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A New Global Router for Modern Designs *

Abstract - In this paper, we present a new global router, 
NTHU-Route, for modern designs. NTHU-Route is based on 
iterative rip-ups and reroutes, and several techniques are 
proposed to enhance our global router. These techniques include 
(1) a history based cost function which helps to distribute 
overflow during iterative rip-ups and reroutes, (2) an adaptive 
multi-source multi-sink maze routing method to improve the 
wirelength of maze routing, (3) a congested region identification 
method to specify the order for nets to be ripped up and rerouted, 
and (4) a refinement process to further reduce overflow when 
iterative history based rip-ups and reroutes reach bottleneck. 
Compared with two state-of-the-art works on ISPD98 
benchmarks, NTHU-Route outperforms them in both overflow 
and wirelength. For the much larger designs from the ISPD07 
benchmark suite, our solution quality is better than or 
comparable to the best results reported in the ISPD07 routing 
contest. 

I Introduction 

 In the recent years, feature size continues to shrink. 
Although the device becomes smaller and faster, the 
shrinkage increases the wire resistance and hence 
interconnect delay. Interconnect delay has replaced transistor 
delay as the main determinant of chip performance. Therefore 
the routing problem is becoming even more important in 
VLSI design. 
 Typically, the routing problem can be divided into two 
steps due to the problem complexity: global routing and 
detailed routing. During global routing, nets are connected on 
a coarse-grain grid graph with capacity constraints. Then 
detailed routing follows the solution in global routing to find 
the exact routing solution. The quality of global routing 
affects timing, power and density in the chip area, and thus 
global routing is a very important stage in the design cycle.  
 Recent global routing techniques can be roughly 
categorized into two classes: multicommodity flow based 
techniques and rip-up and reroute techniques. 
Multicommodity flow based techniques [1, 2] formulate 
global routing as a multicommodity flow problem which can 
be mapped to a zero-one integer linear programming (ILP) 
problem. Due to the large time complexity, the ILP problem is 
often relaxed to the fractional version and solved by an 
approximation method. A recent multicommodity flow based 

router [2] is proposed by Albrecht, which provides an 
approximation method to solve the LP formulation.  
 Rip-up and reroute approach starts by routing each net 
without considering congestion. After routing all nets, 
congested areas can be identified and the nets in those areas 
are ripped up and rerouted to find less congested routes. This 
approach is a sequential one since the net to be ripped up and 
rerouted has to follow a specific order. Therefore the routing 
order in rip-up and reroute techniques affects the solution 
quality a lot. Chi Dispersion [3] and Labyrinth [4] are global 
routers which utilize rip-up and reroute techniques. Recently 
two efficient algorithms DpRouter [5] and FastRoute [6, 7] 
are proposed and outperform Chi and Labyrinth. BoxRouter 
[8] expands a box which initially covers the most congested 
region and routes all nets within the box by ILP formulation. 
Although the solution quality of BoxRouter is also better than 
Chi and Labyrinth, the large computational time for an ILP 
solver makes it less scalable. In addition to the above routing 
approaches, an optimization method based on trunk 
decomposition [9] is presented, which reduces considerable 
overflow from an initial routing solution. 
 In this paper, we present a new global router, NTHU-Route, 
for modern designs. NTHU-Route is based on iterative 
rip-ups and reroutes, and several techniques are proposed to 
enhance our global router. These techniques include (1) a 
history based cost function which helps to distribute overflow 
during iterative rip-ups and reroutes, (2) an adaptive 
multi-source multi-sink maze routing method to improve the 
wirelength of maze routing, (3) a congested region 
identification method to specify the order for nets to be ripped 
up and rerouted, and (4) a refinement process to further 
reduce overflow when iterative history based rip-ups and 
reroutes reach bottleneck. We compare our results with two 
state-of-the-art works, BoxRouter and FastRoute, on ISPD98 
benchmarks. Our global router solves all benchmarks without 
any overflow and respectively reduces the wirelength over 
BoxRouter and FastRoute by 1.93% and 2.59% on average. 
We also perform our router on ISPD07 benchmarks which 
contain multi-layer designs with larger size. The experiments 
show that our router obtains the solution with least overflow 
when comparing with the best results reported in the ISPD07 
global routing contest. 
 The rest of the paper is organized as follows. Section II 
gives the preliminaries including the problem formulation and 
introduction for some routing techniques. In section III, we 
present our global router in detail. Section IV provides the 
experimental results and we conclude the paper in section V.  
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NSC-96-2220-E-007-045 and NSC-96-2220-E-007-047. 
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II. Preliminaries 

