilience score for evacuation of places 
that may be exposed to tsunamis (Fig. 8).

a) Slope layer

Slope is an important parameter for tsunami evacu-
ation, as it directly affects the speed at which pedes-
trians can escape (Graehl and Dengler 2008). When a 
tsunami propagates inland, gentle slopes in the coastal 
region will make evacuation easier. �e land slope layer 
is calculated from the resampled high-resolution (1 m) 
DEM (Fig.  11a). �e continuous raster slope layer is 
then re-classified into five classes: slopes less than 2°, 
2°–4°, 4°–6°, 6°–10°, and slopes steeper than 10°.

b) Distance within �at areas layer

Although open areas are safer locations during an earth-
quake, lack of shelter and absence of vertical evacuation 
make open areas susceptible to tsunamis. Hence, the 

distance within an open area limits the evacuation poten-
tial (Çankaya 2015). For producing this layer, the metro-
politan use layer is used as input to select flat areas from 
available attribute tables. Parking lots and other open 
spaces (including green fields and public squares) are 
selected, and the nearest perpendicular distances within 
these units are calculated (Fig.  11b). Distances within 
flat areas layer are divided into three classes: nearer than 
10 m, 10–30 m, and farther 30 m.

c) Distance to buildings layer

�e number of the floors in a building should be con-
sidered in calculating evacuation resilience of residents. 
However, when buildings are low and evacuation in the 
vertical direction is not possible, injury and death will be 
inevitable (Dominey-Howes and Papathoma 2007).

It is accepted that where vertical evacuation is possible, 
residents are able to evacuate from the tsunami disaster 

Fig. 10 The geological map at 1/40,000 scale (Istanbul Metropolitan Municipality 2015) and detailed geological map of the study area presented in 
inset. Extracted from Istanbul Metropolitan Municipality (2015)
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Fig. 11 Parameter maps of evacuation resilience: a The parameter map of slope layer, b the parameter map of distance within flat areas layer, c the 
parameter map of distance to buildings layer, d the parameter map of distance to road networks layer
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easily (Mas et al. 2014), thus preventing risk of injury and 
death. All types of buildings in the attribute table of the met-
ropolitan use layer are integrated to generate the parameter 
layer for buildings. �e nearest perpendicular distances to 
the building polygons from any location on the map are cal-
culated for every 1  m pixel (Fig.  11c). �e distance to the 
buildings layer is divided into five classes: less than 10  m, 
10–50 m, 50–100 m, 100–250 m, and greater than 250 m.

d) Distance to road networks

�e location of residents in the area during a tsunami is 
critical. In most cases, there is a warning and alert system 
at locations that have been exposed to tsunamis. Evacua-
tion signs and routes produced by local officials are avail-
able in such places. Tsunami evacuation routes/roads 
guides coastal residents to safer locations in case of natu-
ral disasters such as earthquakes and tsunamis. Evacua-
tion signs are placed along routes to mark the direction 
inland or to higher elevations. If the coastal area does not 
have any evacuation routes, the main roads should be 
considered for escape when a tsunami approaches inland. 
In tsunami-flooded flat areas, it is very difficult to reach 
safer places on high ground and away from the shoreline.

�e metropolitan use layer is used to select suburban 
railways and asphalt roads as potential escape corridors. 
�e nearest perpendicular distances to these corridors 
are calculated, and distances to the road network layer 
are presented in Fig. 11d. �e distances to the road net-
work layer are then classified into five classes: less than 
5 m, 5–10 m, 10–20 m, 20–50 m, 50–100 m, 100–250 m, 
and greater than 250 m.

Creating AHP framework and �nal map production 

for vulnerability at location and evacuation resilience 

scores

�e generated parameter maps are used in the MCDA 
process to calculate the vulnerability at location and 
evacuation resilience maps. AHP provides a basis to 
compare decision-making alternatives in a mathemati-
cal structure. �e relative vulnerabilities of eight layers 
in two groups are identified comparatively and separately 
according to expert opinion, considering the intensi-
ties of the weight values on Saaty’s rating scale (Table 2). 
While assigning weight values to each layer, pairwise 
comparisons are performed for each group (Fig. 12). �e 
rank values within each layer are given by experts accord-
ing to their appropriate tsunami vulnerability conditions.

