
Jhih-Rong Gao

Synopsys Inc.
Taipei, Taiwan 11012

e-mail : jerrica.gao@synopsys.com

Pei-Ci Wu

Synopsys Inc.
Taipei, Taiwan 11012

e-mail : peggie.wu@synopsys.com

Ting-Chi Wang

Department of Computer Science
National Tsing Hua University

Hsinchu, Taiwan 30013
e-mail : tcwang@cs.nthu.edu.tw

A New Global Router for Modern Designs *

Abstract - In this paper, we present a new global router,
NTHU-Route, for modern designs. NTHU-Route is based on
iterative rip-ups and reroutes, and several techniques are
proposed to enhance our global router. These techniques include
(1) a history based cost function which helps to distribute
overflow during iterative rip-ups and reroutes, (2) an adaptive
multi-source multi-sink maze routing method to improve the
wirelength of maze routing, (3) a congested region identification
method to specify the order for nets to be ripped up and rerouted,
and (4) a refinement process to further reduce overflow when
iterative history based rip-ups and reroutes reach bottleneck.
Compared with two state-of-the-art works on ISPD98
benchmarks, NTHU-Route outperforms them in both overflow
and wirelength. For the much larger designs from the ISPD07
benchmark suite, our solution quality is better than or
comparable to the best results reported in the ISPD07 routing
contest.

I Introduction

 In the recent years, feature size continues to shrink.
Although the device becomes smaller and faster, the
shrinkage increases the wire resistance and hence
interconnect delay. Interconnect delay has replaced transistor
delay as the main determinant of chip performance. Therefore
the routing problem is becoming even more important in
VLSI design.
 Typically, the routing problem can be divided into two
steps due to the problem complexity: global routing and
detailed routing. During global routing, nets are connected on
a coarse-grain grid graph with capacity constraints. Then
detailed routing follows the solution in global routing to find
the exact routing solution. The quality of global routing
affects timing, power and density in the chip area, and thus
global routing is a very important stage in the design cycle.
 Recent global routing techniques can be roughly
categorized into two classes: multicommodity flow based
techniques and rip-up and reroute techniques.
Multicommodity flow based techniques [1, 2] formulate
global routing as a multicommodity flow problem which can
be mapped to a zero-one integer linear programming (ILP)
problem. Due to the large time complexity, the ILP problem is
often relaxed to the fractional version and solved by an
approximation method. A recent multicommodity flow based

router [2] is proposed by Albrecht, which provides an
approximation method to solve the LP formulation.
 Rip-up and reroute approach starts by routing each net
without considering congestion. After routing all nets,
congested areas can be identified and the nets in those areas
are ripped up and rerouted to find less congested routes. This
approach is a sequential one since the net to be ripped up and
rerouted has to follow a specific order. Therefore the routing
order in rip-up and reroute techniques affects the solution
quality a lot. Chi Dispersion [3] and Labyrinth [4] are global
routers which utilize rip-up and reroute techniques. Recently
two efficient algorithms DpRouter [5] and FastRoute [6, 7]
are proposed and outperform Chi and Labyrinth. BoxRouter
[8] expands a box which initially covers the most congested
region and routes all nets within the box by ILP formulation.
Although the solution quality of BoxRouter is also better than
Chi and Labyrinth, the large computational time for an ILP
solver makes it less scalable. In addition to the above routing
approaches, an optimization method based on trunk
decomposition [9] is presented, which reduces considerable
overflow from an initial routing solution.
 In this paper, we present a new global router, NTHU-Route,
for modern designs. NTHU-Route is based on iterative
rip-ups and reroutes, and several techniques are proposed to
enhance our global router. These techniques include (1) a
history based cost function which helps to distribute overflow
during iterative rip-ups and reroutes, (2) an adaptive
multi-source multi-sink maze routing method to improve the
wirelength of maze routing, (3) a congested region
identification method to specify the order for nets to be ripped
up and rerouted, and (4) a refinement process to further
reduce overflow when iterative history based rip-ups and
reroutes reach bottleneck. We compare our results with two
state-of-the-art works, BoxRouter and FastRoute, on ISPD98
benchmarks. Our global router solves all benchmarks without
any overflow and respectively reduces the wirelength over
BoxRouter and FastRoute by 1.93% and 2.59% on average.
We also perform our router on ISPD07 benchmarks which
contain multi-layer designs with larger size. The experiments
show that our router obtains the solution with least overflow
when comparing with the best results reported in the ISPD07
global routing contest.
 The rest of the paper is organized as follows. Section II
gives the preliminaries including the problem formulation and
introduction for some routing techniques. In section III, we
present our global router in detail. Section IV provides the
experimental results and we conclude the paper in section V.

