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[1] We describe a system for constraining the spatial distribution of fossil fuel emissions of
CO2. The system is based on a modified Kaya identity which expresses emissions as a
product of areal population density, per capita economic activity, energy intensity of the
economy, and carbon intensity of energy. We apply the methodology of data assimilation to
constrain such a model with various observations, notably, the statistics of national
emissions and data on the distribution of nightlights and population. We hence produce a
global, annual emission field at 0.25° resolution. Our distribution of emissions is smoother
than that of the population downscaling traditionally used to describe emissions.
Comparison with the Vulcan inventory suggests that the assimilated product performs
better than downscaling for distributions of either population or nightlights alone for
describing the spatial structure of emissions over the United States. We describe the
complex structure of uncertainty that arises from combining pointwise and area‐integrated
constraints. Uncertainties can be as high as 50% at the pixel level and are not spatially
independent. We describe the use of 14CO2 measurements to further constrain national
emissions. Their value is greatest over large countries with heterogeneous emissions.
Generated fields may be found online (http://ffdas.org/).
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1. Introduction

[2] Motivated by concern about rising atmospheric
greenhouse gas concentrations, national data on CO2 emis-
sions from fossil fuels are widely available from data sets
such as those of the International Energy Agency (IEA;
http://www.iea.org/) and the Carbon Dioxide Information
and Analysis Center (CDIAC [Marland et al., 2006]). The
broad regional and temporal patterns of emissions drivers
are also known [e.g., Raupach, 2007]. However, the finer‐
scale structure of emissions is not nearly as well known.
[3] Improved knowledge of the distribution of emissions

at fine space and time scales is needed to understand the
contemporary, strongly anthropogenically disturbed carbon
cycle. In the “atmospheric inverse” approach [e.g., Enting,
2002], CO2 sources and sinks are estimated from atmo-
spheric measurements of CO2 and other gas concentrations
together with transport and process models in inverse mode.
This approach is providing increasing insight on the large‐
scale structure of terrestrial and ocean CO2 sinks [e.g.,
Gurney et al., 2002; Baker et al., 2006; Stephens et al.,

2007; Rayner et al., 2008]. Inversions use estimates of
fossil fuel emissions either as part of the prior estimate of
flux or to interpret the posterior flux.
[4] There are several existing maps of the fine structure of

emissions. For atmospheric‐transport estimates of CO2

sources and sinks, Tans et al. [1990] downscaled spatially
coarse, nationally aggregated emissions data [Marland et
al., 1989] with gridded global population data to provide
finer spatial structure. Disaggregation by population is also
used in more recent data sets such as the Emissions Data-
base for Global Atmospheric Research (EDGAR) [Olivier et
al., 2005]. More recently, global observations of nightlights
[Doll et al., 2000] have likewise been used to provide fine‐
scale spatial structure to nationally aggregated emissions
data. In contrast with global‐scale approaches, several
studies have used intensive data to produce highly detailed
maps for specific regions, notably the “Vulcan” study
[Gurney et al., 2009] for the United States. Such regional
studies combine data on power plant locations and loads,
transport patterns, locations and patterns of industrial and
residential energy use, and other sectoral data from which
emissions are derived.
[5] All of the above approaches face difficulties. Down-

scaling national emissions data with population or nightlights
data faces the challenge that these two maps do not agree
perfectly (there are some bright areas with few people, and
some dark areas with many people). More fundamentally,
spatial structure of emissions at a sufficiently fine scale is not
proportional to either population or nightlights because emis-
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sions (for instance from coal‐fired power plants) are not
exactly coincident with where people live or lights are on. This
problem is overcome in regional studies such as Vulcan or
Edgar by using large bases of geographically and sectorally
explicit data which are available regionally (for the United
States and Europe, respectively) but not globally, so that pro-
duction of global maps by these methods is not yet possible.
[6] The purpose of this work is to develop a new method-

ology for estimating emissions at fine space‐time scales,
together with uncertainties on those estimates, by combining
all available sources of information. The approach is to
assimilate multiple classes of data into a simple model for
emissions, thereby constraining a set of parameters in the
model to produce best overall agreement with all data. This
approach, generically known as “data assimilation” or “model‐
data fusion,” is described in numerous textbooks [e.g., Enting,
2002; Tarantola, 2004]. The approach is commonly used in
numerical weather prediction [e.g., Daley, 1991; Kalnay,
2003] where observations are combined with the underlying
dynamical equations to determine the atmospheric state before
beginning a forecast. The approach has also been used to
determine parameters in models of the terrestrial biosphere
[e.g., Rayner et al., 2005; Trudinger et al., 2007].
[7] Our motivation and approach are somewhat different

than the preceding studies in this area. First we want an
approach which is, as far as possible, algorithmic. We would
like, ultimately, to generate the structure of emissions over the
longest possible time series and the effort of obtaining the
pointwise and sectoral information in other studies would be
prohibitive. Secondly our starting point is the need for a
globally homogeneous product. Many of the intensive data
sources are only available locally such as the database of
power plant emissions used by Pétron et al. [2008]. The
approach we describe is sufficiently general to ingest such
detailed information later but our first goal is a global baseline
product. Thirdly, we need error estimates on the outputs of
our system, because an important use of the generated fossil
fluxes is as an input to atmospheric inversion calculations.
The inversion methodology is inherently statistical so that all
inputs must come with associated error statistics. None of the
pointwise fossil emission products available today include
such errors.
[8] The structure of this paper is as follows: In section 2

we describe the overall method and its components. In
section 3 we show the impact of assimilating nightlights into
a population‐based downscaling, both on fluxes and on their
uncertainties. Finally, in section 4 we point out some of the
weaknesses of our approach and sketch some of the future
enhancements to address them.
[9] This paper is supplemented by Raupach et al. [2010],

which provides an informal introduction to the concept and
a phenomenological investigation of the main data sets used
here. In a subsequent paper we will produce a 12 year his-
tory of emissions (1992–2003) and investigate its space‐
time structure. Results can be seen online (http://ffdas.org/).

