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Abstract

We introduce a new formulation of the double-differenced GLONASS FDMA model. It closely resembles that of CDMA-

based systems and it guarantees the estimability of the newly defined GLONASS ambiguities. The formulation is made 

possible because of our defining new concept of integer-estimability and the analytical construction of a special integer 

matrix canonical decomposition. As a result, an easy-to-compute new design matrix is created that automatically establishes 

the integer-estimability of the ambiguities. The presented model is generally applicable, and its close resemblance to its 

CDMA-counterparts implies that available CDMA-based GNSS software is easily modified and that existing methods of 

integer ambiguity resolution can be directly applied. Also, because of their similar structure, many of the available CDMA 

results with corresponding insights can now be directly translated to the GLONASS case. We make use of this property to 

provide insight into the ambiguity resolution capabilities of the model and to analyze the characteristics of the GLONASS 

ambiguity dilution of precision.

Keywords GLONASS · Frequency-division multiple access (FDMA) · Code-division multiple access (CDMA) · Global 

navigation satellite system (GNSS) · Integer-estimability · Admissible ambiguity transformation · Integer ambiguity 

resolution (IAR) · Integer canonical decomposition · Ambiguity dilution of precision (ADOP)

Introduction

We introduce a new formulation of the GLONASS FDMA 

model and one that closely resembles that of CDMA-based 

systems. It is well known that the linearized double-dif-

ferenced (DD) single-epoch, short-baseline model of any 

CDMA-based GNSS system can be formulated as (Teunis-

sen and Montenbruck 2017)

in which, in case of two frequencies and m satellites, 

p ∈ ℝ
2(m−1) and � ∈ ℝ

2(m−1) denote the DD code and phase 

observables, e = (1, 1)T  , ⊗ denotes the Kronecker prod-

uct, G ∈ ℝ
(m−1)×� is the relative receiver-satellite geometry 

matrix, � = diag(�1, �2) the diagonal matrix of wavelengths; 

b ∈ ℝ
� the baseline vector ( � = 3 in the absence of a Zenith 

Tropospheric Delay, otherwise � = 4 ) and a ∈ ℤ
2(m−1) the 

integer vector of DD ambiguities.

We will show that the with (1) corresponding GLONASS 

FDMA model can be formulated as

in which L ∈ ℝ
(m−1)×(m−1) is a full-rank lower triangu-

lar matrix, for which we will provide an easy-to-compute 

analytical form, and a ∈ ℤ
2(m−1) is a new integer ambigu-

ity vector that contains integer-estimable functions of the 

GLONASS undifferenced integer ambiguities. As we will 

show, our new formulation (2) is made possible because of 

two important findings: first, our defining new concept of 

integer-estimability and second, the analytical construction 

of a special integer matrix canonical decomposition. It is a 

consequence of these results that for the GLONASS ambi-

guities to be integer-estimable, the double-differenced GLO-

NASS FDMA model must be of the above discovered form.

The close resemblance between our GLONASS model 

and the DD CDMA models (i.e., by setting L = I
m−1

 , 2 

reduces to 1) implies, next to its general applicability, that 

(1)�

[

p

𝜙

]

=

[

e ⊗ G 0

e ⊗ G 𝛬⊗ Im−1

][

b

a

]

(2)�

[

p

𝜙

]

=

[

e ⊗ G 0

e ⊗ G 𝛬⊗ L

][

b

a

]
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available CDMA-based GNSS software is easily modified 

and that existing methods of integer ambiguity resolution 

can be directly applied. Also, because of their similar struc-

ture, many of the available CDMA results with correspond-

ing insights can be translated to the GLONASS case. For 

instance, with QCDMA

ââ
 being the DD CDMA-based ambiguity 

variance matrix, the corresponding GLONASS ambiguity 

variance matrix for a similar measurement situation reads 

then

with �  the wavelength ratios between the two systems. Thus, 

through the analytically provided inverse of the lower trian-

gular matrix L, one may already obtain clear insights into 

the ambiguity resolution capabilities of GLONASS and into 

its performance as compared to a CDMA-based GNSS. We 

make use of this property to analyze the characteristics of 

the GLONASS ambiguity dilution of precision (ADOP).

As integer-estimability of the ambiguities may change 

when extra parameters are added to the phase equations, 

we also provide a general method to recover the integer-

estimability again. As one of the given examples, the method 

is applied and further worked out when, for the long-baseline 

case, the ionospheric delays need to be included, while the 

GLONASS code data cannot be relied on due to the pres-

ence of unknown inter-frequency code biases. It is shown 

how the integer-estimability for such GLONASS phase-only 

processing can be recovered thus enabling the applicability 

of standard methods of integer ambiguity resolution again.

This contribution is organized as follows. We first provide 

a brief review of the GLONASS observation equations. Then, 

we introduce our new concept of integer-estimability, from 

which we learn that the two conditions of estimability and inte-

gerness are not sufficient to guarantee integer-estimability. This 

has the important consequence that when estimable integer 

functions are used for ambiguity resolution that are not integer-

estimable, one may in fact be fixing the undifferenced integer 

ambiguities to non-integer values, thereby thus constraining 

the model to physically inconsistent and wrong values. We 

provide the explicit conditions that ensure integer-estimability 

and use them to show how integer-estimable functions can be 

created and how a given design matrix can be expressed in 

them. Following this we provide an analytical integer matrix 

decomposition of a specially patterned matrix that, together 

with integer-estimability results, enables us to establish and 

formulate our GLONASS integer-estimable DD model in the 

form of (2). We hereby also give an explicit description of 

the model’s entries of a ∈ ℤ
2(m−1) , i.e., the integer-estimable 

functions of the GLONASS undifferenced integer ambigui-

ties. This is then followed by an ADOP-based analysis of the 

model’s expected ambiguity resolution performance. Finally 

we show, when extra parameters are added to the phase equa-

tions, how to recover the integer-estimability again. Numerical 

(3)QGLONASS

ââ
= (𝛤 ⊗ L−1)QCDMA

ââ
(𝛤 ⊗ L−T )

examples are given to illustrate the workings of the model 

and underlying theory. We conclude with a summary and an 

outlook of exciting future applications of the model.

The following notation is used: ℝm denotes the m-dimen-

sional space of real numbers and ℤn the n-dimensional space 

of integers. The Kronecker product (Henderson et al. 1983) 

is denoted as ⊗ and the weighted squared-norm as 

|| ⋅ ||2
M
= (⋅)TM

−1(⋅) . Diagonal and blockdiagonal matrices 

are denoted as diag(…) and blockdiag(…) , respectively, 

while admissible ambiguity transformations are denoted as 

Z ; they are integer and have an integer inverse (Teunissen 

1995). A basis matrix of a subspace V is a matrix of which 

the column vectors form a basis of V . �(⋅) and �(⋅) are the 

expectation and dispersion operators, respectively, and Qpp 

and Q�� the zenith-referenced variance matrices of code and 

phase. Single differences (SD) are defined as 

(⋅)s
1r,j

= (⋅)s
r,j
− (⋅)s

1,j
 and double differences (DD) as 

(⋅)1s
1r,j

= (⋅)s
1r,j

− (⋅)1
1r,j

= [(⋅)s
r,j
− (⋅)s

1,j
] − [(⋅)1

r,j
− (⋅)1

1,j
].

GLONASS observation equations

To distinguish the signals coming from different satellites, cur-

rent GLONASS uses the frequency-division multiple access 

(FDMA) technique, whereby the broadcast signals in the L1 

and L2 bands are transmitted on 14 different adjacent frequen-

cies. Antipodal satellites share the same frequency, so as to 

realize a full constellation  (Leick et al. 2015; Teunissen and 

Montenbruck 2017). For the m GLONASS satellites, the L1 

and L2 carrier frequencies are defined as (Reussner and Wan-

ninger 2011),

whereby the sub-bands are identified by the 14 satellite 

channel numbers �s ∈ [− 7,+ 6] , the two channel frequency 

separations are Δf
1
= 9∕16 and Δf

2
= 7∕16 , and the L1 and 

L2 frequencies are given as f 0

1
= 1602 MHz and f 0

2
= 1246 

Mhz. Note that Δf
1
∕f 0

1
= Δf

2
∕f 0

2
= 1∕2848.

The single-differenced (SD) GLONASS code and phase 

observation equations of two receivers 1 and r, tracking satel-

lite s, read for j = 1, 2  (Leick 1998; Leick et al. 2015; Teunis-

sen and Montenbruck 2017)

with ps
1r,j

 and �s
1r,j

 the code and phase observable, �s

1r
 the 

sum of the non-dispersive range and tropospheric delay, dt1r,j 

and �t1r,j the receiver code and phase clock terms, �s
1r,j

 the 

ionospheric delay, ds
1r,j

 the inter-frequency (or inter-channel) 

code bias, and zs
1r,j

 the between-receiver integer ambiguity 

(4)f s
j
= f 0

j
+ �

s
Δfj, j = 1, 2, s = 1,… , m

(5)

�(ps
1r,j

) =�s
1r
+ dt1r,j + �s

1r,j
+ ds

1r,j

�(�s
1r,j

) =�s
1r
+ �t1r,j − �s

1r,j
+ �s

j
zs

1r,j
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of satellite s, having the wavelength �s
j
= c∕f s

j
 as its 

coefficient.

Note that we omitted the inter-frequency phase bias �s
1r,j

 

from (5). This is permitted as this term is small enough to 

be neglected for all practical purposes (Sleewaegen et al. 

2012). Also note, since we treat the GLONASS code and 

phase data in a way that is completely analogous to that of 

a CDMA system that no apparent inter-frequency phase 

bias is present in our phase equations. As explained in 

Takac (2009), Sleewaegen et al. (2012) and Banville et al. 