∗ This work was partially supported by Ministry of Economic
Affairs under Grant Number MOEA-95-EC-17-A-01-S1-031
and National Science Council under Grant Numbers
NSC-96-2220-E-007-045 and NSC-96-2220-E-007-047.

3A-2

232978-1-4244-1922-7/08/$25.00 ©2008 IEEE

II. Preliminaries

A. Problem formulation
 The global routing problem requires a set of nets, N = {n1,
n2,…, nk}, to be routed over a grid graph G(V, E). A net ni,
1 ≤ i ≤ k, is a set of pins. Typically the layout is partitioned
into rectangular tiles called global bins as shown in Fig. 1 (a),
and each pin is assumed to lie at the center of the tile that
contains the pin. In the grid graph G shown in Fig. 1(b), each
vertex v∈V represents a global bin and each edge e∈E
corresponds to a boundary between two adjacent global bins.
The routing problem for a net ni is to find an additional subset
of vertices, vi,Steiner ⊂ V, and a subset of edges, ei ⊆ E, to form
a Steiner tree ti = (vi, ei), where vi = ni ∪ vi,Steiner.

 The supply s(e) of an edge e represents the number of
available routing tracks it contains. The number of wires that
utilize an edge e is called the demand d(e) on the edge. The
overflow on an edge e is defined to be the difference between
its demand and supply as shown below:

() () if ()> ()
()

0 otherwise
d e s e d e s e

overflow e
−

= (1)

And we define the congestion of e as the ratio of the demand
to the supply:

()()
()

d econg e
s e

= (2)

The major optimization objective of global routing is to
minimize the total overflow on all edges:

: ()
i

i
e

Minimize overflow e
∈E

 (3)

Fig. 1. (a) A routing region with 4x4 global bins. (b) The
corresponding grid graph of (a).

B. Monotonic routing
 Pattern routing is a method to route a two-pin net with
predefined patterns. L-shaped and Z-shaped are two
commonly used patterns as shown in Fig. 2(a) and Fig. 2(b),
respectively. Pattern routing is much more efficient compared
with maze routing which considers all edges inside a given
window. However, the quality may be worse since the search
space of pattern routing is more limited. In order to find the
tradeoff between pattern routing and maze routing, FastRoute
[7] proposed monotonic routing which provides larger
solution space with the same time complexity as Z-shaped
pattern routing. The idea of monotonic routing is as shown in
Fig. 2(c).

Fig. 2. (a) L-shaped patterns. (b) Z-shaped patterns. (c) Monotonic
patterns.

C. Negotiated congestion routing
 PathFinder [10] presented a negotiated congestion
algorithm that balances the competing goals of eliminating
congestion and minimizing delay of critical paths for global
routing in FPGAs. The cost of using a given edge e in a route
is defined as:
 ()e e e ecost b h p= + ⋅ (4)
where be is the base cost of using e, he is related to the history
of congestion on e during previous iterations, and pe is related
to the number of other nets presently passing e. In the
beginning of routing, the algorithm routes all nets with their
shortest-path topologies regardless of the capacity constraint.
During subsequent iterations, he is updated in the following
way:

11 if has overflow

otherwise

i
ei

e i
e

h k e
h

h
+ +

= (5)

where k1 is a constant. Therefore the edges which tend to be
congested make their edge costs increase gradually during
iterations. This helps to distribute the routing demand to other
less congested edges. By setting the base cost be to be the
wirelength of an edge and trying to minimize the total edge
cost, this negotiated congestion scheme can be used to
eliminate congestion and minimize wirelength for global
routing in ASICs.