A. Problem formulation 
 The global routing problem requires a set of nets, N = {n1,
n2,…, nk}, to be routed over a grid graph G(V, E). A net ni,
1 ≤ i ≤ k, is a set of pins. Typically the layout is partitioned 
into rectangular tiles called global bins as shown in Fig. 1 (a), 
and each pin is assumed to lie at the center of the tile that 
contains the pin. In the grid graph G shown in Fig. 1(b), each 
vertex v∈V represents a global bin and each edge e∈E
corresponds to a boundary between two adjacent global bins. 
The routing problem for a net ni is to find an additional subset 
of vertices, vi,Steiner ⊂ V, and a subset of edges, ei ⊆ E, to form 
a Steiner tree ti = (vi, ei), where vi = ni ∪ vi,Steiner.

 The supply s(e) of an edge e represents the number of 
available routing tracks it contains. The number of wires that 
utilize an edge e is called the demand d(e) on the edge. The 
overflow on an edge e is defined to be the difference between 
its demand and supply as shown below: 

( ) ( )         if ( )> ( )
( )

0                        otherwise
d e s e d e s e

overflow e
−

=       ( 1 ) 

And we define the congestion of e as the ratio of the demand 
to the supply: 

( )( )
( )

d econg e
s e

=                 ( 2 ) 

The major optimization objective of global routing is to 
minimize the total overflow on all edges: 

:      ( )                  
i

i
e

Minimize overflow e
∈E

    ( 3 ) 

Fig. 1. (a) A routing region with 4x4 global bins. (b) The 
corresponding grid graph of (a). 

B. Monotonic routing 
 Pattern routing is a method to route a two-pin net with 
predefined patterns. L-shaped and Z-shaped are two 
commonly used patterns as shown in Fig. 2(a) and Fig. 2(b), 
respectively. Pattern routing is much more efficient compared 
with maze routing which considers all edges inside a given 
window. However, the quality may be worse since the search 
space of pattern routing is more limited. In order to find the 
tradeoff between pattern routing and maze routing, FastRoute 
[7] proposed monotonic routing which provides larger 
solution space with the same time complexity as Z-shaped 
pattern routing. The idea of monotonic routing is as shown in 
Fig. 2(c). 

Fig. 2. (a) L-shaped patterns. (b) Z-shaped patterns. (c) Monotonic 
patterns. 

C. Negotiated congestion routing 
 PathFinder [10] presented a negotiated congestion 
algorithm that balances the competing goals of eliminating 
congestion and minimizing delay of critical paths for global 
routing in FPGAs. The cost of using a given edge e in a route 
is defined as: 
 ( )e e e ecost b h p= + ⋅                ( 4 ) 
where be is the base cost of using e, he is related to the history 
of congestion on e during previous iterations, and pe is related 
to the number of other nets presently passing e. In the 
beginning of routing, the algorithm routes all nets with their 
shortest-path topologies regardless of the capacity constraint. 
During subsequent iterations, he is updated in the following 
way: 

11 if   has overflow

otherwise

i
ei

e i
e

h k e
h

h
+ +

=        ( 5 ) 

where k1 is a constant. Therefore the edges which tend to be 
congested make their edge costs increase gradually during 
iterations. This helps to distribute the routing demand to other 
less congested edges. By setting the base cost be to be the 
wirelength of an edge and trying to minimize the total edge 
cost, this negotiated congestion scheme can be used to 
eliminate congestion and minimize wirelength for global 
routing in ASICs. 

III. Methodology 

A. Overview of our global router 
 In this subsection, we give an overview of our global router. 
First of all, we apply FLUTE [11] and the edge shifting 
technique [6] to generate the topology of each multi-pin net. 
Then we decompose each multi-pin net into a set of two-pin 
nets. For each two-pin net, we use L-shaped pattern routing to 
construct the initial congestion map. (See section III.B.) 
Second, we propose a history based cost function (see section 
III.C) which is used in iterative rip-ups and reroutes. Third we 
iteratively identify the congested regions on the routing area 
and rip-up and reroute two-pin nets within the regions by 
monotonic routing followed by optional adaptive 
multi-source multi-sink maze routing. The details of this step 
are in sections III.D and III.E. Finally, we apply an iterative 
refinement process to resolve the remaining overflow (see 
section III.F). Section III.G details that for multi-layer 
designs, an additional layer assignment step is required in 
order to map the solution on the projected plane to the 
original multiple layers. 