(2018), since dt1r,j ≠ �t1r,j , such bias slips into the phase 

equations when code and phase data would be used to get 

an a-priori estimate of a reference ambiguity. Such, how-

ever, is not the case with (5).

The structure of the above pair of GLONASS observa-

tion equations differs in two ways from that of a corre-

sponding CDMA system. With a CDMA system, the inter-

frequency SD code biases are absent and the wavelengths 

are satellite independent. This implies that for a CDMA 

system, its pair of double-differenced (DD) observation 

equations is free from the clock terms and inter-frequency 

biases, and that it can be directly parametrized in its own 

DD integer ambiguity. In case of GLONASS, however, the 

DD observation equations of receivers 1 and r, tracking 

satellites 1 and s, take the form

Hence, the code and phase clocks, dt1r,j and �t1r,j , get elimi-

nated in the double-differencing, but the inter-frequency 

biases generally not. Also, since �s
j
≠ �

1

j
 , the two SD integer 

ambiguities zs
1r,j

 and z1

1r,j
 fail to form a single DD integer 

ambiguity, this in contrast to the CDMA DD phase 

equations.

In the following, we will assume that d1s
1r,j

 can either be 

neglected or a-priori corrected for. Previous studies have 

reported that the differential inter-frequency code biases 

can be neglected in case the baseline is formed from an 

homogeneous pair of receiver setups (i.e., having same 

receiver types, firmware and antennas) and that in case of 

mixed receivers, the biases can be calibrated because of 

their stability over time (Yamada et al. 2010; Chuang et al. 

2013; Aggrey and Bisnath 2016; Liu et al. 2017; Hakans-

son et al. 2017). In the second last section, we will return 

to this assumption and discuss different ways of 

accommodation.

We will also assume for the moment that the differential 

ionospheric delays are absent. This does not affect the gen-

erality of our method, but restricts the model for the moment 

to short-baseline applications. Also this aspect will be taken 

up in the second last section, where we will show how our 

(6)
�(p1s

1r,j
) =�1s

1r
+ �1s

1r,j
+ d1s

1r,j

�(�1s
1r,j

) =�1s
1r
− �1s

1r,j
+ �s

j
zs

1r,j
− �1

j
z1

1r,j

model formulation is made applicable for long baselines. 

With these assumptions and with

which follows from �s
j
= �

0

j
f 0

j
∕f s

j
 , we can write (6) as

Note that instead of the CDMA-familiar DD form 

z1s
1r,j

= zs
1r,j

− z1

1r,j
 , the GLONASS ambiguities in (8) are 

shown in the non-integer form zs
1r,j

∕as − z1

1r,j
∕a1 . This has as 

consequence that the current theory of integer ambiguity 

resolution (Teunissen 2017) cannot be directly and rigor-

ously applied to GLONASS.

The purpose of this contribution is to present a new GLO-

NASS FDMA model that enables a direct and rigorous 

application of integer ambiguity resolution. In order to do 

so, we need to get an understanding on how to exploit the 

integerness of the between-receiver ambiguities in (8). First 

note that the problem is underdetermined since there are 

more between-receiver ambiguities than DD equations. A 

simple remedy for this would of course be to lump the ambi-

guity terms together and consider the difference 

zs
1r,j

∕as − z1

1r,j
∕a1 as one parameter (as is done in CDMA 

systems when forming their DD ambiguities). This indeed 

solves for the underdeterminancy, but it also spoils the inte-

gerness in the combination. To remedy this loss of inte-

gerness, one could then think of getting rid of the fractions 

in zs
1r,j

∕as − z1

1r,j
∕a1 and use instead of (8), the following 

formulation

Now, we can remove the underdeterminancy and still retain 

t he  in teger ness  i f  we  t rea t  t he  d i f fe rence 

�1s
1r,j

= a1zs
1r,j

− asz
1

1r,j
∈ ℤ as one parameter. Each DD phase 

equation will then have one such ambiguity-based parameter, 

and each of them will be integer. Since this looks quite like 

the situation we have with the CDMA DD phase equations, 

one might then think that one can directly apply current 

methods of integer ambiguity resolution again. This conclu-

sion is, however, wrong.

To appreciate the shortcoming of this reasoning, we 

first need to develop the concept of integer-estimability. 

By means of this new concept of integer-estimability, we 

will then also be able to discover which integer functions 

(7)�
s
j
= 2848�0

j
∕as, with as = 2848 + �

s ∈ ℤ

(8)

�(p1s
1r,j

) =�1s
1r

�(�1s
1r,j

) =�1s
1r
+ 2848�0

j

[

zs
1r,j

as

−
z1

1r,j

a1

]

(9)

�(p1s
1r,j

) =�1s
1r

�(�1s
1r,j

) =�1s
1r
+

2848�0

j

a1as

[a1zs
1r,j

− asz
1

1r,j
]
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of the between-receiver integer GLONASS ambiguities 

can be taken as the proper functions for integer ambiguity 

resolution.

Integer‑estimability in mixed‑integer 
models

In this section, we introduce the new concept of integer-

estimability. It generalizes the well-known concept of esti-

mability from linear model theory to that of mixed-integer 

linear models.

Integer‑estimability

Much of estimation theory that we use today is based on the 

concept of estimability (Grafarend and Sanso 1985; Koch 

1999; Teunissen 2000; Muller and Stewart 2006). For a lin-

ear model �(y) = Ax , a linear function of x, say FT
x , is said 

to be estimable if and only if a linear function of y exists that 

has expected value FT
x . Since the expectation of any linear 

function of y is equal to that same linear function of the rows 

of A times x, it follows that FT
x is estimable if and only if 

there is a linear function of the rows of A that is equal to FT.

As we will show below, this concept of estimability is 

not sufficient to cover the estimation requirements of mixed-

integer models, i.e., models that contain both real-valued and 

integer-valued parameters, such as the GNSS models that 

include carrier-phase measurements. We therefore need to 

generalize the estimability concept to that of integer-estima-

bility. Next to being estimable and integer, functions of inte-

ger parameters also need to guarantee that their integerness 

corresponds with integer values of the parameters the func-

tion is taken of. This is particularly crucial in the context of 

integer ambiguity resolution. Would this condition not be 

met, then the integer fixing of integer functions that are not 

integer-estimable implies that one can fix the undifferenced 

integer ambiguities to non-integer values and thus force the 

model to inconsistent and wrong constraints.

The following theorem provides the necessary and suf-

ficient conditions that a function of integer parameters needs 

to satisfy in order to be integer-estimable.

Theorem 1 (Integer-Estimability) Let �(y) = Az + Bb be 

a mixed-integer model, where y ∈ ℝ
m z ∈ ℤ

n and b ∈ ℝ
� . 

Then, the necessary and sufficient conditions for p linearly 

independent functions z̃ = FTz to be estimable or integer-

estimable are as follows:

1. z̃ = FTz is estimable iff F = A
T
B
⟂

X for some X, where 

B
⟂ is a basis matrix of the orthogonal complement of the 

range space of B.

2. z̃ = FTz is integer-estimable iff F = A
T
B
⟂

X for some X 

and FT
Z = [Ip, 0] for some admissible ambiguity trans-

formation Z.

Proof For the proof, see ’Appendix.’   ◻

The above theorem clearly shows that the estimability of 

z̃ = FTz and the integerness of F ∈ ℤ
n×p are not sufficient to 

guarantee that z̃ is integer-estimable. Next to the estimability 

of z̃ = FTz , the p × n matrix FT also needs to be equal to the 

first p rows of an n × n admissible ambiguity transformation, 

which then, of course, implicitly implies the integerness of 

F as well. Note that as a special case, when p = n , FT
Z = Ip 

must hold, meaning that then FT itself must be an admissible 

ambiguity transformation (Teunissen 1995).

As an important consequence of the above theorem, we 

have that the integer-estimable functions of a more relaxed 

model can always be written as linear combinations of the 

integer-estimable functions of the original model. To see 

this, consider the more relaxed model �(y) = Az + Bb + Cc , 

having the entries of vector c as the additional unknown 

parameters. For z̃ = FTz now to be estimable, we must have 

F = A
T (B, C)⟂Y  for some Y. Since the column vectors of 

basis matrix (B, C)⟂ can be written as linear combinations of 

those of basis matrix B⟂ , i.e., (B, C)⟂ = B
⟂

V for some matrix 

V, it follows that F = A
T
B
⟂

VY  , which indeed are combina-

tions of the estimable functions under the original model 

�(y) = Az + Bb.

This property is also important in the context of the GLO-

NASS model. It shows that for any relaxation of the model, 

the then valid integer-estimable ambiguities will always be 

functions of the basic set of GLONASS integer-estimable 

ambiguities. We will make use of this property in the second 

last section, when we add the ionospheric delays and other 

parameters to the model.

We now provide a few examples to see Theorem 1 at 

work.

Example 1 (Wide-lane narrow-lane integer fixing) The 

wide-lane and narrow-lane ambiguities, z
w
= z

1
− z

2
 and 

z
n
= z

1
+ z

2
 , are two well-known combinations of GPS DD 

ambiguities (Goad 1992; Teunissen 1995). However, as the 

following shows, they may not be used in paired form for 

integer ambiguity resolution:

Since F ∈ ℤ
2×2 , both the wide-lane and narrow-lane are inte-

ger whenever the DD ambiguities are integer. The converse 

is not true, however. Since the inverse of F is not admissible, 

the DD ambiguities z
1
 and z

2
 are not anymore guaranteed 

(10)

[

zw

zn

]

=

[

1 − 1

1 1

]

FT

[

z1

z2

]

,

[

z1

z2

]

=

1

2

[

1 1

−1 1

]

F−T≠Z

[

zw

zn

]
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to be integer, for every integer values of z
w
 and z

n
 . Hence, 

would one integer resolve (zw, zn)
T , one may implicitly have 

fixed the integer DD ambiguities to non-integer values and 

thereby thus have forced the model to inconsistent and 

wrong constraints.