�e weight values for vulnerability at location are com-
puted, and the consistency ratio is estimated to be less than 
0.10 with the value of 0.0255 by AHP calculations. Like-
wise, the same procedure is applied for evacuation resil-
ience, and the consistency ratio is estimated to be 0.0843, 
which is less than 0.10; therefore, it is compatible for use in 

the AHP method. For vulnerability at location, the classes 
and their rank values are presented in Table 3, and the vul-
nerability map of each parameter is also given in Fig.  13. 
�e same process is performed for evacuation resilience 
and weight, and rank values are given in Table 4, while vul-
nerability maps for each parameter are presented in Fig. 14.

Based on the weightings of layers and rankings of 
classes in Tables 3 and 4, the final maps of vulnerability 
at location and evacuation resilience are calculated and 
presented in Fig. 15.

Tsunami risk analysis

�is study presents a new approach for tsunami risk 
evaluation regarding the association of vulnerability at 
location, evacuation resilience, and numerical computa-
tion of tsunami inundation depth result. �e tsunami risk 
analysis is proposed to follow a new equation, presented 
in Eq. (1).

where H is the hazard value (maximum flow depth in 
inundation zone during tsunami), and VL and RE are the 
vulnerability at location and the evacuation resilience, 
respectively. VL and RE are calculated to be in the range 
of 0–1. �e location vulnerability and evacuation resil-
ience are inversely proportional, as given in Eq.  (1). VL 
increases with increasing vulnerability, and RE decreases 
with increasing evacuation resilience of the location. �e 
overall vulnerability decreases with increasing resilience 
of evacuation, whereas it increases with any rise in loca-
tional vulnerability. �is relationship is scaled up with a 
constant n (awareness parameter), denoting the level of 
awareness and preparedness of the community to tsu-
nami waves. In the equation, the parameter n is the only 
parameter that can be controlled by increasing com-
munity awareness. A typical value of n for non-resilient 
communities is assumed to be around unity, whereas for 
well-prepared hazard-aware (tsunami ready) commu-
nities, this value can reach up to ten. According to our 

(1)Risk = (H) ×

(

VL

nRE

)

Table 2 Saaty’s (1990) rating scale

Weight/rank Intensities

1 Equal

3 Moderately dominant

5 Strongly dominant

7 Very strongly dominant

9 Extremely dominant

2, 4, 6, 8 Intermediate values

Reciprocals For inverse judgments
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experience comparing the awareness and preparedness 
of communities, in this study we use n = 3 for Istanbul. 
When H = 0 at any point in the study area, the value of 
tsunami risk will be zero. �is means tsunami waves will 
not reach that location on land. In any other case (when 
H  >  0), the relative risk can be calculated at locations 
where there is a flow depth in inundation zone. �e final 

maps representing the relative risk at each location in 
Yenikapı are generated using Eq. (1) and are presented in 
Fig. 16.

Results and discussion
A new approach to tsunami risk analysis via preparation 
of vulnerability and evacuation resilience maps for the 

Fig. 12 The pairwise comparison matrices and computed weight values for vulnerability at location and evacuation resilience

Table 3 The computed weight and rank values of vulnerability at location

Layers Weight Classes Ranking Rank (standardized) Weight × rank

Distance from shoreline 0.4833 <50 1 0.1 0.04833

50–100 2 0.2 0.09666

100–200 3 0.3 0.14499

200–300 6 0.6 0.28998

300–400 9 0.9 0.43497

≥400 10 1 0.48330

Geology 0.2917 Quaternary 1 1 0.02917

Miocene 3 0.3 0.08751

Carboniferous 10 0.1 0.29170

Elevation 0.1208 <3 1 0.1 0.01208

3–5 5 0.5 0.06040

5–8 8 0.8 0.09664

≥8 10 1 0.12080

Metropolitan use 0.1042 Extremely important places 1 0.1 0.01042

Assembly areas 2 0.2 0.02084

Cultural heritage 3 0.3 0.03126

Flat areas 4 0.4 0.04168

Buildings 10 1 0.10420
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Fig. 13 Ranked maps of a distance from shoreline layer, b geology layer, c elevation layer, d metropolitan use layer



Page 16 of 22Cankaya et al. Earth, Planets and Space  (2016) 68:133 

Yenikapı coastal region, combining tsunami numerical 
modeling and GIS-based MCDA, is presented.

�e maximum flow depths and inundated area based 
on simulations of the PIN and YAN tsunami sources 
are obtained, and the inundation maps are plotted. �e 
inundation maps produced by simulation of these two 
tsunami sources are compared. According to the gener-
ated inundation maps, the tsunami source YAN is found 
more critical than the tsunami source PIN, since it causes 
greater flow depth and longer inundation distance.