2. Methodology

2.1. Model‐Data Fusion Architecture

[10] All model‐data fusion applications involve six essen-
tial components, described in detail for the Fossil Fuel Data
Assimilation System (FFDAS) in following subsections:

[11] 1. First is a predictive model. The model includes
some parameters (things prescribed for the model) and some
state variables (things calculated by the model). We will try
to improve our knowledge of either state variables or
parameters, by adjusting certain quantities in the model to
obtain best agreement with some set of measurements.
These adjustable quantities are the “control variables.” The
choice of control variables is a fundamental one in any
assimilation system.
[12] 2. Some prior information on the control variables is

usually expressed as probability density functions (pdfs).
[13] 3. Also required is a set of observations, with

“observation operators” which transform the predictions of
the model into predictions of the observed quantities.
[14] 4. Fourth is a cost function which measures the dis-

agreement between actual observations and their predicted
values from the model via the observation operators and,
potentially, the disagreement between control variables and
their prior estimates. This cost function embodies our
knowledge of the underlying probability density functions.
[15] 5. Fifth are uncertainty specifications for all

observations, used to weight their contributions to the cost
function.
[16] 6. Finally, required is a strategy to estimate various

parameters of the posterior pdf of the control variables. This
usually includes a search strategy to find the most likely
estimate. It should also include a technique for estimating
the posterior uncertainty.
[17] Formally, these components fit together as follows

[Enting, 2002; Tarantola, 2004; Raupach et al., 2005]. Let ~z
be a vector of observations and z = h(y) the corresponding
predictions of these observed quantities from the predictive
model. Here h is the observation operator, a function of a
vector of control variables y which is a subset of the model
state variables and parameters. Note that z may include parts
of the predictive model but may also include many other
observables. The task is to describe the pdf for y given those
for yprior, ~z − z and the operator h. Under the Gaussian
assumption, the most likely value of y occurs at the mini-
mum of the Bayesian cost function:

JðyÞ ¼ ½~z� hðyÞ�T C�1
z ½~z� hðyÞ�

þ ½y� yprior�T C�1
p ½y� yprior�; ð1Þ

where yprior is the prior estimate of y, and the covariance
matrices Cz and Cp define the uncertainties in ~z and yprior,
respectively. The first term in equation (1) pulls the poste-
rior estimate (ypost) toward consistency with the observa-
tions, while the second (Bayesian prior) term pulls ypost
toward the prior estimate yprior. The relative influences of
the two terms are determined by our levels of confidence
in the observations and the priors, which are quantified by
the covariance matrices Cz and Cp, respectively. When the
observation operator h(y) is linear (h(y) = Hy), then the
posterior solution for y can be obtained analytically. When
h(y) is nonlinear, as in the present case, then a number of
methods can be used to find the minimum solution; Here
we use the quasi‐Newton algorithm M1QN3 version 3.2
[Gilbert and Lemaréchal, 1989; Liu and Nocedal, 1989].
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2.2. Predictive Model

2.2.1. Sectorally Aggregated Model
[18] The well‐known Kaya identity [Nakicenovic, 2004]

expresses the total, sectorally aggregated fossil fuel emission
from a large region as

F ¼ Pgef ; ð2Þ

where F is the regional fossil fuel CO2 emission flux
(kgC yr−1), P is population (persons), g is per capita GDP
(yr−1 person−1) based on Purchasing Power Parity (PPP),
e represents the energy intensity of the economy (MJ−1)
and f is the fossil carbon intensity of energy (kgC MJ−1).
[19] The Kaya identity applies only for a region large

enough that flows across the boundary of the region can be
neglected relative to internal production and consumption.
We are concerned with emissions from grid cells which may
be very small, so the Kaya identity has to be extended. To
do this we consider energy production and consumption
separately. Let Ei

Prod be a vector of energy production across
a set of grid cells i; likewise, let Ei

Cons be a vector of energy
consumption. Ei

Cons and Ei
Prod are related by

EProd
i ¼

X
j

SijE
Cons
j ; ð3Þ

where Sij is the fraction of energy consumed in cell j that is
produced in cell i. Thus, Sij is an energy transfer matrix from
production to consumption cells. Row i of Sij gives the
fractions of the energy produced in cell i that are consumed
in all cells; likewise, column j gives the fractions of energy
consumed in cell j that are produced in all cells. In the
absence of transmission losses and ignoring storage effects,
conservation of energy requires that sums over rows and
columns of Sij be 1, but Sij can also incorporate transmission
losses.
[20] Local energy production (in cell i) is related to

emissions by

Fi ¼ fiE
Prod
i ; ð4Þ

where fi is the carbon intensity of energy in production cell i.
Local energy consumption (in cell j) is related to local
population, income and energy intensity of GDP, as in the
Kaya identity:

ECons
j ¼ Pjgjej: ð5Þ

Combining equations (2)–(5), we obtain

Fi ¼
X
j

fiSijPjgjej: ð6Þ

Equation (6) is a local form of the Kaya identity, in which
the transfer matrix Sij is used to handle the fact that energy
produced in one cell is consumed in another. If the cells are
large enough to assume that energy is both produced and
consumed in the same cell, then Sij reduces to the identity
matrix.
[21] It is useful to describe emissions at cell level by the

emissions flux density vector �i = Fi/Ai (with units kgC m−2

yr−1), where Ai is the vector of cell areas. Likewise the
population density (person m−2) is ri = Pi/Ai. (Greek sym-

bols denote areal densities). In terms of these densities, the
local Kaya identity, equation (6), becomes

�i ¼ fi
Ai

X
j

SijAj�jgjej: ð7Þ

2.2.2. Sectoral Disaggregation
[22] It is sometimes useful to split total CO2 emissions

from fossil fuels into contributions from several sectors
which are potentially observable in different ways. The
following sectoral breakdown is based on the six‐sector
primary classification of the International Energy Agency
(IEA; http://www.iea.org/): (1) energy (E), which includes
emissions from the generation of commercial electricity and
heat by autoproducers or public utilities (IEA sector 1),
cogeneration in other manufacture (IEA sector 2), and
ancillary emissions in other energy production (IEA sector
3); (2) manufacturing (M), which includes all emissions
associated with industrial manufacture (IEA sector 4), other
than those accounted above; (3) transport (T), which includes
all land, sea and air transport, both domestic and interna-
tional (IEA sector 5, together with emissions from interna-
tional marine and aviation bunkers); it is also useful to break
transport emissions into contributions from land (TL), sea
(TS) and air (TA); and (4) Other (X), which includes emis-
sions from other activities not accounted above, such as
residential, agriculture and fishing. The total flux of emis-
sions in a grid cell i, Fi, is the sum of the emission fluxes
from each sector:

Fi ¼ FðEÞ
i þ FðMÞ

i þ FðTLÞ
i þ FðTSÞ

i þ FðTAÞ
i þ FðX Þ

i ;¼
X
s

FðsÞ
i

ð8Þ

where s is a sectoral index.

2.3. Data

[23] The analysis in this paper is carried out at a grid
resolution of 0.25°. We use observations from the following
three primary data sources.
[24] 1. First are nationally aggregated data on emissions

(F) from the International Energy Agency (http://www.iea.
org/). Countries are defined as follows: we aggregate the
206 countries of the International Energy Agency (IEA) data
onto a 135 country subset consistent with both the country
shape file we use and the 0.25° resolution. For some pur-
poses we assign these 135 countries to the large regions
used by Raupach [2007] and Raupach et al. [2010]: United
States, Europe, Japan, D1 (other developed countries), FSU
(Former Soviet Union countries), China, India, D2 (other
developing countries), D3 (least developed countries as
defined by the United Nations).
[25] 2. Second are gridded population data from http://

sedac.ciesin.columbia.edu/gpw/. We aggregate this from the
2.5 arc minute resolution of the original to the 0.25° grid
cells.
[26] 3. Third are satellite observations of nightlights from

human settlements [Elvidge et al., 1997, 2001]. These data
are obtained from the broadband visible‐near‐infrared (0.4–
1.1 mm) channel of the Defense Meteorological Satellite
Program Operational Linescan System (DMSP‐OLS),
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usable at night and up to 4 orders of magnitude more sen-
sitive than sensors such as AVHRR. Data are processed by
the National Oceanic and Atmospheric Administration
(NOAA) National Geophysical Data Center, from DMSP
data collected by the US Air Force Weather Agency. Pro-
cessing yields composite images (18 for the period 1992–
2003) at about 1 km spatial resolution, aggregated from
finer native resolution. Nightlights data has been shown to
correlate well (when further aggregated) with national and
regional GDP, and also to provide an initial means of
downscaling fossil fuel emissions [Doll et al., 2000]. In
Europe, nightlights data correlate well at small (1 km) scales
with population data [Briggs et al., 2007]. A global analysis
of the relationships between nightlights and population
density is given by Raupach et al. [2010].
[27] Many other data sources can provide additional

constraints on the distribution of emissions. Potential addi-
tional data sources, not used here but available for further
exploration, include (1) atmospheric measurements of fossil
fuel combustion products, such as NOx, d

14C and CO2 itself;
(2) additional socioeconomic data at national or local scales;
and (3) data on the locations and emissions properties of
major point sources such as power stations and heavy
industry. All these additional data sources can be used either
as global fields or for particular regions as available.

2.4. Control Variables

2.4.1. Spatial Patterns and Scaling Factors
[28] The traditional approach to downscaling emissions

(see references in the Introduction) is to assume some spatial
pattern of emissions within a country which must sum to an
integral constraint such as a national emission. The control
variables in the emissions model are the scaling factors for
these patterns and are determined by the available observa-
tions, in this case, consisting only of integral constraints.
[29] Here we wish to generalize this approach by making

use of both spatially aggregated and pointwise observations.
To do this, each term in the Kaya identity can be expressed
in one of two ways: (1) as a linear combination of disjoint
spatial patterns (the “basis functions”), each multiplied by a
scaling factor which is a control variable in the model‐data
fusion problem, or (2) as a set of independent values for
each cell, each of which is a control variable. The choice
depends on the available observations.
2.4.2. Choice of Control Variables
[30] To this point our description has been highly generic.