Example 2 (Phase-only integer-estimability) The GPS dual-

frequency phase-only coefficient matrix of its L1 and L2 

DD ambiguities, z
1
 and z

2
 (in cycles), and first-order DD 

ionospheric delay � (in range) is given as

With A = diag(�1, �2) and B = (−1,−
�

2

2

�
2

1

)T  ,  we get 

A
T
B
⟂ = �2(

�2

�1

,−1)T , which, with the GPS wavelength ratio 

�
2
∕�

1
= 77∕60 , gives as integer matrix F

T = (77,−60) . 

Since FT
Z = [1, 0] for

it follows that the ambiguity combination z̃ = 77z
1
− 60z

2
 is 

integer-estimable, while ñ = 9z
1
− 7z

2
 is not. Thus, instead 

of two ambiguities, only one particular combination of these 

two ambiguities is integer-estimable (Teunissen 1996). A 

corresponding modernized GPS triple-frequency phase-only 

analysis can be found in (Teunissen and Odijk 2003).

Example 3 (A non-integer-estimable integer combination) 

From the GLONASS observation equations (9) follow that 

for two satellites 1 and 2, the integer combination 

�,j = −a2z1

1r,j
+ a1z2

1r,j
∈ ℤ is estimable. To check whether it 

is integer-estimable, we apply Theorem 1. This gives

with integers � and � satisfying −�a2 + �a1 = GCD(a1, a2) , 

whereby GCD(a1, a2) denotes the Greatest Common Divi-

sor of a
1
 and a

2
 . (The integers and GCD can be computed 

with the extended Euclidean algorithm.) The rationale in 

the construction of the above admissible Z is as follows. 

First, we recognize that the null space of FT is spanned by 

(a1, a2)
T . Hence, the last column vector of Z must be in this 

direction. However, in order be able to extend such vector to 

an integer basis, the GCD of its entries must equal 1. This is 

generally not the case for (a1, a2)
T , but always the case when 

this vector is scaled by GCD(a1, a2)
−1 . Now that we know 

the last column vector of Z , the first column vector follows 

(11)

[

�
1

0 − 1

0 �
2

−

�
2

2

�
2

1

]

(12)Z =

[

−7 60

−9 77

]

, with Z
−1

=

[

77 − 60

9 − 7

]

(13)[−a2, a1]
FT

[

�
a1

GCD(a1,a2)

�
a2

GCD(a1,a2)

]

Z

= [GCD(a1, a2)
L

, 0]

from the condition that Z must be admissible and thus have 

a determinant equal to ±1.

With an application of Theorem 1, it now follows directly 

from (13), since FTZ = [L, 0] that the integer combination 

�,j = −a2z1

1r,j
+ a1z2

1r,j
 is not integer-estimable in general. 

Integer-estimability would only be true in the special case 

that GCD(a1, a2) = 1 . With the use of the GCD-properties 

GCD(a1, 1) = 1 and GCD(a1, a2) = GCD(a1, a2 − a1) , it fol-

lows that then at least one of the three conditions, a
1
= 1 , 

a
2
= 1 or |a

2
− a

1
| = 1 , needs to be satisfied for the integer 

combination � to become integer-estimable.

Example 4 (Integer combination of DD ambiguities) Another 

integer combination that is estimable is

It is an integer combination of GLONASS DD ambiguities, 

which can be written in terms of the undifferenced ambigui-

t ies  as  �
,j = FTz  ,  where F

T = [a23,−a13, a12] and 

z = [z1

1r,j
, z2

1r,j
, z3

1r,j
]T . As we have the decomposition

with �a
23
− �a

13
= g and g = GCD(a23, a13) , it directly fol-

lows that �
,j is not integer-estimable in general. It is integer-

estimable if a
23

= 1 , a
13

= 1 or a
12

= 1 , since then g = 1 . 

Note that GCD(a23, a13) = GCD(a23, a12).

The last two examples showed estimable integer combi-

nations that do not satisfy the conditions of Theorem 1 and 

therefore are not integer-estimable. The following corollary 

shows what one can do to extract integer-estimable functions 

from combinations that are estimable and integer.

Corollary 1 (Integer-estimability from estimable inte-

ger functions) Let GTz be estimable and integer with 

G
TZ = [L, 0] ( |L| ≠ ±1 ). Then, GTz is not integer-estimable, 

but z̃ = FTz , with FT = [Ip, 0]Z
−1 , is. The integer-inestima-

ble GTz can then be expressed in the integer-estimable z̃ as 

GTz = Lz̃.

Proof For the proof, see ’Appendix.’   ◻

The significance of the above corollary is that it has two 

very important practical consequences. First, it shows how 

one can construct integer-estimable functions from functions 

GTz that are shown to be integer-inestimable by means of 

the decomposition GTZ = [L, 0] . It will therefore allow us 

(14)�,j = a12z13

1r,j
− a13z12

1r,j

(15)[a23,−a13, a12]
FT

⎡
⎢
⎢
⎣

� a13∕g 1

� a23∕g 1

0 0 1

⎤
⎥
⎥
⎦

Z

= [g, 0, 0]
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to discover the basic set of integer-estimable ambiguities. 

Second, the corollary shows that if GTz is part of a model’s 

design matrix that it can directly be replaced by Lz̃ , without 

an explicit knowledge of the admissible transformation Z.

We now show two examples of how the admissible Z 

of GTZ = [L, 0] can be used to construct integer-estimable 

functions from it.

Example 5 (Observing integer combinations of integers) 

Consider the 2m observation equations in the three unknown 

integers z
1
 , z

2
 and z

3
:

Then, FTz is clearly estimable and integer. But from

it follows that FTz is not integer-estimable. According to 

Corollary 1, we can use the inverse

to find the integer-estimable combinations as

Hence, in terms of the integer-estimable parameters, the 

observation equations (16) become

whereby  t he  i n t ege r- i ne s t imab l e  pa ramete r 

ñ = 3z
1
+ 2z

2
− 2z

3
 has now been discarded.

Example 6 (The first integer-estimable GLONASS ambiguity) 

R e c a l l  t h a t  t h e  i n t e g e r  c o m b i n a t i o n 

�,j = −a2z1

1r,j
+ a1z2

1r,j
= [GCD(a1, a2), 0]Z−1[z1

1r,j
, z2

1r,j
]T was 

shown to be integer-inestimable (see 13). It shows, while �
,j 

is integer whenever the GLONASS ambiguities z1

1r,j
 and z1

1r,j
 

(16)�

�
yi1

yi2

�
=

�
5 − 1 − 1

1 16 − 11

�

A=FT

⎡⎢⎢⎣

z1

z2

z3

⎤
⎥⎥⎦
, i = 1,… , m

(17)F
T
Z =

�
7 − 2 0

−31 5 0

�
, with Z =

⎡
⎢⎢⎣

2 0 1

0 1 2

3 1 3

⎤⎥⎥⎦

(18)Z
−1

=

⎡
⎢
⎢
⎣

−1 − 1 1

−6 − 3 4

3 2 − 2

⎤
⎥
⎥
⎦

(19)

[

z̃1

z̃2

]

= [I2, 0]Z
−1

=

[

−z1 − z2 + z3

−6z1 − 3z2 + 4z3

]

(20)
�

[

yi1

yi2

]

=

[

7 − 2

−31 5

]

L

[

z̃1

z̃2

]

, i = 1,… , m

are integer, that the converse is not true, since with �
,j being 

an integer, �,j∕GCD(a1, a2) will generally not be an integer. 

We can now apply Corollary 1 to construct a GLONASS 

ambiguity which is integer-estimable. Since the inverse of 

Z of (13) is given as

the integer-estimable GLONASS ambiguity, one for each 

frequency, follows as

Hence, for two satellites 1 and 2, the dual-frequency geom-

etry-free DD GLONASS phase observation equations read

with ambiguity coefficient

The integer-estimable GLONASS ambiguity z̃12

1r,j
 of its DD 

observation equation is thus not a DD ambiguity, as is the 

case with CDMA systems like GPS, but instead a special 

integer combination of its SD integer ambiguities (see 22).

Individual and joint integer‑estimability

With our discovery of the scalar integer-estimable GLO-

NASS ambiguity z̃12

1r,j
 of (22) one would perhaps be 

inclined to think that when m satellites are observed, one 

can replicate the approach of Example 6 and formulate all 

m − 1 DD observation equations as follows

This would, however, be incorrect from an integer ambiguity 

resolution point of view as individual integer-estimability 

does not imply joint integer-estimability. The following two 

examples make this difference between individual and joint 

integer-estimability clear.

Example 7 (Wide-lane or narrow-lane integer fixing) The 

wide-lane and narrow-lane ambiguities are separately inte-

ger-estimable, since

(21)Z
−1 =

[

−
a2

GCD(a1,a2)

a1

GCD(a1,a2)

� − �

]

,

(22)z̃12

1r,j
= [1, 0]Z−1z =

a1z2

1r,j
− a2z1

1r,j

GCD(a1, a2)
, j = 1, 2

(23)�(𝜙12

1r,j
) = 𝜌12

1r
+ c12,jz̃

12

1r,j
, j = 1, 2

(24)c12,j =
2848�0

j
GCD(a1, a2)

a1a2

(25)�(𝜙1s
1r,j

) = 𝜌1s
1r
+ c1s,jz̃

1s
1r,j

, s = 2,… , m, j = 1, 2
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But although they are both separately integer-estimable, 

they are not jointly integer-estimable as Example 1 has 

shown. Thus, one will always be able to find integer L1 and 

L2 DD ambiguities for each integer wide-lane ambiguity 

z
w
∈ ℤ , and also separately for each integer narrow-lane 

ambiguity z
n
∈ ℤ , but not necessarily for each integer pair 

(zw, zn)
T ∈ ℤ

2.