III. Methodology

A. Overview of our global router
 In this subsection, we give an overview of our global router.
First of all, we apply FLUTE [11] and the edge shifting
technique [6] to generate the topology of each multi-pin net.
Then we decompose each multi-pin net into a set of two-pin
nets. For each two-pin net, we use L-shaped pattern routing to
construct the initial congestion map. (See section III.B.)
Second, we propose a history based cost function (see section
III.C) which is used in iterative rip-ups and reroutes. Third we
iteratively identify the congested regions on the routing area
and rip-up and reroute two-pin nets within the regions by
monotonic routing followed by optional adaptive
multi-source multi-sink maze routing. The details of this step
are in sections III.D and III.E. Finally, we apply an iterative
refinement process to resolve the remaining overflow (see
section III.F). Section III.G details that for multi-layer
designs, an additional layer assignment step is required in
order to map the solution on the projected plane to the
original multiple layers.

Global edges

Global bins

Global edges

(b)

Cells

Global bins

(a)

(a) (b) (c)

3A-2

233

B. Initial congestion map construction
 For each multi-pin net ni∈N, we generate its rectilinear
Steiner minimal tree (RSMT) by FLUTE [11]. Then we
decompose each multi-pin net ni into a set of two-pin nets as
shown in Fig. 3, in which a pin can be the pin belonging to ni
or a Steiner point. A vertical or horizontal wire in the RSMT
is called flat wire, such as wire a-e, b-e, c-f and e-f in Fig.
3(b). For each two-pin net, if it forms a flat wire, we assign
the demand value 1 to the edges passed by the wire on the
grid graph. Otherwise, we assign the demand value 0.5 to the
edges on the bounding box of the two-pin net by assuming
that two probabilistic L-shaped patterns can be used by this
two-pin net. Then the edge shifting technique [6] is employed
for each multi-pin net to further improve the RSMT topology
by moving some edges to less congested areas. Again, we
decompose each multi-pin net into a set of two-pin nets after
edge shifting. In order to make the congestion map more
accurate, we rip-up and reroute two-pin nets using L-shaped
pattern routing. Here we adopt the cost function presented in
[6] to formulate the edge cost. However, our initial
congestion map construction method is different from the
way proposed in [6]. We use edge shifting technique to
determine the routing tree topology in initial congestion map
construction, while [6] uses it to dynamically adjust the
topologies during rip-ups and reroutes.

Fig. 3. (a) A multi-pin net composed of 4 pins: a, b, c, and d. (b)
Decompose the net in (a) into two-pin nets by the Steiner tree
topology. The black points represent pins, and the rectangles
represent Steiner points.

C. History based cost function
 The evaluation of edge cost in the routing graph plays an
important role in the routing algorithm. As modern designs
are getting larger, it is difficult to define a deterministic
function that can predict the behavior of all routed nets when
routing is proceeding. Therefore, we adopt the history idea of
the negotiated congestion routing in our algorithm. An
iterative rip-up and reroute method using the history based
cost function given below is described in section III.D. For an
edge e in the routing graph, the history based cost function is
defined as:
 1e e ecost h p= + ⋅ (6)
Basically, our cost function is a combination of wirelength
and congestion. We set the first term in the function to be the
value 1 which represents one unit length. In the second term,
we let the historical term amplify the penalty of congestion
because our main objective is to minimize the total overflow.
For the historical cost he, it is the same as formula (5) with
k1=1. As more and more iterations complete, the edges that
tend to be congested have larger he than those with available
capacity. Therefore, he helps to distribute the routing demands
to the less congested areas in the routing graph. The
congestion penalty term pe is defined as follows:

2
() 1()

()
k

e
d ep

s e
+= (7)

where k2 is a constant and controls the rising rate of pe. Our
idea is to drastically increase the penalty term especially
when the demand exceeds the supply. For an edge which still
has much available capacity, the penalty is relatively small
and thus encourages routing paths to pass the edge. Fig. 4
gives the curve of formula (7) where k2 is 5.
 In addition, if an edge e is to be considered as a part of a
route and is already passed by another route which belongs to
the same multi-pin net as e, then the cost of e is zero rather
than the definition in formula (6). Doing this encourages a
two-pin route of one multi-pin net to share the same edges
with other two-pin routes, and thus reduces the wirelength
and routing demands.