We now make several simplifications for a first demon-
stration of the approach: (1) the predictive model is secto-
rally aggregated; (2) we ignore spatial separation between
energy production and consumption, so that the transfer
matrix Sij in equations (6) and (7) is the identity matrix;

and (3) we use only one set of spatially aggregated
observations (national emissions) and one set of pointwise
observations (nightlights); the observation operators are
described below.
[31] We also use the following notation: (1) subscripts

denote quantities which vary spatially across grid cells; (2)
superscripts denote quantities which are spatially aggregated
across a country or region; (3) the assignment of grid cells to
countries or regions is done with a matrix Ij

r, where Ij
r = 1 if

grid cell j is in country or region r, and 0 otherwise (thus, a

total regional emission is Fr =
P
j
FjIj

r); (4) control variables

(section 2.1) are denoted by carets; and (5) observations are
denoted by tildes. The above simplifications mean that our
predictive model for emissions, equation (7), reduces to a
conventional Kaya identity at cell level, �j = rjgjej fj. Terms
in this expression are associated with control variables as
follows.
[32] 1. The population density rj is assumed to be fully

specified, without error, from data. Therefore this is a set of
parameters in the sense of section 2.1.
[33] 2. The per capita GDP in cell j is a set of pointwise

control variables, ĝj.
[34] 3. The energy intensity of GDP in cell j is ej = ê, a

global constant.
[35] 4. The carbon intensity of energy in cell j is fj = f̂ rIj

r

which enforces a constant fj within a country. Note that with
observations available at the level of GDP and national
emissions it is arbitrary whether e or f carries information at
national resolution.
[36] 5. There is one control variable (k̂) in the observation

operator for nightlights (Section 2.5.2) which describes a
global proportionality between the density of nightlights and
that of energy consumption.
2.4.3. Uncertainties and Prior Estimates for Control
Variables
[37] Table 1 lists the control variables for the problem

with their dimensions, prior values and uncertainties.

2.5. Observation Operators and Uncertainties

[38] In general, the observation operators are expressed as
sets of scaling factors which multiply spatial fields. These
can be matrix multiplications, often expressing a spatial
integral, or pointwise multiplications mapping one spatial
field, point by point, onto another. The operators also access
different terms in the underlying Kaya identity. In this paper
we use two examples of observables: national emissions and
nightlights.
2.5.1. National Emissions
[39] The observed national emission for country r is ~Fr

(the tilde denoting an observation). Modeled national

Table 1. List of Control Variables for the Optimization With Their Dimensions, Prior Values, and Uncertaintiesa

Description Symbol Units Resolution Prior Uncertainty

Per capita gross domestic product ĝj dollars yr−1 person−1 cell 1.0 0.5
Energy intensity ê MJ dollar−1 global 1.0 10−6

Carbon intensity f̂ r kgC MJ−1 country calculated max(10f̂ r, 10−6)
Nightlight scaling k̂ counts MJ yr−1 area global calculated 100k̂

aThe “calculated” values are generated by back‐propagating the observations with the observation operator, which is calculating prior values that are
consistent with the observations.
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emissions are given by the following observation model (an
operator on the control variables):

Fr ¼
X
j

Aj�j ĝj êf̂
rI rj : ð9Þ

The uncertainty in the observation ~Fr is given by a variance
s2(~Fr), which forms part of the diagonal of the observation
covariance matrix in equation (1). For countries in the four
most developed regions of Raupach [2007] (United States,
Europe, Japan, D1) we attach a relative error of 5% to ~Fr,
while for other countries we use 15%.
2.5.2. Nightlights
[40] The observed nightlight intensity in cell j is ~nj, in

units of sensor counts from the 8‐bit detector (0–63). The
observation model for nightlights starts from the assumption
that nightlights are proportional to the areal density of
energy consumption, Ej/Aj, with a single global propor-
tionality constant k̂. Support for this is provided by Raupach
et al. [2010]. Note that k̂ is itself a control variable to be
found in the assimilation process. This nightlights obser-
vation model is therefore

nj ¼ kðEj=AjÞ ¼ k̂�j ĝjê: ð10Þ

[41] Observations of nightlights from the DMSP‐OLS
sensor are well known to be subject to significant errors
from sensor saturation. We apply a correction to account for
this saturation error following Raupach et al. [2010]. We
hypothesize that the exceedance probability distribution
(EPD) of nightlights intensity (n, in sensor counts from 0 to
63) follows a power law:

PðnÞ ¼ Probð> nÞ ¼ ðn=n0Þ��; ð11Þ

where P(n) is the probability (across the ensemble of cells in
a given region) that the nightlights intensity exceeds n, a is
a power law exponent, and n0 is a scaling parameter.
[42] Figure 1 (left) (based on the work of Raupach et al.

[2010]) shows P(n) for measured nightlights, aggregated

over regions and over the world as a whole, together with
fits of equation (11) for each curve. The power law is fol-
lowed over a range of n of nearly a decade, with the observed
EPD departing from the power law as n approaches the
saturation value of 63 counts. The exponent a depends on
the choice of region: a is about 2 for the world as a whole,
and is lower (higher) than this value for more developed
(less developed) regions, respectively. Also, a depends on
the cell size over which observations of n are aggregated,
which for this work is always 0.25°.
[43] The hypothesis that the distribution of nightlights

obeys equation (11) is based not only on the observation of
power law behavior of P(n) over a range of n below satu-
ration, but also on observed power law distributions for
other metrics of the spatial arrangement of human settle-
ments. In particular, the EPD P(r) for the population density
(r) is observed to follow a power law over a wide range of r
[Raupach et al., 2010]. In this case there is no saturation
error in measurements at high values of r, and there is no
sign of systematic departures from the power law at high r.
This motivates our hypothesis that the true distribution P(n)
for nightlights follows equation (11) out to values of n
which encompass the brightest 0.25° cells on the planet, and
that sensor saturation error accounts for the observed roll‐off
of P(n) as n approaches the saturation value of 63.
[44] The mathematical form of the correction is based on

the following general fact. We are given an ensemble of
measured values nm to be corrected to “true” values nc with
a mapping nc = f(nm). We restrict f to be monotonic, which
ensures that f preserves the rank order of the ensemble. It
follows that Pm(nm) = Pc(nc), where Pm and Pc are the EPDs
of nm and nc, respectively. The correction mapping is thus f
(.) = Pc

−1(Pm(.)), where Pc
−1 is the functional inverse of Pc.