Example 8 (Joint integer-inestimability) Consider z̃12

1r,j
 and 

z̃13

1r,j
 (see 25), and let us assume that their GCDs are equal to 

one: GCD(a1, a2) = 1 and GCD(a1, a3) = 1 . Then, both 

−a2z1

1r,j
+ a1z2

1r,j
 and −a3z1

1r,j
+ a1z3

1r,j
 are individually inte-

ger-estimable. For their joint integer-estimability, we have 

the decomposition

with |Z| = 1 . This shows that the decomposition reduces to 

the form FTZ = [L, 0] , with |L| ≠ ±1 , when a
12

= 1 , a
13

= 1 , 

and a
1
≠ ±1 . Hence, also when both the GCDs of the pairs 

a1, a2 and a1, a3 are equal to one, z̃12

1r,j
 and z̃13

1r,j
 will not be 

jointly integer-estimable.

A canonical integer decomposition

As the above examples have shown, one cannot formulate the 

GLONASS model on the basis of (25) and then aim to integer 

resolve the 2(m − 1) ambiguities z̃1s
1r,j

 . A scalar approach is thus 

not sufficient to guarantee joint integer-estimability. To be able 

to establish joint integer-estimability, we will now take a vecto-

rial approach, starting from the 2(m − 1) DD phase 

equations

With � = [�T

,1
,�T

,2
]T  , �,j = [�12

1r,j
,… ,�1m

1r,j
]T  , e = [1, 1]T  , 

� = [�12

1r
,… , �1m

1r
]T , z = [zT

,1
, zT

,2
]T , and z,j = [z12

1r,j
,… , z1m

1r,j
]T , 

the vectorial form of the 2(m − 1) phase observation equa-

tions (28) reads

(26)
[1,−1]

FT

w

[

1 1

0 1

]

Z
w

= [1, 0], [1, 1]
FT

n

[

1 1

0 − 1

]

Z
n

= [1, 0]

(27)

�
−a

2
a

1
0

−a
3

0 a
1

�

FT

⎡
⎢⎢⎣

1 a
1

a
1

1 a
1
+ 1 a

1
+ 1

1 a
1

a
1
+ 1

⎤
⎥⎥⎦

Z

=

�
−a

12
a

1
(1 − a

12
) a

1
(1 − a

12
)

−a
13

− a
1
a

13
a

1
(1 − a

13
)

�

(28)�(�1s
1r,j

) = �1s
1r
+ 2848�0

j

[

zs
1r,j

as

−
z1

1r,j

a1

]

(29)�(𝜙) = e ⊗ 𝜌 + (𝛬⊗ H)z

with � = diag(�0
1
, �0

2
) and

Note that although H itself is non-integer, it can be written 

as the product of a non-integer diagonal matrix and an inte-

g e r  m a t r i x :  H = diag(
2848

a1a2

,… ,
2848

a1a
m

)FT  ,  w h e r e 

F
T ∈ ℤ

(m−1)×m . We will now determine a canonical decom-

position of the patterned integer matrix FT . Although this 

patterned decomposition is mathematically of interest in its 

own right, its importance for the current contribution is that 

it will form, together with Theorem 1, the basis by which the 

new GLONASS FDMA model can be established.

Theorem 2 (Canonical Integer Decomposition) Consider 

the patterned integer matrix

and  de f ine  the  vec tors  a = (a1,… , a
m
)T ∈ ℤ

m  , 

a
I
= (a1,… , a

i
)T ∈ ℤ

i and e
m−i−1 = (1,… , 1)T ∈ ℝ

m−i−1 , 

and the scalars  g
1
= a

1
 and  gi = GCD(a1,… , ai) 

(1 < i ≤ m) . Then, FT can be transformed in canonical inte-

ger form as:

with admissible Z = [z1,… , z
m
] (i.e., being integer with inte-

ger inverse) having as column vectors

and with integer lower triangular matrix L having as entries

with the integer scalars �
i
 and �

i
 given by

(30)H = 2848 ×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
1

a
1

1

a
2

−
1

a
1

1

a
3

⋮ ⋱

−
1

a
1

1

a
m

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(31)F
T =

⎡
⎢
⎢
⎢
⎣

−a
2

a
1

−a
3

a
1

⋮ ⋱

−a
m

a
1

⎤
⎥
⎥
⎥
⎦

∈ ℤ
(m−1)×m

(32)F
T
Z = [L, 0]

(33)zi =

⎧
⎪⎨⎪⎩

�
𝛼i

gi

aT
I
, 𝛽i,

𝛼i

gi

a1eT
m−i−1

�T

for 1 ≤ i < m

1

gm

a for i = m

(34)
Lii = a1gi+1∕gi for i = 1,… , m − 1

Lij = −a1�ja1(i+1)∕gj for i = j + 1,… , m − 1

(35)−�iai+1 + �igi = gi+1 for i = 1,… , m − 1
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Proof For the proof, see ’Appendix.’   ◻

We now give a few examples to see the canonical inte-

ger decomposition of the theorem at work.

Example 9 (The 4-satellite case): In case m = 4 , it follows 

from Theorem 2 that

with integer � ’s and � ’s determined from

Note that the determinant of the integer lower triangular 

matrix L , being the product of its diagonal terms, is given 

as |L| = a
2

1
g

4
≠ ±1 . This shows that the integer functions 

FTz are not integer-estimable. Hence, the conclusion reached 

is that, despite 𝜁 = (I
2
⊗ FT )z being estimable and always 

integer, one is not allowed—for integer ambiguity resolution 

purposes—to replace (29) by �(𝜙) = e ⊗ 𝜌 + (𝛬⊗ H
�)𝜁 , 

where H� = diag(
2848

a1a2

,… ,
2848

a1a
m

).

Example 10 (A special case) To determine the integer-esti-

mable ambiguities for the previous example, we can apply 

Corollary 1 and determine them as z̃ = [I3, 0]Z
−1

z . Let us 

see how this works out for the special case a
12

= 1 . In this 

special case, we have g
2
= 1 , and therefore also g

3
= g

4
= 1 . 

With all these GCDs being equal to one, it follows from (37) 

that �
1
= �

1
= −1 , �

2
= �

3
= 0 and �

2
= �

3
= 1 . Although 

L simplifies in this case, its determinant is still not equal 

to ±1 . Hence, the integer functions FTz of (36) remain 

integer-inestimable.

We now use z̃ = [I3, 0]Z
−1

z to determine the integer-

estimable ambiguities for this case. Since Z and its inverse 

then simplify to

we obtain the integer-estimable ambiguities as

(36)

⎡
⎢
⎢
⎣

−a2 a1

−a3 a1

−a4 a1

⎤
⎥
⎥
⎦

FT

⎡
⎢
⎢
⎢
⎢
⎢
⎣

�1

a1�2

g2

a1�3

g3

a1

g4

�1

a2�2

g2

a2�3

g3

a2

g4

�1 �2

a3�3

g3

a3

g4

�1

a1�2

g2

�3

a4

g4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Z

=

⎡
⎢
⎢
⎢
⎣

g2 0

−�1a13

a1g3

g2

0

−�1a14 −
a1�2a14

g2

a1g4

g3

0

⎤
⎥
⎥
⎥
⎦

= [L, 0]

(37)−�iai+1 + �igi = gi+1 for i = 1, 2, 3

(38)Z =

⎡
⎢
⎢
⎢
⎣

−1 0 0 a1

−1 0 0 a2

−1 1 0 a3

−1 0 1 a4

⎤
⎥
⎥
⎥
⎦

, Z
−1

=

⎡
⎢
⎢
⎢
⎣

−a2 a1 0 0

a23 − a13 1 0

a24 − a14 0 1

−1 1 0 0

⎤
⎥
⎥
⎥
⎦

,

with the integer-inestimable ambiguity being ñ = z
2
− z

1 . 

Note that z̃
1
 of (39) is the integer-estimable ambiguity we 

already found earlier (see Example 6) for the special case 

a
12

= 1 or GCD(a1, a2) = 1 , see (22). Also note that z̃
2
 of 

(39) resembles (14) (see Example 4) which was shown to 

be not integer-estimable when a
12

≠ 1.

GLONASS integer‑estimable model

In this section, we formulate our new model, identify the 

GLONASS integer-estimable ambiguities and use the ADOP 

to infer the model’s strength for ambiguity resolution.

New model

We are now in a position to formulate the GLONASS inte-

ger-estimable DD model by combining Theorem 1, and its 

Corollary 1, with the integer canonical decomposition of 

Theorem 2. From FTZ = [L, 0] ( |L| ≠ ±1 ) of Theorem 2 

(see 32), it follows, using Theorem 1, that the integer func-

tions 𝜁 = (I
2
⊗ FT )z are not integer-estimable and can there-

fore not be used, for the purpose of integer ambiguity resolu-

tion, to reparametrize the DD phase equations 

�(𝜙) = e ⊗ 𝜌 + (𝛬⊗ H)z  ,  w i t h  H = H
�
F

T  a n d 

H
� = diag(

2848

a1a2

,… ,
2848

a1a
m

) , as �(𝜙) = e ⊗ 𝜌 + (𝛬⊗ H
�)𝜁  . 

However, Theorem 1 with its Corollary 1 also shows that the 

integer functions z̃ = (I2 ⊗ [Im−1, 0]Z−1)z are integer-esti-

mable and that therefore (I
2
⊗ FT )z = (I

2
⊗ L)z̃ can be used 

to reparametrize the DD phase equations in integer-estima-

ble GLONASS ambiguities as �(𝜙) = e ⊗ 𝜌 + (𝛬⊗ L)z , 

where L = H
�L . We summarize the result as follows.