Global edges 

Global bins 

Global edges 

(b) 

Cells 

Global bins 

(a) 

(a) (b) (c) 
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B. Initial congestion map construction 
 For each multi-pin net ni∈N, we generate its rectilinear 
Steiner minimal tree (RSMT) by FLUTE [11]. Then we 
decompose each multi-pin net ni into a set of two-pin nets as 
shown in Fig. 3, in which a pin can be the pin belonging to ni
or a Steiner point. A vertical or horizontal wire in the RSMT 
is called flat wire, such as wire a-e, b-e, c-f and e-f in Fig. 
3(b). For each two-pin net, if it forms a flat wire, we assign 
the demand value 1 to the edges passed by the wire on the 
grid graph. Otherwise, we assign the demand value 0.5 to the 
edges on the bounding box of the two-pin net by assuming 
that two probabilistic L-shaped patterns can be used by this 
two-pin net. Then the edge shifting technique [6] is employed 
for each multi-pin net to further improve the RSMT topology 
by moving some edges to less congested areas. Again, we 
decompose each multi-pin net into a set of two-pin nets after 
edge shifting. In order to make the congestion map more 
accurate, we rip-up and reroute two-pin nets using L-shaped 
pattern routing. Here we adopt the cost function presented in 
[6] to formulate the edge cost. However, our initial 
congestion map construction method is different from the 
way proposed in [6]. We use edge shifting technique to 
determine the routing tree topology in initial congestion map 
construction, while [6] uses it to dynamically adjust the 
topologies during rip-ups and reroutes. 

Fig. 3. (a) A multi-pin net composed of 4 pins: a, b, c, and d. (b) 
Decompose the net in (a) into two-pin nets by the Steiner tree 
topology. The black points represent pins, and the rectangles 
represent Steiner points. 

C. History based cost function 
 The evaluation of edge cost in the routing graph plays an 
important role in the routing algorithm. As modern designs 
are getting larger, it is difficult to define a deterministic 
function that can predict the behavior of all routed nets when 
routing is proceeding. Therefore, we adopt the history idea of 
the negotiated congestion routing in our algorithm. An 
iterative rip-up and reroute method using the history based 
cost function given below is described in section III.D. For an 
edge e in the routing graph, the history based cost function is 
defined as: 
 1e e ecost h p= + ⋅                  ( 6 ) 
Basically, our cost function is a combination of wirelength 
and congestion. We set the first term in the function to be the 
value 1 which represents one unit length. In the second term, 
we let the historical term amplify the penalty of congestion 
because our main objective is to minimize the total overflow. 
For the historical cost he, it is the same as formula (5) with 
k1=1. As more and more iterations complete, the edges that 
tend to be congested have larger he than those with available 
capacity. Therefore, he helps to distribute the routing demands 
to the less congested areas in the routing graph. The 
congestion penalty term pe is defined as follows: 

2
( ) 1( )

( )
k

e
d ep

s e
+=                  ( 7 ) 

where k2 is a constant and controls the rising rate of pe. Our 
idea is to drastically increase the penalty term especially 
when the demand exceeds the supply. For an edge which still 
has much available capacity, the penalty is relatively small 
and thus encourages routing paths to pass the edge. Fig. 4 
gives the curve of formula (7) where k2 is 5.  
 In addition, if an edge e is to be considered as a part of a 
route and is already passed by another route which belongs to 
the same multi-pin net as e, then the cost of e is zero rather 
than the definition in formula (6). Doing this encourages a 
two-pin route of one multi-pin net to share the same edges 
with other two-pin routes, and thus reduces the wirelength 
and routing demands. 

Fig. 4. The curve of the congestion penalty. When an edge has no 
overflow, the penalty is relatively low, but grows drastically when 
there is overflow.