Fig. 4. The curve of the congestion penalty. When an edge has no
overflow, the penalty is relatively low, but grows drastically when
there is overflow.

D. Rip-up and reroute based on congested region
identification

 In a rip-up and reroute based method, the order of nets to
be ripped up and rerouted affects the routing quality very
much. Usually we prefer to route nets with smaller size of
bounding box earlier because they are less flexible than those
with larger size. However, this strategy does not take the
current congestion on the routing area into consideration. As a
result, we propose a method to identify congested regions and
rip-up and reroute two-pin nets which locate in those regions.
 The method starts with the routing solution generated in
section III.B. First of all, we calculate the congestion for all
edges. Because only edges with overflow are to be considered,
we define an interval between the maximum congestion value
and 1. Then we partition the interval into m sub-intervals {I1,
I2,..., Im} (we use m=10 by default). For example, when the
maximum congestion is 2, the sub-intervals are {[2, 1.9), [1.9,
1.8), [1.8, 1.7),..., [1.1, 1)}. The definition that an edge e
belongs to one sub-interval Ii is as follows:
 cong(e) > Ii.min_cong and
 cong(e) Ii.max_cong
where Ii.min_cong represents the minimum value in Ii and
Ii.max_cong represents the maximum value in Ii. By the
definition, edges with overflow are assigned to their
corresponding sub-intervals.
 Following that, we identify the congested regions for edges
in the sub-intervals. The average congestion of a region r is
defined as follows:

()
_ () is an edge inside

()
i

i
i

d e
avg cong r e r

s e
= (8)

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

Congestion
penalty pe

Congestion of e

d

a

b

c

a

b d

c
e

f

(a) (b)

3A-2

234

In the beginning, we pick the most congested edge e from I1
as the center and expand a rectangular region re from it until
avg_cong(re) is smaller than I1.min_cong. The rest of the
edges in I1 are expanded in the same way in decreasing order
of congestion. Then the two-pin nets that locate within all
regions expanded from edges in I1 are ripped up and rerouted.
We first use historical monotonic routing in which the edge
cost is formulated by the history based cost function as
described in section III.C. If there still exist two-pin nets that
fail to find overflow-free paths, then detour is allowed by
applying historical adaptive multi-source multi-sink maze
routing (see section III.E).
 Similarly, the remaining sub-intervals I2, I3,.., Im are
processed one by one as the same way described above. We
apply this algorithm for several iterations to obtain a
convergent solution. Note that after multi-pin nets are
rerouted, the topology of each of them may have slight
difference. As a result, we readjust the two-pin nets for each
multi-pin net whenever an iteration completes. This increases
the flexibility of our algorithm because the topologies of
multi-pin nets are dynamically modified according to the
current best routing solution.

E. Adaptive multi-source multi-sink maze routing
 A general maze routing algorithm must start and end in the
original two pins of a two-pin net. Take Fig. 5(a) as an
example. Suppose we are rerouting two-pin net (a, b) and the
shaded region between a and b represents congested area. The
path found by general maze routing has to detour to avoid
congested area. Pan et al. proposed multi-source multi-sink
maze routing [7] to improve original maze routing. After
ripping up the path of the two-pin net, the multi-pin net can
be broken into two subtrees T1 and T2 as illustrated in Fig.
5(a). [7] treats all grid points on T1 as sources and all grid
points on T2 as sinks. Therefore it can find a path p(x, y) that
connects the multi-pin net with a shorter wirelength. However,
a problem with this method is that when the number of edges
utilized by a multi-pin net is very large, it consumes much
time to identify all grid points on the subtrees. Different from
[7], our adaptive multi-source multi-sink maze routing only
considers pins and Steiner points on the multi-pin net when
identifying sources and sinks. Since the number of pins and
Steiner points is usually smaller than the number of grid
points on the subtrees, our method is more efficient. Besides,
we can show that under our cost formulation as defined in
section III.C, the minimum cost found by adaptive
multi-source multi-sink maze routing is the same as that
found by [7].