Theorem 3 (GLONASS integer-estimable DD model) Let p 

and � denote the m-satellite observable DD code and phase 

vectors and assume their inter-frequency biases known. 

Then, the dual-frequency GLONASS integer-estimable, 

short-baseline, single-epoch, linearized DD model, having 

satellite 1 as reference, is given as

with the integer-estimable ambiguity vector a ∈ ℤ
2(m−1) , 

baseline vector b ∈ ℝ
� , and design matrix entries: 

e = (1, 1)T , G the (m − 1) × � DD receiver-satellite geom-

etry matrix, � = diag(�0
1
, �0

2
) and the lower triangular matrix

(39)

z̃
1
=a

1
z

2
− a

2
z

1
= −z

1
− a

1
z

12

z̃
2
=a

23
z

1
− a

13
z

2
+ z

3
= z

13
− a

13
z

12

z̃
3
=a

24
z

1
− a

14
z

2
+ z

4
= z

14
− a

14
z

12

(40)�

[

p

𝜙

]

=

[

e ⊗ G 0

e ⊗ G 𝛬⊗ L

][

b

a

]
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for which the integers  �
i
 and  �

i
 are given by 

−�iai+1
+ �igi = gi+1

 , where a
i
= 2848 + �

i , � i ∈ [−7,+6] , 

and g
1
= a

1
 , gi = GCD(a1,… , ai) (1 < i ≤ m).

This result is the first GLONASS model formulation 

that guarantees, independent of the actual channel number 

entries, the integer-estimability of its ambiguities. In fact, it 

is a consequence of the two Theorems 1 and 2 that for the 

GLONASS ambiguities to be integer-estimable, the model 

must be of the above form.

The above model can be directly applied. No a-priori 

transformation is required to construct the integer-estima-

ble ambiguities from its undifferenced versions. Conceptu-

ally, the only difference of the above model with its CDMA 

counterpart is the presence of the lower triangular matrix L, 

which here is given in easy-to-evaluate analytical form. This 

implies that available CDMA software is easily modified and 

that existing methods of integer ambiguity resolution can be 

directly applied.

The above formulation can also be applied to a range of 

different models and measurement situations. Next to the 

above geometry-based formulation, it can be used in geom-

etry-fixed form (by setting G = 0 ) or in geometry-free form 

(by setting G = I
m−1

 ). For the single-frequency case, one 

simply replaces � in (40) by �0

j
 ( j = 1, 2).

Also, as the structure of (40) is, apart from L, similar 

to that of CDMA systems, many of the available CDMA 

results with their corresponding insights, including the 

analytical ones, are easily translated to that of the above 

GLONASS FDMA model. For instance, with QCDMA

ââ
 being 

the DD ambiguity variance matrix of a CDMA system, the 

corresponding ambiguity variance matrix of GLONASS for 

a similar measurement situation would be

with �  the wavelength ratios between the two systems. Thus, 

through L, one may obtain clear insights into the ambigu-

ity resolution capabilities of GLONASS and into its perfor-

mance as compared to CDMA.

As many estimation algorithms include the process of 

inversion, we have also determined an analytical representa-

tion of the inverse of the lower triangular matrix L.

Corollary 2 (The inverse of GLONASS L) The inverse of 

the lower triangular matrix L of Theorem 3 (see 41) is again 

lower triangular having the entries,

(41)

Lii =2848 ×
gi+1

ai+1gi

for i = 1,… , m − 1

Lij =2848 ×
−�ja1(i+1)

ai+1gj

for i = j + 1,… , m − 1

(42)QGLONASS

ââ
= (𝛤 ⊗ L−1)QCDMA

ââ
(𝛤 ⊗ L−T )

with the integer  �
i
’s  and  �

i
’s  determined by 

−�ia1(i+1) + �igi = gi+1
 for i = 1,… , m − 1.

Proof The proof follows from verification of LL
−1

= I
m−1

 .  

 ◻

The lower triangular matrix L and its inverse L−1 are, 

through the scalars a
i
 ( 1 ≤ i ≤ m ), completely driven by the 

satellite channel numbers. As no assumptions were made 

about their actual values, the representation of L is gener-

ally valid and not subject to a particular measurement case. 

Hence, it could be used for potential design studies, e.g., 

to answer questions like what frequency separations and/

or sets of channel numbers can give improved performance, 

and it is also still valid if the set of channel numbers would 

be extended and/or changed in the future. Hereby, we note 

that the GLONASS channel numbers have evolved over time 

(Leick et al. 2015; Revnivykh et al. 2017). In the original 

GLONASS design, the channel numbers were specified in 

the range [0, 24]. This was later modified to be in compli-

ance with recommendations of the International Telecom-

munication Union (ITU) (Langley 1994). Starting in 1998, 

the channel numbers were restricted to [0, 12]. In a second 

update, conducted in 2005, also negative channel numbers 

were introduced and the covered range was changed to the 

current [−7,+6] (ICD 2008).

Finally, we note that in the above formulation (40), we 

have taken an arbitrary satellite ‘1’ as reference. Although 

the choice of reference-satellite dictates the entries of L (i.e., 

the entries will change, when changing the reference satel-

lite), it is important to know that a change of reference sat-

ellite will not change the performance of the above model 

(40). That is, the ambiguity resolution performance, as 

measured by the integer least-squares success rate, as well 

as the quality of the float and fixed baseline solutions, are 

invariant for the arbitrary choice of reference satellite. This 

can be understood once one recognizes that the (m − 1) × m 

between-satellite differencing matrix DT = [−e
m−1, I

m−1] 

is present in both the functional model and the stochastic 

model,

in which Qpp = 2diag(�2
p1

, �2
p2
) , Q�� = 2diag(�2

�1
, �2

�2
) and 

R = D
T
W

−1
D , where W is the diagonal satellite elevation 

(43)

L−1

ii
=

1

2848
× giai+1∕gi+1 for i = 1,… , m − 1

L−1

ij
=

1

2848
× �jaj+1a1(i+1)

(

∏i−1

k=j+1
�k

)

∕gi+1

for i = j + 1,… , m − 1

(44)�

[

p

𝜙

]

=

[

Qpp ⊗ R 0

0 Q𝜙𝜙 ⊗ R

]
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weighting matrix. The property of invariance against the 

change of reference satellite is due to the fact that the dif-

ferencing matrix manifests itself in the various estimation 

formulae through the expression D(DT
W

−1
D)−1

D
T , which, 

with e
m

 being the m-vector of ones, is identical to 

W − We
m
(eT

m
We

m
)−1

e
T

m
W and therefore invariant for the spe-

cific choice of differencing matrix or specific choice of refer-

ence satellite.

GLONASS integer‑estimable ambiguities

As we pointed out, for the workings of model (40), it is 

not necessary to explicitly construct the GLONASS integer-

estimable ambiguities from their undifferenced counterparts. 

To be able to work with the model, it is sufficient to know 

the lower triangular matrix L (see 41). Still, to get a deeper 

insight into our GLONASS model, we shall here discover 

which (m − 1) integer functions of the undifferenced GLO-

NASS ambiguities are integer-estimable. According to Cor-

ollary 1, this amounts to solving z̃ = [Im−1, 0]Z
−1

z . The solu-

tion is given in the following corollary.

Corollary 3 (GLONASS integer-estimable ambiguities)

Let zi

1r
 denote, for either frequency j = 1, 2 , the between-

receiver GLONASS ambiguity of satellite i = 1,… , m . Then, 

the GLONASS integer-estimable ambiguities are given in 

recursive form as

for i = 2,… , m − 1 , with the integer-inestimable ambiguity

and the initializations

Proof For the proof, see ’Appendix.’   ◻

Inspection of the integer-estimable GLONASS ambigui-

ties (see 45) shows that they are scaled double-differenced 

ambiguities corrected for their integer-inestimable part. 

Also note that if all channel numbers would be equal, i.e., 

a
i
= constant for i = 1,… , m , then the a

1i
 ’s would be zero 

and all gi ’s would be the same, thus giving the result that 

then all integer-estimable ambiguities would become equal 

to standard DD ambiguities, just as we know them from the 

(45)z̃i
i×1

=

[

z̃i−1

gi

gi+1

[

z
1(i+1)

1r
−

a
1(i+1)

gi

ñi

]

]

(46)ñi+1 =
gi+1

gi

[

ñi − 𝛼ic
T
i
z̃i

]

for i = 2,… , (m − 1)

(47)z̃1 =
g1

g2

[

z
2

1r
−

a2

g1

z
1

1r

]

, ñ2 = −𝛼1z
2

1r
+ 𝛽1z

1

1r

CDMA systems: z̃i = z
1(i+1)

1r

 for i = 1,… , (m − 1) . The fol-

lowing example illustrates this further.

Example 11 (The 4-satellite case) For m = 4 , we obtain from 

t h e  a b o v e  c o r o l l a r y ,  r e c o g n i z i n g  t h a t 

z
2

1r
−

a2

g1

z
1

1r
= z

12

1r
−

a12

g1

z
1

1r
,

Thus, the integer-estimable GLONASS ambiguities are 

indeed scaled double-differenced ambiguities corrected 

for their integer-inestimable part. For the special case that 

g
2
= 1 , the result reduces to that of (39).

On GLONASS integer ambiguity resolution

With the established results so far, we are now in the posi-

tion to give insight into the ambiguity resolution capabilities 

of our new GLONASS integer-estimable model formulation. 