D. Rip-up and reroute based on congested region 
identification 

 In a rip-up and reroute based method, the order of nets to 
be ripped up and rerouted affects the routing quality very 
much. Usually we prefer to route nets with smaller size of 
bounding box earlier because they are less flexible than those 
with larger size. However, this strategy does not take the 
current congestion on the routing area into consideration. As a 
result, we propose a method to identify congested regions and 
rip-up and reroute two-pin nets which locate in those regions. 
 The method starts with the routing solution generated in 
section III.B. First of all, we calculate the congestion for all 
edges. Because only edges with overflow are to be considered, 
we define an interval between the maximum congestion value 
and 1. Then we partition the interval into m sub-intervals {I1,
I2,..., Im} (we use m=10 by default). For example, when the 
maximum congestion is 2, the sub-intervals are {[2, 1.9), [1.9, 
1.8), [1.8, 1.7),..., [1.1, 1)}. The definition that an edge e
belongs to one sub-interval Ii is as follows: 
 cong(e) > Ii.min_cong and  
 cong(e) Ii.max_cong
where Ii.min_cong represents the minimum value in Ii and 
Ii.max_cong represents the maximum value in Ii. By the 
definition, edges with overflow are assigned to their 
corresponding sub-intervals.  
 Following that, we identify the congested regions for edges 
in the sub-intervals. The average congestion of a region r is 
defined as follows: 

( )
_ ( )       is an edge inside 

( )
i

i
i

d e
avg cong r e r

s e
=     ( 8 ) 
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In the beginning, we pick the most congested edge e from I1
as the center and expand a rectangular region re from it until 
avg_cong(re) is smaller than I1.min_cong. The rest of the 
edges in I1 are expanded in the same way in decreasing order 
of congestion. Then the two-pin nets that locate within all 
regions expanded from edges in I1 are ripped up and rerouted. 
We first use historical monotonic routing in which the edge 
cost is formulated by the history based cost function as 
described in section III.C. If there still exist two-pin nets that 
fail to find overflow-free paths, then detour is allowed by 
applying historical adaptive multi-source multi-sink maze 
routing (see section III.E). 
 Similarly, the remaining sub-intervals I2, I3,.., Im are 
processed one by one as the same way described above. We 
apply this algorithm for several iterations to obtain a 
convergent solution. Note that after multi-pin nets are 
rerouted, the topology of each of them may have slight 
difference. As a result, we readjust the two-pin nets for each 
multi-pin net whenever an iteration completes. This increases 
the flexibility of our algorithm because the topologies of 
multi-pin nets are dynamically modified according to the 
current best routing solution.  

E. Adaptive multi-source multi-sink maze routing 
 A general maze routing algorithm must start and end in the 
original two pins of a two-pin net. Take Fig. 5(a) as an 
example. Suppose we are rerouting two-pin net (a, b) and the 
shaded region between a and b represents congested area. The 
path found by general maze routing has to detour to avoid 
congested area. Pan et al. proposed multi-source multi-sink 
maze routing [7] to improve original maze routing. After 
ripping up the path of the two-pin net, the multi-pin net can 
be broken into two subtrees T1 and T2 as illustrated in Fig. 
5(a). [7] treats all grid points on T1 as sources and all grid 
points on T2 as sinks. Therefore it can find a path p(x, y) that 
connects the multi-pin net with a shorter wirelength. However, 
a problem with this method is that when the number of edges 
utilized by a multi-pin net is very large, it consumes much 
time to identify all grid points on the subtrees. Different from 
[7], our adaptive multi-source multi-sink maze routing only 
considers pins and Steiner points on the multi-pin net when 
identifying sources and sinks. Since the number of pins and 
Steiner points is usually smaller than the number of grid 
points on the subtrees, our method is more efficient. Besides, 
we can show that under our cost formulation as defined in 
section III.C, the minimum cost found by adaptive 
multi-source multi-sink maze routing is the same as that 
found by [7]. 

Theorem 1 The solution obtained by adaptive multi-source 
multi-sink maze routing has the same cost as the solution 
found by multi-source multi-sink maze routing [7].
 Proof: Due to page limitation, the proof is briefly explained. 
Take Fig. 5 as an example. Suppose we are rerouting the 
two-pin net (a, b). For simplicity we consider the case where 
there is only one minimum-cost solution p(x, y) that reconnects 
T1 and T2 and is found by multi-source multi-sink maze 
routing [7] as shown in Fig. 5(a).  