Theorem 1 The solution obtained by adaptive multi-source
multi-sink maze routing has the same cost as the solution
found by multi-source multi-sink maze routing [7].
 Proof: Due to page limitation, the proof is briefly explained.
Take Fig. 5 as an example. Suppose we are rerouting the
two-pin net (a, b). For simplicity we consider the case where
there is only one minimum-cost solution p(x, y) that reconnects
T1 and T2 and is found by multi-source multi-sink maze
routing [7] as shown in Fig. 5(a).

Because x and y are neither pins nor Steiner points,
adaptive multi-source multi-sink maze routing does not treat
them as sources or sinks. Therefore, the searching would start

form pins on T1 and Steiner point s, and end at pins on T2 and
Steiner point t (see Fig. 5(b)). Assume the minimum-cost
solution to reconnect T1 and T2 found by our method is p(s, t)
which is composed of p(s, x), p(x, y), and p(y, t) as shown in Fig.
5(b) (note that s and t could be replaced by any other pin on
T1 and T2, respectively). According to the cost definition in
section III.C, if an edge is a part of the multi-pin net, its cost
is zero. This implies that the costs of p(s, x) and p(y, t) are zero
because they are parts of the multi-pin net. Therefore the total
cost of path p(x, y) in Fig. 5(a) is equal to the total cost of path
p(s, t) in Fig. 5(b).

For the case where more than two minimum-cost solutions
exist for multi-source multi-sink maze routing (i.e., paths
other than p(x, y) can also reconnect the subtrees with the
minimum cost), adaptive multi-source multi-sink maze
routing can still find a solution with the same minimum
cost.

Fig. 5. (a) The path connecting a and b is ripped up and a new path
p(x, y) connecting x and y is found. (b) The path p(s, t) is composed of
p(s, x), p(x, y), and p(y, t), and it is represented as dotted lines.

F. Refinement for congested nets
 During iterative rip-ups and reroutes as described in
section III.D, the number of overflow decreases gradually. As
the iteration goes on, the costs of edges in congested area get
dominated by the history term of the cost function. An
overflow-free edge may have no opportunity to be chosen
when routing a path due to its high history term accumulated
in previous iterations. Therefore minimizing total edge cost
does not work well for minimizing total overflow in this
circumstance.
 We propose a refinement method to minimize total
overflow when iterative historical routing gets stuck. In this
method, the cost of a routing path is defined as how much
overflow the path induces in all passed edges. When routing a
path, if passing edge e induces overflow, e is said to be an
overflow edge with coste = 1; otherwise coste = 0. In other
words, the goal of rerouting a two-pin net here is trying to
find a path with minimum number of overflow edges. It is
apparent that if there is a path without any overflow edge, it
must be picked by this strategy. For each congested two-pin
net, we rip-up and reroute it with monotonic routing first and
adaptive multi-source multi-sink maze routing if necessary.

G. Global routing for multi-layer designs
 Traditionally, global routing is assumed to be a
2-dimensional problem in which a design is considered as a
plane containing both horizontal and vertical routing tracks.
However in real industrial cases, designs are usually
composed of multiple metal layers and each layer prefers one
routing direction. For multi-layer designs, the objective of
global routing is to find a routing solution without overflow
and minimize both wirelength between tiles and via usage

(a)

as
b

p(s, x)
t

a
b

x

yp(x, y)

T1

T2

T1

(b)

x

yp(x, y)

p(y, t)

T2

3A-2

235

between layers.
 We extend our algorithm to perform global routing for
multi-layer designs. First of all, we project the routing
resource in each layer to a common plane. Then our algorithm
can be applied to solve the 2-dimensional problem. In order to
deal with the objective of minimizing via usage, formula (6)
is modified as follows:

1
1 if passing makes a bend,
0 otherwise.

e e e e

e

cost h p vc
e

vc

= + ⋅ +

=
 (9)

where vce represents whether passing the edge makes a bend.
At last, we adopt a layer assignment method [12] to assign

wires to the given layers and insert vias to connect different
layers. Due to limited space, we briefly explain the idea of the
layer assignment method. The method routes nets one by one
in the order related to the estimated routability. For each net,
it uses a dynamic programming based algorithm to assign net
segments to proper layers with minimum via count under the
condition where no additional overflow is induced.