For that purpose, we will use the ambiguity dilution of preci-

sion (ADOP), which is an easy-to-compute scalar diagnos-

tic that measures the intrinsic model strength for successful 

ambiguity resolution. The ADOP, introduced in Teunissen 

(1997), is defined as

with Qââ being the 2(m − 1) × 2(m − 1) variance matrix of 

the least-squares estimated integer-estimable ambiguities. 

Important properties of the ADOP are that it is invariant 

for admissible ambiguity reparametrizations, that it is a 

measure of the probability content of the ambiguity confi-

dence ellipsoid and corresponding ambiguity search space, 

and that it provides an approximation to the integer least-

squares success rate. As a rule of thumb, an ADOP of 0.12 

cycles indicates an ambiguity success rate of 99.9% (Odijk 

and Teunissen 2008).

When we apply (49) to (42), we obtain an expression 

that relates the single-system GLONASS ADOP to that 

of a CDMA system. In a similar way, we can obtain the 

ADOP for two systems, i.e., when GLONASS is combined 

with a CDMA system. These results are summarized in the 

following.

(48)

z̃1 =
g1

g2

[

z
12

1r
−

a12

g1

z
1

1r

]

z̃2 =
g2

g3

[

z
13

1r
−

a13

g2

ñ2

]

, ñ2 = −𝛼1z
2

1r
+ 𝛽1z

1

1r

z̃3 =

g3

g4

[

z
14

1r
−

a14

g3

ñ3

]

, ñ3 =

g3

g2

[

ñ2 − 𝛼2z̃2

]

(49)ADOP =
√
�Qââ�

1

2(m−1) (cycles)
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Lemma 1 (GLONASS ADOP) The single-system, dual-

frequency GLONASS ambiguity dilution of precision, 

ADOP
GLO

 , and its single-frequency, dual-system version, 

ADOP
SF-DS

 , can be expressed in a referenced dual-frequency 

CDMA ADOP as

with GLONASS wavelengths �0

1
, �0

2
 and CDMA wavelengths 

�1, �2.

To find a useful approximation to these GLONASS 

ADOPs, we first note, if we take GPS as the CDMA system, 

that the wavelength ratios can be well approximated by one, 

since 

√

�
1
�

2
∕�0

1
�

0

2
= 1.02 and 

√

�
2
∕�0

2
= 1.0075 , which fol-

lows from �0

1
= 18.71 cm ( f 0

1
= 1602 MHz ), �0

2
= 24.06 cm 

( f 0

2
= 1246 MHz ), �

1
= 19.03 cm ( f

1
= 1575.42 MHz ), and 

�
2
= 24.42 cm ( f

2
= 1227.60 MHz ). For the determinant of 

L, we note, since L is lower triangular, that its determinant 

is equal to the product of its diagonal entries, which with 

(41) of Theorem  3 gives |L|
−1

m−1 = r

(
am

gm

) 1

(m−1)

 , where 

r =

∏m−1

i=1

�

a
i

2848

�
1

m−1

 . As with the wavelength ratios, we have 

to a good approximation r ≈ 1 , since a
i
= 2848 + �

i where 

�
i ∈ [−7,+6] . From this the following two approximations 

are obtained, ADOP
GLO

≈
(

2848∕g
m

)
1

m−1 ADOP
DF-CDMA

 and 

ADOP
SF-DS

≈
(

2848∕g
m

)
1

2(m−1) ADOP
DF-CDMA

 , thus showing, 

since the GCD g
m
 is at most three for four or more satellites, 

that the factor by which the CDMA ADOP gets multiplied 

is largely driven by the number of tracked satellites m and 

the very small relative frequency separation of GLONASS, 

Δf
1
∕f 0

1
= Δf

2
∕f 0

2
= 1∕2848 (i.e., a larger frequency separa-

tion would have given a smaller ADOP).

Hence, since the GCD g
m
 is at most two for seven satel-

lites, the GLONASS ADOP is then about three and a half 

times larger than its CDMA counterpart and less than two 

times larger in the single-frequency, dual-system case. This 

would indicate that although instantaneous ambiguity reso-

lution may not be possible, fast ambiguity resolution, using 

less than ten epochs, is. A closer look at the diagonal entries 

of the GLONASS L−1 matrix (see 43) shows, however, that 

the situation is even much more favorable than that. As the 

size of the full ambiguity resolution ADOP is largely driven 

by the large first diagonal entry of L−1 (recall that g
1
= a

1
 ), 

the ADOP of partial ambiguity resolution can be made sig-

nificantly smaller by resolving, instead of all m − 1 ambigui-

ties, the per frequency m − 2 best determined ambiguities. 

(50)

ADOP
GLO

=

(
(
�

1
�

2

�
0

1
�

0

2

)
1

2 |L|
−1

(m−1)

)
ADOP

DF-CDMA

ADOP
SF-DS

=

(
(
�

2

�
0

2

)
1

2 |L|
−1

2(m−1)

)
ADOP

DF-CDMA

In such case, the GLONASS ambiguity resolution becomes 

on par with that of the CDMA systems.

Extending the model

We have assumed so far that the differential ionospheric 

delays were negligible and the inter-frequency biases absent 

or calibrated. We will now show how to adapt the model so 

as to accommodate these delays and biases.

Ionospheric and inter‑frequency biases

The ionospheric delays need to be accounted for in case one 

works with long baselines. As the delay is frequency disper-

sive, the DD ionospheric delay can be expressed to a first 

order in the DD delay on the first frequency as �1s
1r,j

= �ji
1s
1r

 , 

w h e r e  i
1s

1r
= (

2848

a
s

)2�s
1r
− (

2848

a
1

)2�1
1r

 a n d  �j = (f s
1
∕f s

j
)2 

( f s
1
∕f s

2
= 9∕7 ). To account for the ionospheric delays, we 

thus include �1s
1r,j

= �ji
1s
1r

 in the corresponding DD code and 

phase observation equations of (40). This inclusion will 

reduce the redundancy and make the model weaker as its 

number of unknown parameters is increased by m − 1 per 

epoch. Importantly though, in the absence of inter-frequency 

biases, this addition of the ionospheric delays will not 

change the integer-estimability of the GLONASS ambigui-

ties. Hence, the same procedure for resolving the ambigui-

ties can then still be used. This situation may change, how-

ever, when also the inter-frequency biases need to be 

accounted for. If this happens, adequate remedies need to be 

in place. As the code biases directly affect the usefulness of 

the code data for integer ambiguity resolution, the solutions 

need to be found in making the performance of ambiguity 

resolution immune or robust for these biases. The following 

three different approaches are possible:

1. GLONASS code data In case the code biases have small-

enough bounds, one may still use the GLONASS code 

data with model (40), provided it is combined with 

either one or both of the following: code data down-

weighting and/or ambiguity resolution bias robustness. 

One can take advantage of the bias robustness of ambi-

guity resolution if the code data are sufficiently precise 

and the code biases not too large. It is namely due to 

the integer nature of the ambiguities that small biases 

are still allowed in the ambiguity-float solution without 

really affecting the ambiguity success rate. In order to 

evaluate the size of allowable bias, one can either make 

use of the analytical, easy-to-compute, bias-affected 

integer-bootstrapping success rate formula of Teunissen 

(2001) or, in case of integer least-squares, make use of 
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Monte Carlo simulations as demonstrated in Verhagen 

et al. (2013) and Li et al. (2014).

  In addition to the bias robustness, one may also aim 

to lessen the code bias effect on ambiguity resolution by 

down-weighting the code data in the adjustment. Note, 

however, that a simple down-weighting is not enough. 

The use of a weight different from that prescribed by the 

code data precision requires namely that one also applies 

a proper variance-propagation, so as to obtain a realistic 

ambiguity variance matrix as input for the ambiguity 

resolution process.

  Once the correct integer ambiguities are obtained, 

the ambiguity-fixed baseline can be computed from the 

phase data alone and thus without a dependence on the 

biased code data.

2. CDMA code data The above approach does not work 

when the code biases are too large or simply unknown. 

In that case, one cannot rely on using the GLONASS 

code data for integer ambiguity resolution. A solution 

is then to discard the GLONASS code data and replace 

them by unbiased code data from another GNSS. In the 

current multi-GNSS era, such solution is indeed practi-

cally feasible for many applications. Hence, for short 

baselines, this would mean that one can directly use the 

GLONASS model (40) again, but now with the GLO-

NASS code data vector p replaced by that of another 

GNSS.

  This situation changes, however, if one needs to work 

with long baselines and has to include the ionospheric 

delays. The ionospheric delays of the phase data will 

then namely refer to GLONASS satellites, while those 

of the code data to the satellites of the added GNSS. As 

a result of this lack in coupling between the ionospheric 

delays of the phase data and code data, the integer-esti-

mability of the GLONASS ambiguities will be affected. 

In the next sections, we will show how to recover in 

this situation the GLONASS integer-estimability again. 

Note, however, that the mentioned lack of coupling 

and corresponding integer-inestimability can also be 

repaired when one includes an ionospheric model, 

thereby linking all ionospheric delays to one common 

set of ionospheric parameters.

3. Codeless data In case the GLONASS code data cannot 

be used and no code data of another GNSS are avail-

able, the ultimate solution lies in resorting to phase-only 

ambiguity resolution. Again, for short baselines, this can 

be done directly with the GLONASS model (40), be it 

that then at least two epochs of data are needed, since 

instantaneous phase-only ambiguity resolution is impos-

sible due to the lack of change in relative receiver-satel-

lite geometry. For long baselines, however, the inclusion 

of the ionospheric delays and the absence of code data 

will again have their effect on the integer-estimability of 

the ambiguities. We will show how to solve this in the 

sections following.

Note that in the above discussion, we did not include the 

option of inter-frequency code bias modeling, the reason 

being that no such suitable model yet exists (Kozlov et al. 