�e map of vulnerability at location is derived by com-
bining the parameter layers using MCDA methods in a 
GIS environment. �e map of vulnerability at location 
map is produced by evaluating four parameters simulta-
neously in a single process. �e most effective parameter 
layer is observed as the distance from shoreline with a 
weight of 0.4833, which is the most dominant parameter 
compared to the other parameter layers. In Fig. 17, dark 
red represents the more vulnerable places. According to 
the results in Fig. 17a, the safest areas are defined as the 
locations that are at least 10 m from the shoreline or near 
any building. Vertical evacuation is possible in the major-
ity of buildings in Yenikapı. �e prefabricated buildings 
located behind the glass-wall building are single-story 
structures, and are not resistant enough to tsunami 

waves. As also seen in Fig. 17a, there is a color tone dif-
ference between the glass wall building and the prefab-
ricated buildings. �is is because, although both are 
grouped in extremely important places, with the effect of 
other parameters, the glass-wall building is dark red, and 
the prefabricated buildings are red.

�e map of evacuation resilience is given in Fig.  17b. 
�e buildings are obviously the most resilient places, 
since it is assumed they allow vertical evacuation. In 
contrast, the breakwaters are the least resilient places 
because of their proximity to the sea and escape routes. 
�e more resilient places, including buildings, structures, 
road networks, and flat areas are colored blue. �e less 
resilient areas for evacuation are places near the shore, 
west of the Yenikapı Fishery Port. �e reason for this is 
the existence of fish restaurants, which are assumed to 
be rigid and not easily damaged. Likewise, depending 
on the evacuation resilience map, the glass-wall building 
is represented in blue as a safer place because it allows 
to vertical evacuation, thus its locational vulnerability is 
decreased. When the study area is visited, it is noted that 
the buildings mostly consist of more than one story in the 
Yenikapı region. �e dominant effect of the building layer 
with the weight of 0.5808 is seen in the evacuation resil-
ience map.

Table 4 The computed weight and rank values of evacuation resilience

Layers Weight Classes Ranking Rank (standardized) Weight × rank

Distance to buildings 0.5808 <10 10 0.1 0.58080

10–50 9 0.2 0.52272

50–100 3 0.3 0.17424

100–250 2 0.6 0.11616

≥250 1 0.9 0.05808

Slope 0.1830 <2 10 1 0.18300

2–4 7 0.7 0.12810

4–6 4 0.4 0.07320

6–10 2 0.2 0.03660

≥10 1 0.1 0.01830

Distance to road networks 0.1647 <5 10 1 0.16470

5–10 9 0.9 0.14823

10–20 7 0.7 0.11529

20–50 5 0.5 0.08235

50–100 3 0.3 0.04941

100–250 2 0.2 0.03294

≥250 1 0.1 0.01647

Distance within flat areas 0.0716 <10 10 1 0.07160

10–30 5 0.5 0.03580

≥30 1 0.1 0.00716



Page 17 of 22Cankaya et al. Earth, Planets and Space  (2016) 68:133 

Fig. 14 Ranked maps of a distance to buildings layer, b slope layer, c distance to road networks layer, d distance within flat areas layer
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�e vulnerability and evacuation resilience maps are 
combined for two critical tsunami sources, PIN and YAN, 
separately. For these two sources, the risk maps are pro-
duced using proposed Eq. (1). �e vulnerability and evac-
uation resilience are relatively defined for each pixel in 
the study boundary. �e values of vulnerability and evac-
uation resilience maps are in the range of 0–1. In the risk 
maps, blue represents the relatively safer places, whereas 
the more hazardous places are depicted in red. White 
pixels represent the value of zero because of no tsunami 
effect (in other words, flow depth is equal to zero). Tsu-
nami risk increases from the blue to red-colored areas. 
According to the colors in the maps, the less hazardous 
places near shoreline are the İDO-Istanbul Seabus Termi-
nal (ignoring the construction material), the restaurants 
behind the Yenikapı Fishery port, and the wedding hall 
located west of the study area, near the shore. �e rela-
tive vulnerability east of the Fishery Yenikapı port is at a 
maximum because of the gates of the ancient city walls. 
A small part of the meeting area west of the study area is 
seen an important place because of tsunami impact. �e 

entire meeting area must be considered in tsunami risk 
analyses, and the necessary precautions should be taken 
accordingly before facing a tsunami disaster.

In this study, the main road in the study area runs par-
allel to the coastline, which is not convenient for evacu-
ation when a tsunami occurs. �e places assigned as 
extremely important places (the prefabricated build-
ings, the glass wall building, the entrance to the Eurasia 
Undersea Highway Tunnel, ruins, the entrance to pedes-
trian underpasses, gas stations, electricity transformers) 
are more vulnerable considering vulnerability at location 
and evacuation resilience. Some car underpasses on the 
main road in Yenikapı would cause penetration of water 
inland, which would probably make evacuation more 
difficult.