In our experiment, the 2-layer designs have preferred
directions which allow horizontal wires in one layer and
vertical wires in the other layer. We can transform our
solution on the projected plane to the solution in the 2-layer
designs by directly inserting a via for each bend on the
routing path. Therefore we apply the layer assignment method
only for the 6-layer designs.

IV. Experimental Results

 We implement NTHU-Route in C++ language and execute
it on the Linux operating system with an AMD 2.2GHz CPU
and 8GB memory. Two benchmark suits are used in our
experiment. We first compare NTHU-Route with two
state-of-the-art works using the ISPD98 benchmark suite [13].
Then the ISPD07 benchmark suit [14] is used to show our
performance on designs with larger size.

A. Results on ISPD98 benchmarks
Table 1 shows the statistics of ISPD98 benchmarks and the

comparisons with BoxRouter [8] and FastRoute 2.0 [7]. We
compare the results in terms of overflow (OF), wirelength
(WL) and runtime. The results of BoxRouter and FastRoute
2.0 are quoted from [8] and [7], respectively. BoxRouter is
performed on a 2.8 GHz Pentium 4 Linux machine and
FastRoute 2.0 is on a Linux workstation with Intel Pentium 4

3.0 GHz CPU and 2GB memory.
For all the benchmarks, our global router obtains the

solutions without any overflow, while BoxRouter and
FastRoute leave four and three cases with overflow,
respectively. We can observe that although FastRoute is better
in reducing overflow than BoxRouter, its wirelength is worse
in most of the benchmarks. However, our global router
outperforms them in both wirelength and overflow. For the
cases without overflow, we achieve 1.93% and 2.59%
wirelength reduction rates over BoxRouter and FastRoute,
respectively. The experiment shows that we achieve a good
balance between solution quality and runtime, and outperform
the two routers for all benchmarks.

Benchmark Grids # nets
adaptec1 324x324 219794
adaptec2 424x424 260159
adaptec3 774x779 466295
adaptec4 774x779 515304
adaptec5 465x468 867441
newblue1 399x399 331663
newblue2 557x463 463213
newblue3 973x1256 551667

Table 2. The statistics of ISPD07 benchmark suite.

B. Results on ISPD07 benchmarks
Table 2 shows the statistics of ISPD07 benchmarks in

which the size of routing grids and the scale of the number of
nets are much larger than ISPD98 benchmarks. The ISPD07
benchmarks provide multi-layer designs for 2-layer and
6-layer versions. For each benchmark, we report the results of
three best global routers in the ISPD07 routing contest (i.e.,
FGR, MaizeRouter, and BoxRouter) and compare them with
our results in Table 3 by total overflow (Total OF), maximum
overflow (Max OF), and total cost (Total cost). The total cost
is composed of the total length of wire segments used on the
projected plane plus three times the number of vias. Our
router generates overflow-free solutions in 6 of 8 benchmarks
in both 2-layer and 6-layer versions. For the two remaining
and difficult benchmarks newblue1 and newblue3, we
achieve the least total overflows among all routers. Table 3
also shows the runtime of our router. The runtimes of the
other routers are not reported because they are not available
from the contest. Basically we use the same parameters in our
router for all benchmarks except the number of rip-up and
reroute iterations. For the difficult cases adaptec5, newblue1
and newblue3, we apply more iterations to improve the
solution quality with the relative increase in runtime.