Since Pm is determined by the measurements, an assumed
form for Pc determines f.
[45] In the present case Pc is given by equation (11) and

the correction mapping is

nc ¼ nm rEPDðnmÞð Þ�1=�; ð12Þ

Figure 1. (left) Probability P(n) that the measured nightlight intensity in a 0.25° cell exceeds the value n.
(right) Probability P(nc) that the corrected nightlight intensity exceeds the value nc. Probability distribu-
tions are aggregated over regions and over the world as a whole. The fit of equation (11) for the world is
shown in both panels.
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where rEPD(nm) is the ratio of the measured EPD to the true
(power law) EPD:

rEPDðnmÞ ¼ PmðnmÞ
ðnm=n0Þ�1=�

: ð13Þ

This is the ratio between the solid (measured) to the dashed
(power law) lines in Figure 1.
[46] We constructed an empirical fit to rEPD(nm) for the

world as a whole, and thence derived a nightlights correc-
tion mapping using equation (12). When log10(nm) < 1.3 or
nm < 19.9526, there is no correction (nc = nm). When
log10(nm) > 1.3, the correction mapping is given by

log10ðncÞ ¼ log10ðnmÞ þ 0:0684035

� � 1

log10ðnm=66Þ
� 1:92477

� �0:74

: ð14Þ

The correction increases rapidly as nm approaches satura-
tion. For nm = (40, 50, 60, 63), equation (14) yields nc =
(55.4, 92.9, 286.5, 980.5).
[47] Figure 1 (right) shows the resulting EPD of corrected

nightlights (nc) for the world and for each region. Most of
the saturation‐induced roll‐off in EPD is removed. For the
whole world (black line), the corrected EPD follows the
power law very well except for the few brightest cells.
The corrected EPDs for individual regions show systematic
departures from the regional power law fits, which arise
because power law properties and rEPD(nm) are different for
the various regions. However, we have chosen to apply a
globally uniform nightlights correction and to regard these
departures as contributing to error in nc.
[48] Uncertainty in the corrected nightlights arises from

two sources: measurement error in the observations (nm) and
error in the correction algorithm yielding nc. The former is
likely to be constant, and the latter related to the magnitude
of the difference nc − nm. We therefore express the uncer-
tainty in nc as

�ðncÞ ¼ 1:5þ ðnc � nmÞ: ð15Þ

2.6. Calculation of Posterior Uncertainties

[49] An important product of any assimilation system is a
posterior uncertainty estimate either for control variables or
for diagnosed quantities. We generate these using the Monte
Carlo technique described by Chevallier et al. [2007]. The
approach can be summarized as follows: (1) choose a con-
trol vector yt which we assume true. This is usually the
value of a previous optimization; (2) simulate all observables
using yt to produce zt; (3) perturb zt with noise consistent
with the error statistics described in the observation error
covariance matrix Cz to produce z; (4) perturb yt with noise
consistent with the prior covariance matrix Cp to produce a
prior estimate yprior; (5) carry out an inversion using yprior, z
and the relevant covariance matrices to produce an updated
estimate y; and (6) for the linear Gaussian case, the statistics
of y − yt are consistent with the usual posterior covariance
matrix except that we only have a limited number of reali-
zations for calculating the statistics. We can repeat steps 3–5
as often as we can afford to improve these statistics. Here we
use 25 realizations. Each grid point is also a realization so
the ensemble statistics of many points are more reliable than
those for an individual point.

3. Results

[50] In this preliminary analysis we consider the separate
and joint use of nightlights and population data to refine
country‐level information on emissions. We also explore the
relationships between nightlight intensity, population den-
sity and aggregated emissions. As well as revealing the
separate information content in the nightlights and popula-
tion data, this also allows us to test the various downscaling
approaches open to us, at least in an aggregated sense.
Finally we assess the value of various data sources, partic-
ularly measurements of 14CO2, in constraining emissions.

3.1. Flux Patterns

[51] We carry out three different assimilation experiments
using different assumed spatial patterns and different data
sources. In the first we use the spatial distribution of
population and only use the country‐level emission data.
Thus the disaggregation of national emissions is driven
entirely by population, as in the distribution used by Tans
et al. [1990]. This distribution of emissions is shown in
Figure 2.
[52] The second experiment is identical with the first

except that we use the uncorrected distribution of nightlights
for 2002 to carry out the disaggregation. The distribution of
emissions is shown in Figure 3.
[53] Finally, Figure 4 shows the results of an assimilation

using both population and corrected nightlights. The c2

value for the assimilation is 246213. We use a total of
245642 observations. Ideally the c2 value is equal to the
number of observations [Tarantola, 1987, p. 211] and our
case is very close to this suggesting that the statistical
assumptions underlying the assimilation are valid.
[54] We see that the population based estimate (Figure 2)

is the most variable of the three distributions, showing the
strongest peaks. Figure 3 is the smoothest and Figure 4
intermediate. We see substantial differences between the
nightlights and population‐based downscaling over many
regions and without a predictable sign. Over Nepal the

Figure 2. Fossil fuel emissions for 2002 (kgC m−2 yr−1) at
0.25° resolution. The calculation uses the spatial distribution
of population and national emissions data. Values have been
transformed according to F0.2 to improve the resolution for
low values.
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population‐based downscaling concentrates emissions in the
Kathmandu valley while nightlights gives a more even
distribution. In nearby regions of southwest China, the
nightlights‐based downscaling produces the more concen-
trated emissions. In both cases the FFDAS distribution tends
to lie between them, but this is not true everywhere. The
maximum emissions for the three distributions are different,
New York for the population‐based estimate, a pixel in
Chinese Taipei for the nightlights and Tokyo for the
FFDAS. Also, despite the general smoothing of the FFDAS
compared to population downscaling, the maximum for
FFDAS is larger than for the other two distributions, a result
of the dual constraint of nightlights and national emissions.