�e snapshot methodology of this study is summarized 
in three steps. �e first step covers the tsunami numeri-
cal modeling and production of tsunami inundation 
maps which provides the Hazard intensity value H. In 
the second step, the GIS-based MCDA method is used 
to produce the necessary parameters, to determine the 

Fig. 15 The calculated maps of vulnerability at location (a) and evacuation resilience (b)
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weight/rank values, and to produce the final vulnerability 
at location and evacuation resilience maps by combin-
ing related parameters. �e third step is to produce and 
evaluate risk in the selected study area, Yenikapı, using 
the new proposed Eq. (1) (Fig. 18).

Conclusion
In this study, a new approach is applied to define tsunami 
human vulnerability parameters, and a new model for 
high-resolution tsunami risk analysis based on tsunami 
numerical modeling and GIS-based MCDA is proposed.

According to results obtained from the above sum-
marized studies the main concluding remarks are listed 
below.

1. �ere is tsunami potential in the Sea of Marmara, 

and tsunami risk analysis, including detailed vulner-

ability, hazard, and risk analysis are necessary. A new 

approach is presented and tested with the case study 

for the Yenikapı region in Istanbul.

2. Determination of the tsunami sources affecting the 

study area is one of the main requirements of tsu-

nami numerical modeling. �ese sources must be 

analyzed and compared to determine the critical 

deterministic tsunami scenarios for the study area. A 

valid and verified numerical model is necessary for 

detailed computation of tsunami parameters (such 

as inundation, maximum positive amplitudes, flow 

depths, and maximum currents) near shore and over 

land. �e inundation map, including the flow depth 

(depth of overland tsunami flow), must be calcu-

lated.

3. High-resolution bathymetry, topography, and vector 

data of metropolitan use are the main requirements 

for the proposed, detailed and proper vulnerability, 

resilience, hazard, and risk analyses.

4. A relationship for tsunami risk analysis is proposed 

(Eq.  1) considering hazard intensity, vulnerability of 

location, evacuation resilience, and the community’s 

degree of tsunami preparedness.

5. �e flow depth in Yenikapı exceeds 6  m near the 

shore, and between the historical city walls behind 

the Yenikapı Fishery port and the shoreline, because 

of the accumulation of water volume. �e inundation 

Fig. 16 The risk maps derived from the proposed Eq. (1): a for Prince’s Islands normal (PIN) fault and b Yalova normal (YAN) fault
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distance reaches 200 m inland, depending on the YAN 

source simulations by tsunami numerical modeling.

6. Vulnerability and evacuation resilience mapping are 

conducted, and inundation is assessed using GIS-

based MCDA. �e AHP method is used to assign 

weight values to parameter layers and rank values 

to the classes. Four parameter layers (distance from 

shoreline, geology, elevation, metropolitan use) are 

prepared and used to produce the locational vulner-

ability map. Four other parameter layers (distance to 

buildings, slope, distance to road network, and dis-

tance within flat areas) are prepared and used to pro-

duce the evacuation resilience map. �e weight/rank 

values for these parameters are revealed using the 

AHP method, and combined accordingly to produce 

vulnerability at location and evacuation resilience 

maps for the Yenikapı region. In the calculation of the 

vulnerability score at location, the distance from the 

shoreline layer is the most influential layer depending 

on its weight value (0.4833), whereas the least influ-

ential layer is the metropolitan use layer based on its 

weight value (0.1042). �e most effective parameter 

for evacuation resilience is found to be the distance 

to buildings layer with the value of 0.5808, whereas 

the least effective is the distance within flat areas 

layer with the value of 0.0716.

7. Two tsunami risk maps are generated by combin-

ing the results of tsunami numerical models of two 

different sources, and GIS-based MCDA method 

results (vulnerability map and evacuation resil-

ience map) in the new proposed tsunami risk map 

Eq. (1). For the Yenikapı region, the tsunami source 

YAN is selected as the most critical source, since 

the results of the simulations for YAN give higher 

flow depths and longer inundation distances. 

�erefore, the risk map obtained by combining the 

results of YAN source simulations, vulnerability at 

location, and the evacuation resilience is presented 

to be considered in the tsunami disaster mitigation 

system.

Fig. 17 Comparison of locational vulnerability map (a) and evacuation resilience map (b)
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