BoxRouter FastRoute 2.0 NTHU-Route
Benchmark Grids # nets

OF WL Runtime(s) OF WL Runtime(s) OF WL Runtime(s)

WL
reduction

over
BoxRouter

WL
reduction

over
FastRoute

2.0
ibm01 64x64 11507 102 65588 8.3 31 68489 0.72 0 63321 4.17 - -
ibm02 80x64 18429 33 178759 34.1 0 178868 0.93 0 170531 7.44 - 4.66%
ibm03 80x64 21621 0 151299 16.9 0 150393 0.60 0 146551 5.86 3.14% 2.55%
ibm04 96x64 26163 309 173289 23.9 64 175037 1.88 0 168262 13.61 - -
ibm06 128x64 33354 0 282325 33.0 0 284935 1.36 0 278617 12.75 1.31% 2.22%
ibm07 192x64 44394 53 378876 50.9 0 375185 1.60 0 366288 15.89 - 2.37%
ibm08 192x64 47944 0 415025 93.2 0 411703 2.36 0 405169 13.17 2.37% 1.59%
ibm09 256x64 50393 0 418615 63.9 3 424949 1.92 0 415464 11.59 0.75% 2.23%
ibm10 256x64 64227 0 593186 95.1 0 595622 2.79 0 580793 33.72 2.09% 2.49%

Average 1.93% 2.59%
Table 1. The comparison of NTHU-Route to BoxRouter and FastRoute on the ISPD98 benchmark suite. ibm05 is not included in our
experiment because it is a trivial case. The WL reduction is marked by “-“ when the compared target cannot resolve overflow.

3A-2

236

FGR MaizeRouter BoxRouter NTHU-Route
Benchmark Total

OF
Max
OF

Total
cost (e5)

Total
OF

Max
OF

Total
cost (e5)

Total
OF

Max
OF

Total
cost (e5)

Total
OF

Max
OF

Total
cost (e5) Runtime(s)

adaptec1 0 0 55.8 0 0 62.26 0 0 58.84 0 0 57.11 5579.98
adaptec2 0 0 53.69 0 0 57.23 0 0 55.69 0 0 54.46 977.5
adaptec3 0 0 133.34 0 0 137.75 0 0 140.87 0 0 137.16 3802.87
adaptec4 0 0 126.05 0 0 128.45 0 0 128.75 0 0 128.66 522.29
adaptec5 0 0 155.82 2 2 176.69 0 0 164.32 0 0 160.3 15990.29
newblue1 1218 10 47.51 1348 16 50.93 400 2 51.13 352 4 47.78 2251.45
newblue2 0 0 77.67 0 0 79.64 0 0 79.78 0 0 79.22 210.21 2-

la
ye

r v
er

si
on

newblue3 36970 1090 108.18 32588 1236 114.63 38976 1088 111.64 31800 608 111 21380.57
adaptec1 60 2 90.92 0 0 99.61 0 0 104.05 0 0 90.56 5613.41
adaptec2 50 2 92.19 0 0 98.12 0 0 102.97 0 0 92.17 1010.35
adaptec3 0 0 203.44 0 0 214.08 0 0 235.87 0 0 205.04 3892.72
adaptec4 0 0 186.31 0 0 194.38 0 0 211.95 0 0 188.43 603.54
adaptec5 2480 2 264.58 2 2 305.32 0 0 298.08 0 0 265.03 16104.34
newblue1 2668 4 92.89 1348 16 101.74 400 2 101.83 352 2 90.91 2279.57
newblue2 0 0 136.08 0 0 139.66 0 0 155.07 0 0 136.01 256.62 6-

la
ye

r v
er

si
on

newblue3 53648 636 168.42 32840 1058 184.4 38976 1088 195.5 31800 204 168.4 21464.88
Table 3. The comparison of NTHU-Route with three global routers whose results are quoted from the ISPD07 global routing contest. The
overflow in the ISPD07 global routing contest is two times the overflow defined in formula (1).

Compared with MaizeRouter and BoxRouter, the total
cost of our results is smaller in most of the benchmarks
which have no overflow. On average, we achieve 2.78% and
1.83% less total costs over MaizeRouter and BoxRouter,
respectively on 2-layer benchmarks; 5.01% and 11.83%
respectively on 6-layer benchmarks. FGR performs slightly
better in terms of total cost on 2-layer benchmarks. However,
the solution quality of FGR is much worse than other routers
on 6-layer designs in which it only solves 3 of 8 benchmarks
without overflow.