3.2. Comparison With Vulcan Inventory

[55] Although building an assimilation system to combine
available information on fossil fuel emissions is an inter-
esting methodological problem, it is of little use to the
carbon cycle and emissions communities unless it can pro-
duce more reliable products than existing systems. To test

this we need an agreed standard likely to be better than the
approaches we are testing. This exists locally for the United
States in the form of the Vulcan inventory produced by
Gurney et al. [2009]. We need to test therefore whether our
assimilated product is closer to the Vulcan inventory than a
pure population or pure nightlights downscaling. We choose
two metrics which reflect likely uses for the inventory. The
summed absolute difference (SAD) is the sum of the abso-
lute difference of the field over the domain. This is impor-
tant if one is going to use the resulting fields directly, e.g., as
input for a forward model or for inversions at the pixel level.
If one wishes to use the emissions field for an inversion
where one solves for large‐scale magnitudes such as
national emissions, the important point is the agreement in
the pattern within the country. Thus we use the spatial
correlation which is independent of magnitude. Table 2
shows these measures at resolutions from 0.5° × 0.5° (the
lowest common multiple of the native resolutions of FFDAS
and Vulcan) to 4° × 4°. We show the comparison for the
fields distributed by population alone, by uncorrected
nightlights alone, the FFDAS assimilated product and
finally the field from Brenkert [1998]. This is also a popu-
lation‐based downscaling for the year 1995. We rescale it to
2002 for fairer comparison. The native resolution of the
Brenkert [1998] inventory is 1° × 1° so comparison at finer
resolution is meaningless.
[56] We see first that all four products perform fairly well

relative to Vulcan. This is surprising given that population
and nightlights are only a rough guide to the placement, for
example, of fossil fuel burning power stations. All metrics
improve as we move to coarser resolution as one would
expect. We see also that the FFDAS product is superior to
the other three at all resolutions. The improvement in spatial
correlation is especially important if one wishes to use the
patterns of the fossil emissions directly in an atmospheric
inversion. Comparison of (uncorrected) nightlights and
population‐based estimates is mixed, with the population‐
based estimates producing lower absolute differences but
also lower correlations. A similar analysis with the corrected
nightlights produced performance intermediate between the
population‐based and uncorrected nightlight‐based esti-
mates in Table 2.

Figure 3. Fossil fuel emissions for 2002 (kgC m−2 yr−1) at
0.25° resolution. The calculation uses the spatial distribution
of nightlights and national emissions data. Values have been
transformed according to F0.2 to improve the resolution for
low values.

Figure 4. Fossil fuel emissions for 2002 (kgC m−2 yr−1) at
0.25° resolution. The calculation uses the spatial distribution
of population, nightlights, and national emissions data in an
assimilation. Values have been transformed according to
F0.2 to improve the resolution for low values.

Table 2. Comparison of Population‐Based, Nightlight‐Based, and
Assimilation‐Based Fossil Inventories for 2002 Over the United
States With the Vulcan Inventory of Gurney et al. [2009]a

Resolution
(deg)

Population Nightlights FFDAS
Brenkert
[1998]

Diff. Correl. Diff. Correl. Diff. Correl. Diff. Correl.

0.5 1213 0.70 1360 0.68 1143 0.74 ‐ ‐
1.0 1006 0.80 1087 0.81 900 0.85 1045 0.75
2.0 806 0.84 810 0.88 651 0.91 788 0.84
3.0 670 0.87 691 0.90 545 0.92 654 0.87
4.0 608 0.88 641 0.92 479 0.93 644 0.87

aThe fourth inventory (also population based) is taken from Brenkert
[1998]. All fields have been rescaled to match the Vulcan total. The
“diff” columns (in units of MtC yr−1) show the sum of the absolute dif-
ferences over the Vulcan domain (23.5°N–51.5°N and 127.5°W–62.5°W).
Because the Vulcan domain does not include points outside the United
States, we have zeroed pixels in the fields that are zero for Vulcan. The
Brenkert [1998] inventory is constructed at 1° × 1°, so we do not compare it
at 0.5° × 0.5°. FFDAS, Fossil Fuel Data Assimilation System.
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[57] To understand the causes of the improvement, Figure 5
and Figure 6 show the differences between the population and
FFDAS‐based inventories relative to Vulcan. The improve-
ment is most noticeable over high population densities such
as the eastern seaboard, the Los Angeles area and around
Chicago. Here it appears that the population‐based estimate
overestimates emissions while assimilation of the nightlights
data trims these peaks. This is true despite the large saturation
correction in some of these regions. Note that Figure 2 and
Figure 4 show differences over most points of extreme
population density suggesting that this improvement may be
globally important. Another difference is in the regions of
significant power generation in the Ohio and Tennessee
valleys. Here the low population density forces low emissions
in the population‐based estimate while the assimilation of

nightlights partially corrects the emissions. Significant errors
remain which could be addressed by inclusion of data on
power station emissions. We note the recent work ofOda and
Maksyutov [2010] who included a database of point sources
in their estimates and improved the comparison with the work
of Gurney et al. [2009].