Because x and y are neither pins nor Steiner points, 
adaptive multi-source multi-sink maze routing does not treat 
them as sources or sinks. Therefore, the searching would start 

form pins on T1 and Steiner point s, and end at pins on T2 and 
Steiner point t (see Fig. 5(b)). Assume the minimum-cost 
solution to reconnect T1 and T2 found by our method is p(s, t)
which is composed of p(s, x), p(x, y), and p(y, t) as shown in Fig. 
5(b) (note that s and t could be replaced by any other pin on 
T1 and T2, respectively). According to the cost definition in 
section III.C, if an edge is a part of the multi-pin net, its cost 
is zero. This implies that the costs of p(s, x) and p(y, t) are zero 
because they are parts of the multi-pin net. Therefore the total 
cost of path p(x, y) in Fig. 5(a) is equal to the total cost of path 
p(s, t) in Fig. 5(b). 

For the case where more than two minimum-cost solutions 
exist for multi-source multi-sink maze routing (i.e., paths 
other than p(x, y) can also reconnect the subtrees with the 
minimum cost), adaptive multi-source multi-sink maze 
routing can still find a solution with the same minimum 
cost.

Fig. 5. (a) The path connecting a and b is ripped up and a new path 
p(x, y) connecting x and y is found. (b) The path p(s, t) is composed of 
p(s, x), p(x, y), and p(y, t), and it is represented as dotted lines. 

F. Refinement for congested nets 
 During iterative rip-ups and reroutes as described in 
section III.D, the number of overflow decreases gradually. As 
the iteration goes on, the costs of edges in congested area get 
dominated by the history term of the cost function. An 
overflow-free edge may have no opportunity to be chosen 
when routing a path due to its high history term accumulated 
in previous iterations. Therefore minimizing total edge cost 
does not work well for minimizing total overflow in this 
circumstance.  
 We propose a refinement method to minimize total 
overflow when iterative historical routing gets stuck. In this 
method, the cost of a routing path is defined as how much 
overflow the path induces in all passed edges. When routing a 
path, if passing edge e induces overflow, e is said to be an 
overflow edge with coste = 1; otherwise coste = 0. In other 
words, the goal of rerouting a two-pin net here is trying to 
find a path with minimum number of overflow edges. It is 
apparent that if there is a path without any overflow edge, it 
must be picked by this strategy. For each congested two-pin 
net, we rip-up and reroute it with monotonic routing first and 
adaptive multi-source multi-sink maze routing if necessary.  

G. Global routing for multi-layer designs 
 Traditionally, global routing is assumed to be a 
2-dimensional problem in which a design is considered as a 
plane containing both horizontal and vertical routing tracks. 
However in real industrial cases, designs are usually 
composed of multiple metal layers and each layer prefers one 
routing direction. For multi-layer designs, the objective of 
global routing is to find a routing solution without overflow 
and minimize both wirelength between tiles and via usage 

(a) 
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b

p(s, x)
t

a
b

x

yp(x, y)

T1

T2

T1

(b)

x
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between layers.   
 We extend our algorithm to perform global routing for 
multi-layer designs. First of all, we project the routing 
resource in each layer to a common plane. Then our algorithm 
can be applied to solve the 2-dimensional problem. In order to 
deal with the objective of minimizing via usage, formula (6) 
is modified as follows: 

1
1         if passing  makes a bend,
0         otherwise.

e e e e

e

cost h p vc
e

vc

= + ⋅ +

=
     ( 9 ) 

where vce represents whether passing the edge makes a bend. 
At last, we adopt a layer assignment method [12] to assign 

wires to the given layers and insert vias to connect different 
layers. Due to limited space, we briefly explain the idea of the 
layer assignment method. The method routes nets one by one 
in the order related to the estimated routability. For each net, 
it uses a dynamic programming based algorithm to assign net 
segments to proper layers with minimum via count under the 
condition where no additional overflow is induced. 

In our experiment, the 2-layer designs have preferred 
directions which allow horizontal wires in one layer and 
vertical wires in the other layer. We can transform our 
solution on the projected plane to the solution in the 2-layer 
designs by directly inserting a via for each bend on the 
routing path. Therefore we apply the layer assignment method 
only for the 6-layer designs. 

IV. Experimental Results 

 We implement NTHU-Route in C++ language and execute 
it on the Linux operating system with an AMD 2.2GHz CPU 
and 8GB memory. Two benchmark suits are used in our 
experiment. We first compare NTHU-Route with two 
state-of-the-art works using the ISPD98 benchmark suite [13]. 
Then the ISPD07 benchmark suit [14] is used to show our 
performance on designs with larger size. 