2000; Reussner and Wanninger 2011; Chuang et al. 2013; 

Hakansson et al. 2017). But since the biases can be cali-

brated, one may wonder why not include their time con-

stancy directly into the model. This is indeed possible and 

would amount to treating the unknown code bias vector as if 

it is a time-constant ‘ambiguity vector,’ not for phase, but for 

the biased code observable. This would then be the simplest 

model one can think of. When doing so, it will be clear that, 

like with the phase-only approach, no instantaneous solu-

tion would be possible. At least two epochs would then be 

needed to establish the required change in relative receiver-

satellite geometry. By including the code observables, in 

addition to the phase observables, one of course will get a 

more precise float solution of both the baseline and ambigui-

ties, and therefore also a higher ambiguity success rate for 

integer ambiguity resolution. However, a closer inspection 

will reveal that this precision improvement is marginal. If 

Qââ(𝜙) denotes the phase-only ambiguity variance matrix 

and Qââ(p,𝜙) the ambiguity variance matrix when both 

phase and code are used, but with the inter-frequency code 

bias modeled as a time-constant ’ambiguity-vector’, then

This shows, since the phase-code variance ratio is very small 

(i.e., �2

�
∕�2

p
≈ 10

−4 ), that for all practical purposes, no real 

benefit can be expected from including the code data into the 

model. Furthermore, by including the code data, the solution 

also becomes susceptible to code multipath which is many 

times larger than that of phase.

We will now show how the integer-estimability of the 

GLONASS ambiguities can be recovered if the need arises 

to add parameters to the phase equations of our model (40). 

First, we will develop the general case in the next section, 

followed by two special cases in the sections following.

Recovery of integer‑estimable ambiguities

The consequence of adding extra parameters to only the phase 

equations is that the system of equations becomes rank defect. 

As this rank defect reduces the integer-estimability of the 

(51)Qââ(p,𝜙) ≈
1

1 + 𝜎2

𝜙
∕𝜎2

p

× Qââ(𝜙)
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ambiguities, we need to find which functions of the ambigui-

ties recover the integer-estimability. Already earlier we showed 

that one does not need to go back and consider functions of 

the undifferenced ambiguities, but that it now suffices to work 

with our basic set of integer-estimable ambiguities of model 

(40), i.e., the m − 1 integer functions as given in Corollary 3.

The elimination of rank defects to establish estimability 

can be done in many different ways (Teunissen 1985; Odijk 

et al. 2015). Every restriction of the parameter space to a 

space complementary to the null space of the design matrix 

is a valid choice. In our case, however, the aim is integer-

estimability and not only estimability. This implies that some 

choices should be avoided. For instance, taking the added 

parameters that are the cause for the rank defect as S-basis 

would be a poor choice, as this would directly spoil the inte-

gerness of the ambiguities. Thus, the aim is to eliminate 

the rank defect such that the number of integer-estimable 

ambiguities is reduced at least as possible. The following 

theorem shows how this can be done.

Theorem 4 (Recovery of Integer-Estimability) Let Cc, with 

C of full rank, be added to the dual-frequency DD phase 

equations to give

with n = 2(m − 1) , M = 𝛬⊗ L , and z integer-estimable 

when c = 0 . Furthermore, let the (n + p) × p basis matrix 

[ZT

2
, Y

T

2
]T span the null space of [M, C], i.e., MZ

2
+ CY

2
= 0 , 

and let Z = [Z1, Z2] be admissible (integer and |Z| = ±1 ). 

Then, (52) can be parametrized in the maximum number of 

integer-estimable parameters as

with the integer-estimable ambiguity vector z̃
1
∈ ℤ

n−p and 

estimable parameter vector c̃ ∈ ℝ
p given as

Proof For the proof, see ’Appendix.’   ◻

With the addition of Cc to the DD phase equations, the 

originally integer-estimable ambiguity vector z in (52) fails 

to remain integer-estimable. The theorem shows how (52) 

needs to be replaced by (53) so that a maximum number of 

integer-estimable ambiguities can be recovered. The theo-

rem also provides an interpretation of the new parameters 

by means of (54). Note that the number of integer-estimable 

ambiguities has reduced by the dimension of c and that c̃ is 

now a version of c that is lumped with the integer-inestima-

ble ambiguities.

(52)�(𝜙) = e ⊗ 𝜌 + M
n×n

z + C
n×p

c

(53)
�(𝜙) = e ⊗ 𝜌 + MZ

1

n×(n−p)

z̃
1
+ C

n×p
c̃

(54)z̃1 = [In−p, 0]Z
−1z and c̃ = c − Y2[0, Ip]Z

−1z

The theorem has the attractive feature of showing, that 

in order to work with (53), only Z
1
 is needed and thus not 

the explicit transformation of (54). What the theorem does 

not show, however, is how Z
1
 can be obtained. We will now 

show how this can be done in a general way. Therefore, let 

C⟂ ∈ ℤ
(n−p)×n be a basis matrix of the orthogonal comple-

ment of the range space of C. Then, it follows from [ZT

2
, Y

T

2
]T 

being a basis matrix of the null space of [M, C] that we need 

to construct an admissible Z that delivers a decomposition 

like C⟂T
MZ = [C⟂T

MZ1, 0] . Since C⟂T
M is integer and of 

full row-rank (n − p) , it is always possible (e.g., Theorem 2 

is an analytical example) to find an admissible Z to obtain 

a decomposition of the form C⟂T
MZ = [P, 0] , with P being 

lower triangular and of full rank n − p . To see this, consider 

the following construction of such Z and P : By a repeated 

proper integer sweeping with the columns of C⟂T
M , one 

first brings the first row of the matrix C⟂T
MZ in the form 

[p11, 0,… , 0, 0] . Then, one works on the second row of 

the so-obtained matrix to get the second row in the form 

[p21, p22, 0,… , 0, 0] . Continuing in this way, the last row 

will then have the form [p(n−p)1, p(n−p),2,… , p(n−p),(n−p), 0] , 

with the last zero representing the last p zero columns in 

[P, 0] . The concatenation of the integer column sweeping 

will then form the sought for admissible Z from which Z
1
 

is then obtained.

Although this approach of constructing the sought for Z 

is general, further simplifications are possible in case one 

can exploit the structure of C. In the following, we will pre-

sent and develop two such cases, namely when C is given as

The first case is applicable when the ionospheric delays need 

inclusion for long-baseline phase-only GLONASS ambigu-

ity resolution, while the second case is applicable in case 

the same model extension applies to L1 and L2. Note that 

C = (−𝜇 ⊗ I
m−1,𝛬⊗ 𝜅) , in case both extensions are needed 

at the same time. The solutions presented below also apply 

to this simultaneous case.

Long‑baseline phase‑only integer‑estimability

We have seen that for long baselines, when the ionospheric 

delays need to be included, the integer-estimability of the 

ambiguities changes in two important cases: (a) in case of 

GLONASS phase-only processing and (b) in case the GLO-

NASS phase data is combined with code data of another 

GNSS. The following corollary shows how for both these 

cases, the recovery of the ambiguity integer-estimability can 

be realized.

Corollary 4 (Phase-only integer-estimability) Let the dual-

frequency, short-baseline phase equation be given as (see 

40)

(55)C = −𝜇 ⊗ I
m−1

and C = 𝛬⊗ 𝜅
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with z
1
 and z

2
 of z = (zT

1
, zT

2
)T being the integer-estimable 

ambiguities on L1 and L2, respectively. Then, the long-

baseline GLONASS phase-only phase equation is given as

with � = [60�0

1
, 77�0

2
]T , � = [1, (�0

2
∕�0

1
)2]T , the integer-esti-

mable ambiguity vector z̃ = 9z
1
− 7z

2
 and estimable iono-

spheric delay vector 𝜄̃ = 𝜄 − 7𝜆
0

1
(−77Lz

1
+ 60Lz

2
).

Proof For the proof, see ’Appendix.’   ◻

This result shows that it is (57) that one needs to use in 

case of long-baseline GLONASS phase-only processing. Is 

the processing done without the aid of code data from another 

GNSS, then at least two epochs are required so as to real-

ize the required change in relative receiver-satellite geometry. 

This is, however, not needed when (57) is combined with code 

data of another GNSS. In that case, a single-epoch suffices in 

principle.

Note that one can bring (57) back into a similar form as (56) 

by eliminating the m − 1 ionospheric delays. When doing so, 

one obtains the integer-estimable, ionospheric-free (IF) GLO-

NASS phase equation

where �
IF
=

9

32
�

0

1
 . Thus, it is this (58) that one needs to use 

if it is the ionospheric-free formulation that is used by the 

GNSSs to which the GLONASS phase-only data are added.

Integer‑estimability with L1–L2 phase bias

We now show how the integer-estimability can be recovered 

when a bias �c
,j , with known � ∈ ℤ

m−1 and unknown c
,j ∈ ℝ , 

is added to the phase equation of �
,j . With the addition of 

Cc = (𝛬⊗ 𝜅)c , the extended dual-frequency, phase equation 

becomes �(𝜙) = e ⊗ 𝜌 + (𝛬⊗ L)z + (𝛬⊗ 𝜅)c . As it follows 

from its structure that the recovery of the integer-estimability 

can be done per frequency, we write, with z = [zT

,1
, zT

,2
]T and 

c = [c,1, c,2]
T,

in which

(56)�(𝜙) = e ⊗ 𝜌 + (𝛬⊗ L)z

(57)�(𝜙) = e ⊗ 𝜌 + (𝜆 ⊗ L)z̃ + (−𝜇 ⊗ Im−1
)𝜄̃

(58)�(𝜙
IF
) = e ⊗ 𝜌 + (𝜆

IF
⊗ L)z̃

(59)
�(𝜙,j) =𝜌 + 𝜆0

j
[L, 𝜅][zT

,j
, c,j]

T

=𝜌 + 𝜆0

j
H̃[L̃, 𝜅̃][zT

,j
, c,j]

T
, j = 1, 2

(60)

H̃ =diag

(

1

a1a2

,… ,
1

a1a
m

)

L̃ =2848L

𝜅̃ =H̃
−1
𝜅

Note that both L̃ and 𝜅̃ are integer, since L and � are integer. 