3.3. Posterior Uncertainties

[58] Figure 7 shows the fractional uncertainty of the
estimated fluxes. Note that with the relatively small number
of realizations in the Monte Carlo calculation and the large
number of pixels, we expect some outliers hence not all
details in this map are significant. We see a reflection of the
higher emission uncertainties in some countries than others,
e.g., comparing the United States and China. We also see
that the relative uncertainties on the pixel‐level fluxes are
quite high, on average around 50%. This arises from the
combined uncertainty of the two data sources we employ.
With national emissions uncertain at either the 5% or 15%
level we cannot expect pixel‐level fluxes to have a smaller
uncertainty than this. Second, the uncertainty in the night-
lights observation is often large. At low values the fixed
uncertainty of 1.5 is often greater than 100% while at high
values the uncertainty in the saturation correction approaches
100%. Note that using the uncertainty of this pointwise map
alone in an inversion is a serious error since it assumes
independence of errors, contradicting the use of national
emissions data in the assimilation. It would, for example,
yield very small errors on the national emissions of large
countries. The spread of national emission estimates calcu-
lated from our realizations is consistent with the uncertainty
in national emissions we use.
[59] Given the warning about the pointwise uncertainty,

a question arises of how to transmit then include these
uncertainties in subsequent inversions. The usual method, the
posterior covariance, is impractical since our problem has
about 245,000 unknowns. Furthermore the limited number
of Monte Carlo realizations we have carried out cannot hope
to capture the detail of such a matrix. We can, however, take
advantage of equation (2) and the particular form of national

Figure 5. Differences (kgCm−2 yr−1) between a population‐
based downscaling and the Vulcan inventory of Gurney
et al. [2009] at 0.5° resolution. Values in which the Vulcan
inventory is zero have been removed from both fields to
limit the differences to the Vulcan domain. The downscaled
emissions have been rescaled to the Vulcan total.

Figure 6. Differences (kgC m−2 yr−1) between Fossil Fuel
Data Assimilation System (FFDAS) emissions and the Vul-
can inventory of Gurney et al. [2009] at 0.5° resolution.
Values in which the Vulcan inventory is zero have been
removed from both fields to limit the differences to the
Vulcan domain. The FFDAS emissions have been rescaled
to the Vulcan total.

Figure 7. Fractional uncertainty (standard deviation divided
by percentage emissions) for 2002 at 0.25° resolution. The
calculation uses the spatial distribution of population, night-
lights, and national emissions data in an assimilation. Values
have been clipped at 200% to avoid statistical outliers.
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and pointwise disaggregation of our unknowns. We can
write the flux at grid cell i as

Fi ¼ ðIri ArÞ � Bi; ð16Þ

where F is the flux, A is a vector of national emissions with
dimension the number of countries for which we solve and
B is a vector of pointwise multipliers disaggregating these
national emissions. Ij

r describes the assignment of grid
points to countries and was introduced in Section 2.4.2.
[60] With the information in use in this version of

FFDAS, we can approximate the covariances of A and B as
independent, both of each other and internally. Note that
there may well be uncertainty correlation between the
average of B for a country and A for that country but the
uncertainty variance of the country average of B will be so
small for almost all countries that we can ignore the
covariance. Assuming independence of A and B we can
write the uncertainty covariance of F as

CðFÞ ¼ DIAGðIAÞCðBÞ þ DIAGðBÞ2ICðAÞIT ; ð17Þ

where the superscript T represents the transpose and the
operation DIAG transforms a vector into a diagonal matrix.
note that the second term on the right of equation (17)
introduces off‐diagonal terms into C(F) accounting for the
propagation of uncertainty in national emissions to all points
within the country. We can estimate the covariances on the
right of equation (17) from the Monte Carlo realizations
already discussed. All the terms on the right of equation (17)
are available on the FFDAS Web site so researchers can
construct a version of C(F) relevant to the resolution of their
inversion. Note that the technique used here relies on the
fact that only two scales of information are in use and that
the spatial projections of the information do not overlap.
This will break down in a future version when we begin to
use other constraints. In that case only estimates of the
posterior covariance taken directly from the Monte Carlo
realizations will be available. Probably we will need to
increase the number of such realizations to estimate off‐
diagonal terms in C(F).

3.4. Use of 14CO2 Measurements

[61] The importance of fossil fuel emissions as a driver of
anthropogenic climate change has motivated efforts to
measure them as directly as possible. This is especially true
in the light of treaty obligations to limit or reduce emissions.
One potential tracer of fossil fuel emissions is 14CO2.
Turnbull et al. [2009] showed that, in the contemporary
atmosphere, this tracer is only weakly contaminated by other
signals, at least in the northern hemisphere. FFDAS allows
us to test the added constraint afforded by 14CO2 measure-
ments relative to and in the presence of other measurements.
[62] Using the same Monte Carlo approach, we simulated

annually averaged measurements of 14CO2 at 194 stations.
These are a superset of the stations used by Piao et al.
[2009]. We use the retroplumes from the LMDZ transport
model described by Peylin et al. [2005] to calculate the
sensitivity of each of these measurements to annually
averaged fluxes from each of the 3.75° longitude by 2.5°
latitude grid boxes of the LMDZ model. We assign each
measurement an uncertainty of 1 ppm following Turnbull et

al. [2009]. The additional reduction of uncertainty on pixel
level fluxes (relative to the standard assimilation) is quite
weak, about 15% when globally integrated. This is not
surprising since many pixels will fall in the footprint of each
measurement and this annually averaged sampling approach
will not localize an emission very well. The effect on the
uncertainty of national emissions is much stronger. Using
the square root of the trace of the uncertainty covariance as a
global measure we see a reduction of 70%. Much of this is
achieved by added constraint on emissions from the United
States and China. Indeed the 14CO2 measurements are most
effective in large countries. Here the measurement footprint
sees only one unknown national emission. Small countries
suffer the same problem as individual pixels. Of course the
use of 194 stations is unrealistic but this is partly counter-
balanced by the availability of more frequent measurements
in reality.