C. Remarks
 Recently, FGR and BoxRouter both have been improved
and obtain better results in [15] and [16], respectively. In
addition, a new global router, Archer, has also been proposed
in [17]. All these routers can solve ISPD98 benchmarks
without overflow. Compared with them on ISPD07
benchmarks, our router still achieves the least total overflow
among all routers. As for the wirelength on ISPD98
benchmarks and the total cost on ISPD07 benchmarks, our
solution quality is comparable to their results.

V. Conclusion

In this paper, we present a new global router,
NTHU-Route, for modern designs. We provide a history
based cost function to perform iterative rip-ups and reroutes.
A congested region identification method is proposed to
specify the order for nets to be ripped up and rerouted. We
also provide a refinement method to further reduce overflow
when iterative history based rip-ups and reroutes reach its
bottleneck. For the multi-layer designs, our router finds the
solution on the projected plane followed by a layer
assignment step. Compared with two state-of-the-art works
on ISPD98 benchmarks, NTHU-Route outperforms them in
both overflow and wirelength. For the much larger designs
on ISPD07 benchmarks, NTHU-Route obtains the solution
with least overflow when comparing with the best results
reported in the ISPD07 global routing contest.

References

[1] R. Carden, J. Li and C. K. Cheng, “A global router with a
theoretical bound on the optimal solution,” in IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 15, pp. 208-216, 1996.

[2] C. Albrecht, “Global routing by new approximation
algorithms for multicommodity flow,” in IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 20, pp. 622-632, 2001.

[3] R. T. Hadsell and P. H. Madden, “Improved global routing
through congestion estimation,” in Proc. of Design
Automation Conference, pp. 28–31, 2003.

[4] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Pattern
routing: use and theory for increasing predictability and
avoiding coupling,” in IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 21, pp.
777-790, 2002.

[5] Z. Cao, T. Jing, J. Xiong, Y. Hu, L. He, and X. Hong,
“Dprouter: A fast and accurate dynamic-pattern-based global
routing algorithm,” in Proc. Asia and South Pacific Design
Automation Conf., pp. 256-261 2007.

[6] M. Pan and C. Chu, “Fastroute: A step to integrate global
routing into placement,” in Proc. Int. Conf. on
Computer-Aided Design, pp. 464–471, 2006.

[7] M. Pan and C. Chu, “Fastroute 2.0: a high-quality and
efficient global router,” in Proc. Asia and South Pacific
Design Automation Conf., pp. 250-255, 2007.

[8] M. Cho and D. Z. Pan, “Boxrouter: a new global router based
on box expansion and progressive ILP,” in Proc. of Design
Automation Conference, pp. 373–378, 2006.

[9] D. Jariwala and J. Lillis, “Trunk decomposition based global
routing optimization,” in Proc. Int. Conf. on Computer-Aided
Design, pp. 472-479, 2006.

[10] L. McMurchie and C. Ebeling, “Pathfinder: a
negotiation-based performance-driven router for FPGAs,” in
Proc. of ACM Int. Symp. on FPGAs, pp. 111–117, 1995.

[11] C. Chu and Y. Wong, “Fast and accurate rectilinear Steiner
minimal tree algorithm for VLSI design,” in Proc of Int.
Symp. on Physical Design, pp. 28–35, 2005.

[12] T.-H. Lee, Congestion-constrained Layer Assignment for Via
Minimization in Global Routing, Master Thesis, Department
of Computer Science, National Tsing Hua University, 2007.

[13] http://www.ece.ucsb.edu/~kastner/labyrinth
[14] http://www.sigda.org/ispd2007/contest.html
[15] J. A. Roy and I. L. Markov, “High-performance routing at the

nanometer Scale,” in Proc. Int. Conf. on Computer-Aided
Design, pp. 496–502, 2007.

[16] M. Cho, K. Lu, K. Yuan, and D. Z. Pan, “BoxRouter 2.0:
architecture and implementation of a hybrid and robust
global router,” in Proc. Int. Conf. on Computer-Aided Design,
pp. 503–508, 2007.

[17] M. M. Ozdal and M. D. F. Wong, “Archer: a history-driven
global routing algorithm,” in Proc. Int. Conf. on
Computer-Aided Design, pp. 488–495, 2007.

3A-2

237