A. Results on ISPD98 benchmarks 
Table 1 shows the statistics of ISPD98 benchmarks and the 

comparisons with BoxRouter [8] and FastRoute 2.0 [7]. We 
compare the results in terms of overflow (OF), wirelength 
(WL) and runtime. The results of BoxRouter and FastRoute 
2.0 are quoted from [8] and [7], respectively. BoxRouter is 
performed on a 2.8 GHz Pentium 4 Linux machine and 
FastRoute 2.0 is on a Linux workstation with Intel Pentium 4 

3.0 GHz CPU and 2GB memory. 
For all the benchmarks, our global router obtains the 

solutions without any overflow, while BoxRouter and 
FastRoute leave four and three cases with overflow, 
respectively. We can observe that although FastRoute is better 
in reducing overflow than BoxRouter, its wirelength is worse 
in most of the benchmarks. However, our global router 
outperforms them in both wirelength and overflow. For the 
cases without overflow, we achieve 1.93% and 2.59% 
wirelength reduction rates over BoxRouter and FastRoute, 
respectively. The experiment shows that we achieve a good 
balance between solution quality and runtime, and outperform 
the two routers for all benchmarks. 

Benchmark Grids # nets 
adaptec1 324x324 219794
adaptec2 424x424 260159
adaptec3 774x779 466295
adaptec4 774x779 515304
adaptec5 465x468 867441
newblue1 399x399 331663
newblue2 557x463 463213
newblue3 973x1256 551667

Table 2. The statistics of ISPD07 benchmark suite. 

B. Results on ISPD07 benchmarks 
Table 2 shows the statistics of ISPD07 benchmarks in 

which the size of routing grids and the scale of the number of 
nets are much larger than ISPD98 benchmarks. The ISPD07 
benchmarks provide multi-layer designs for 2-layer and 
6-layer versions. For each benchmark, we report the results of 
three best global routers in the ISPD07 routing contest (i.e., 
FGR, MaizeRouter, and BoxRouter) and compare them with 
our results in Table 3 by total overflow (Total OF), maximum 
overflow (Max OF), and total cost (Total cost). The total cost 
is composed of the total length of wire segments used on the 
projected plane plus three times the number of vias. Our 
router generates overflow-free solutions in 6 of 8 benchmarks 
in both 2-layer and 6-layer versions. For the two remaining 
and difficult benchmarks newblue1 and newblue3, we 
achieve the least total overflows among all routers. Table 3 
also shows the runtime of our router. The runtimes of the 
other routers are not reported because they are not available 
from the contest. Basically we use the same parameters in our 
router for all benchmarks except the number of rip-up and 
reroute iterations. For the difficult cases adaptec5, newblue1 
and newblue3, we apply more iterations to improve the 
solution quality with the relative increase in runtime. 

BoxRouter FastRoute 2.0 NTHU-Route 
Benchmark Grids # nets 

OF WL Runtime(s) OF WL Runtime(s) OF WL Runtime(s) 

WL 
reduction 

over 
BoxRouter 

WL 
reduction 

over 
FastRoute 

2.0 
ibm01 64x64 11507 102 65588 8.3 31 68489 0.72 0 63321 4.17 - - 
ibm02 80x64 18429 33 178759 34.1 0 178868 0.93 0 170531 7.44 - 4.66% 
ibm03 80x64 21621 0 151299 16.9 0 150393 0.60 0 146551 5.86 3.14% 2.55% 
ibm04 96x64 26163 309 173289 23.9 64 175037 1.88 0 168262 13.61 - - 
ibm06 128x64 33354 0 282325 33.0 0 284935 1.36 0 278617 12.75 1.31% 2.22% 
ibm07 192x64 44394 53 378876 50.9 0 375185 1.60 0 366288 15.89 - 2.37% 
ibm08 192x64 47944 0 415025 93.2 0 411703 2.36 0 405169 13.17 2.37% 1.59% 
ibm09 256x64 50393 0 418615 63.9 3 424949 1.92 0 415464 11.59 0.75% 2.23% 
ibm10 256x64 64227 0 593186 95.1 0 595622 2.79 0 580793 33.72 2.09% 2.49% 

Average  1.93% 2.59% 
Table 1. The comparison of NTHU-Route to BoxRouter and FastRoute on the ISPD98 benchmark suite. ibm05 is not included in our 
experiment because it is a trivial case. The WL reduction is marked by “-“ when the compared target cannot resolve overflow.
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FGR MaizeRouter BoxRouter NTHU-Route 
Benchmark Total 