4. Discussion

[63] When assessing the usefulness of our results it is
important to recall the limited scope of the work. The
weaknesses in the spatial structure are shown by the com-
parison with the inventory of Gurney et al. [2009]. If the
detailed inputs used by Gurney et al. [2009] were available
globally and historically our study would become irrelevant.
However the global extension is difficult and a retrospective
analysis almost impossible. The Vulcan inventory of
Gurney et al. [2009] also pertains to 2002, and while it is
certain that subsequent versions will be more timely, the
gathering of the necessary detailed information will always
impose a substantial delay. The DMSP/OLS series of
instruments is still flying however and raises the tantalizing
possibility of a more rapid update to spatially explicit
emissions.
[64] Underlying any plans for continuing this work is the

question whether the approach is superior to downscaling by
population alone. This appears to be the case for the one
region we tested. Some of the improvements have implica-
tions for coarse‐resolution (>2°) inversions. Differences
between our approach and population downscaling remain
physically significant even at this resolution. There are
differences between our estimates and many previous
inventories. We do not include emissions from the cement
industry in our estimates since these are not included in
the IEA estimates we use. This is neither a strength nor
a weakness but should be kept in mind when making
comparisons.
[65] Sources appear to be more dispersed with our

approach than with the population downscaling but it
appears we still often overestimate peak emissions in the
Vulcan inventory. This will require a reassessment of which
sites are regarded as polluted by large fossil signals in the
transport model and opens the way for using more of the
concentration data in inversions. It does not, however, yet
allow the much more important change to using high‐
frequency data. These data are sure to reflect details of the
spatial variability of the fossil sources that we still do not
capture but, more importantly, temporal structures in these
sources we have not even attempted to estimate. We are
unlikely to find proxies for the temporal variation in overall
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source so we will be forced to impose temporal structures
derived from intensive observations at a few points.
[66] The method for using 14CO2 measurements as a

direct constraint appears promising and realistic. It is clear
that an individual measurement will provide less constraint
in our system (where fluxes must be estimated at each point)
than a system where emission factors multiply fixed spatial
patterns. The differences in these spatial patterns demonstrated
throughout this paper suggest these large‐scale approaches
are risky indeed. We have not, however, exhausted the
capability of direct measurements of combustion in the
atmosphere. Levin and Karstens [2007] have demonstrated
the potential of 14CO2 as a calibration for the far less
expensive CO measurements. For some seasons and latitudes
this may provide a rich source of data which FFDAS could
ingest without much difficulty.
[67] Probably the greatest advance in this work, will come

when we can separate the downscaling approaches by sec-
tor. The IEA, as already mentioned, divide emissions into
six sectors. Spatially explicit proxies for all of these do not
exist. We do have (and can use) direct estimates for some of
them for some regions such as the emissions from U.S.
power stations of Pétron et al. [2008]. for others there are
indirect proxies such as satellite measurements of oxides of
nitrogen.
[68] There are emissions not treated within FFDAS either

because they do not appear within the IEA national statistics
or because they do not fall within the country grids we use.
Examples include gas flares and emissions from interna-
tional transport. Gas flares are visible as nightlights and so
could be treated as a separate category. International trans-
port remains problematic and awaits improvement in
inventory methodology.
[69] Finally we make some comments on how to use

FFDAS estimates in other inversions. FFDAS estimates a
pdf for the spatial distribution of fossil fuel emissions. This
can form part of the prior pdf for a CO2 flux inversion. It
must be combined with pdfs for other components follow-
ing, for example, the calculation of Chevallier et al. [2006].
The different spatial structures of the uncertainty correla-
tions of the biospheric and fossil flux estimates must be
accounted for, as must the lack of information on temporal
variability in FFDAS. The alternative is to include the
FFDAS methodology directly within the CO2 inversion. We
provide forward, tangent linear and adjoint versions of
FFDAS to facilitate this.

5. Conclusions

[70] This paper describes and demonstrates an assimila-
tion system (FFDAS) for estimating the spatial structure of
carbon fluxes arising from fossil fuel combustion. The
system currently assimilates data on national emissions and
fixed nightlights. The conclusions can be summarized as
follows.
[71] 1. FFDAS produces estimates which are spatially

smoother than previous estimates downscaled by popula-
tion. This occurs despite the inflation of the raw nightlights
measurements to account for instrumental saturation.
[72] 2. The spatial structure from FFDAS over the United

States agrees more closely with the detailed bottom‐up

inventory of Gurney et al. [2009] than downscaling either
by population or using the raw nightlights values.
[73] 3. Relative uncertainties in the emissions are gener-

ally around 50% at 0.25° resolution. They show spatial
correlations within countries.
[74] 4. The use of 14CO2 measurements can provide a

considerable regional constraint but should target strong
emission regions if they are to constrain national totals.

[75] Acknowledgments. P.J.R. is the recipient of an Australian
Research Council Professorial Fellowship (DP1096309).
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