OF 
Max 
OF 

Total 
cost (e5) 

Total 
OF 

Max 
OF 

Total 
cost (e5) 

Total 
OF 

Max 
OF 

Total 
cost (e5) 

Total 
OF 

Max 
OF 

Total 
cost (e5) Runtime(s) 

adaptec1 0 0 55.8 0 0 62.26 0 0 58.84 0 0 57.11 5579.98 
adaptec2 0 0 53.69 0 0 57.23 0 0 55.69 0 0 54.46 977.5 
adaptec3 0 0 133.34 0 0 137.75 0 0 140.87 0 0 137.16 3802.87 
adaptec4 0 0 126.05 0 0 128.45 0 0 128.75 0 0 128.66 522.29 
adaptec5 0 0 155.82 2 2 176.69 0 0 164.32 0 0 160.3 15990.29 
newblue1 1218 10 47.51 1348 16 50.93 400 2 51.13 352 4 47.78 2251.45 
newblue2 0 0 77.67 0 0 79.64 0 0 79.78 0 0 79.22 210.21 2-

la
ye

r v
er

si
on

 

newblue3 36970 1090 108.18 32588 1236 114.63 38976 1088 111.64 31800 608 111 21380.57 
adaptec1 60 2 90.92 0 0 99.61 0 0 104.05 0 0 90.56 5613.41 
adaptec2 50 2 92.19 0 0 98.12 0 0 102.97 0 0 92.17 1010.35 
adaptec3 0 0 203.44 0 0 214.08 0 0 235.87 0 0 205.04 3892.72 
adaptec4 0 0 186.31 0 0 194.38 0 0 211.95 0 0 188.43 603.54 
adaptec5 2480 2 264.58 2 2 305.32 0 0 298.08 0 0 265.03 16104.34 
newblue1 2668 4 92.89 1348 16 101.74 400 2 101.83 352 2 90.91 2279.57 
newblue2 0 0 136.08 0 0 139.66 0 0 155.07 0 0 136.01 256.62 6-

la
ye

r v
er

si
on

 

newblue3 53648 636 168.42 32840 1058 184.4 38976 1088 195.5 31800 204 168.4 21464.88 
Table 3. The comparison of NTHU-Route with three global routers whose results are quoted from the ISPD07 global routing contest. The 
overflow in the ISPD07 global routing contest is two times the overflow defined in formula (1).

Compared with MaizeRouter and BoxRouter, the total 
cost of our results is smaller in most of the benchmarks 
which have no overflow. On average, we achieve 2.78% and 
1.83% less total costs over MaizeRouter and BoxRouter, 
respectively on 2-layer benchmarks; 5.01% and 11.83% 
respectively on 6-layer benchmarks. FGR performs slightly 
better in terms of total cost on 2-layer benchmarks. However, 
the solution quality of FGR is much worse than other routers 
on 6-layer designs in which it only solves 3 of 8 benchmarks 
without overflow.

C. Remarks 
 Recently, FGR and BoxRouter both have been improved 
and obtain better results in [15] and [16], respectively. In 
addition, a new global router, Archer, has also been proposed 
in [17]. All these routers can solve ISPD98 benchmarks 
without overflow. Compared with them on ISPD07 
benchmarks, our router still achieves the least total overflow 
among all routers. As for the wirelength on ISPD98 
benchmarks and the total cost on ISPD07 benchmarks, our 
solution quality is comparable to their results.  

V. Conclusion 

In this paper, we present a new global router, 
NTHU-Route, for modern designs. We provide a history 
based cost function to perform iterative rip-ups and reroutes. 
A congested region identification method is proposed to 
specify the order for nets to be ripped up and rerouted. We 
also provide a refinement method to further reduce overflow 
when iterative history based rip-ups and reroutes reach its 
bottleneck. For the multi-layer designs, our router finds the 
solution on the projected plane followed by a layer 
assignment step. Compared with two state-of-the-art works 
on ISPD98 benchmarks, NTHU-Route outperforms them in 
both overflow and wirelength. For the much larger designs 
on ISPD07 benchmarks, NTHU-Route obtains the solution 
with least overflow when comparing with the best results 
reported in the ISPD07 global routing contest. 
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