To apply Theorem 4, so as to recover the integer-estimability 

in (59), we need to find an admissible transformation Z̃ that 

brings the (m − 2) × (m − 1) integer matrix 𝜅̃⟂T
L̃ into the 

form

We can now make a good use again of our integer lower 

triangular matrix L of Theorem 2. Because L is integer and 

lower triangular, so is L̃ of (61). Hence, if we premultiply 

L̃ with the integer matrix 𝜅̃⟂T = [𝜅̃(1),−𝜅̃1I
m−2] , in which 

𝜅̃(1) = [𝜅̃2,… , 𝜅̃
m−1]

T , we obtain an integer matrix that is not 

too far from being lower triangular. As the following lemma 

shows, such matrix can then relatively easy be brought into 

the form (61) by a specially constructed Z̃.

Lemma 2 (Integer triangularization) The integer matrix

is brought into integer canonical form WZ̃ = [L̃, 0] , with 

lower triangular L̃ ∈ ℤ
n×n , by means of the admissible 

Z̃ = Z̃(1) ×… × Z̃(n) , defined by

Proof The proof follows from direct verification.   ◻

The following example shows how the algorithm of this 

lemma can be applied to bring 𝜅̃⟂T
L̃ into the canonical form 

(61).

Example 12 (The 4-satellite case) For m = 4 , the 

(m − 2) × (m − 1) integer matrix 𝜅̃⟂T = [𝜅̃(1),−𝜅̃1I
m−2] is 

given as

Since L̃ is lower triangular with entries L̃ij , the matrix prod-

uct 𝜅̃⟂T
L̃ is given as

(61)(𝜅̃⟂T
L̃)Z̃ = [L̃, 0]

(62)W = [u, V]
n×(n+1)

=

⎡
⎢
⎢
⎢
⎣

u1 v11

u2 v21 v22

⋮ ⋮ ⋮ ⋱

u
n

v
n1 v

n2 … v
nn

⎤
⎥
⎥
⎥
⎦

(63)

Z̃(i) = blockdiag(I
i−1, Z

i
, I

n−i
) for i = 1,… , n

Z
i
=

[

𝛼
i
− v

ii
∕𝛾

i

𝛽
i

v
(i−1)

i(i−1)
∕𝛾

i

]

𝛼
i
v
(i−1)

i(i−1)
+ 𝛽

i
v

ii
= 𝛾

i
, 𝛾

i
= GCD(v

(i−1)

i(i−1)
, v

ii
)

v
(i−1)

i(i−1)
= (VZ̃(1) ×… × Z̃(i−1))i,(i−1)

v
(i−1)

i(i−1)
= u1 for i = 1

(64)𝜅̃
⟂T

=

[

𝜅̃
2

− 𝜅̃
1

0

𝜅̃
3

0 − 𝜅̃
1

]
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where u
1
= 𝜅̃

2
L̃

11
− 𝜅̃

1
L̃

21
 , u

2
= 𝜅̃

3
L̃

11
− 𝜅̃

1
L̃

31
 , v

11
= −𝜅̃

1
L̃

22
 , 

v
21

= −𝜅̃
1
L̃

32
 and v

22
= −𝜅̃

1
L̃

33
 . As (65) is in the form of 

(62), we can now apply the algorithm of the lemma. This 

gives in the first step:

with �
1
 and �

1
 from �1u1 + �1v11 = �1 = GCD(u1, v11) , and 

u
(1)

2
= �

1
u

2
+ �

1
v

21
 , v

(1)

21
= v

21
u

1
− u

2
v

11
 . Application of the 

second step gives:

with �
2
 and �

2
 from �2v

(1)

21
+ �2v22 = �2 = GCD(v

(1)

21
, v22) . The 

admissible transformation that brings (65) in the form (67) 

is thus given as

The last column vector of Z̃ spans the null space of (65), 

while the first two column vectors are then the ones needed 

for recovering the integer-estimability.

With the algorithm of Lemma 2 we can thus determine the 

admissible Z̃ = [Z̃1, Z̃2] of (61) and use the (m − 1) × (m − 2) 

integer matrix Z̃
1
 for the recovery of the integer-estimability 

in (59) to get,

Thus, the recovery of the integer-estimability shows how the 

extension of the model with �c
,j results in a new and lower-

dimensioned integer-estimable ambiguity vector z̃
,j , with the 

new coefficient matrix LZ̃
1
.

(65)𝜅̃
⟂T

L̃ =

[

u
1

v
11

0

u
2

v
21

v
22

]

(66)

�
u

1
v

11
0

u
2

v
21

v
22

�

𝜅̃⟂T L̃

⎡
⎢⎢⎣

𝛼
1

− v
11

0

𝛽
1

u
1

0

0 0 1

⎤
⎥⎥⎦

Z̃(1)

=

�
𝛾

1
0 0

u
(1)

2
v
(1)

21
v

22

�

(67)

�
𝛾

1
0 0

u
(1)

2
v
(1)

21
v

22

�⎡
⎢⎢⎣

1 0 0

0 𝛼
2

− v
22

0 𝛽
2

v
(1)

21

⎤⎥⎥⎦
Z̃(2)

=

�
𝛾

1
0 0

u
(1)

2
𝛾

2
0

�

(68)Z̃ = Z̃(1) × Z̃(2) =

⎡
⎢
⎢
⎣

𝛼
1

− 𝛼
2
v

11
v

11
v

22

𝛽
1

𝛼
2
u

1
− u

1
v

22

0 𝛽
2

v
(1)

21

⎤
⎥
⎥
⎦

(69)
�(𝜙,j) =𝜌 + 𝜆0

j
[L, 𝜅][zT

,j
, c,j]

T

=𝜌 + 𝜆0

j
[LZ̃1, 𝜅][z̃T

,j
, c̃,j]

T
, j = 1, 2

Summary and conclusions

We developed and presented a new GLONASS FDMA 

model. The model is generally applicable and guarantees, 

independent of the actual channel number entries, the inte-

ger-estimability of the new GLONASS ambiguities. The 

model’s only difference with its CDMA counterpart is the 

presence of the lower triangular matrix L in its design matrix. 

This matrix, which establishes the integer-estimability of the 

ambiguities, is given in an easy-to-evaluate analytical form. 

The close resemblance between our GLONASS model and 

the DD CDMA models also implies that available CDMA 

software is easily modified and that existing methods of inte-

ger ambiguity resolution can be directly applied.

The realization of our GLONASS DD model has been 

made possible because of two important results. First, the 

defining new concept of integer-estimability and second, the 

construction of a special integer matrix canonical decom-

position. From the concept of integer-estimability, we learn 

that the conditions of estimability and integerness of func-

tions are not sufficient to guarantee integer-estimability. This 

shows when estimable integer functions are used for ambi-

guity resolution, that if these functions fail to be integer-

estimable, one may in fact be fixing the undifferenced integer 

ambiguities to non-integer values, thereby thus constraining 

the model to physically inconsistent and wrong values.

Our integer-estimability Theorem 1 provides the condi-

tions that need to be fulfilled for integer functions to be 

integer-estimable. Next to these conditions, the theorem 

also shows the way on how to create integer-estimable 

functions and how a given design matrix can be expressed 

in them. We used these latter two properties in combi-

nation with Theorem 2 to develop our new GLONASS 

design matrix. Its easy-to-compute form is made possible 

by means of the analytical integer decomposition given in 

Theorem 2. It is thus a consequence of the two Theorems 1 

and 2 that for the GLONASS ambiguities to be integer-

estimable, the model must be of the discovered form (40).

As the structure of our GLONASS integer-estimable DD 

model is similar, apart from L, to that of CDMA systems, 

many of the available CDMA results with corresponding 

insights are easily translated to the GLONASS case. Also 

the currently available theory of integer inference can now 

directly be applied to it, and this does not only hold for the 

class of integer estimators, but also for the classes of integer 

equivariant estimators (Teunissen 2003) and integer-aperture 

estimators (Verhagen and Teunissen 2006). We made use of 

this to get a first insight into the expected ambiguity resolu-

tion performance of the new GLONASS model. By means 

of an analysis of the GLONASS ADOP, we showed that fast 

ambiguity resolution can be expected and that performance 

will even be on par with comparable CDMA systems when 
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resolving the per frequency m − 2 best determined ambigui-

ties. We showed thereby also that larger frequency separa-

tions would even result in larger success rates.

As the integer-estimability of the ambiguities changes when 

extra parameters are added to the phase equations, we also pro-

vided by means of Theorem 4 a general method to recover the 

required integer-estimability again. This was applied and fur-

ther worked out for long baselines in case the GLONASS code 

data cannot be relied on due to the presence of unknown inter-

frequency code biases. In such case the to be included iono-

spheric delays change the integer-estimability when either the 

GLONASS phase data is combined with code data of another 

GNSS or when, in the absence of reliable code data, GLO-

NASS phase-only processing needs to be done. It was shown 

how the integer-estimability could be recovered and what inter-

pretation needed to be given to the recovered parameters.

We believe that the presented model opens up a whole 

variety of carrier-phase-based GNSS applications that have 

hitherto been a challenge for GLONASS. This applies not 

only to fast ambiguity-resolved GLONASS positioning and 

attitude determination, but also to such important position-

ing concepts as PPP-RTK (Wubbena et al. 2005; Teunissen 

and Khodabandeh 2015), either as GLONASS-only or in 

multi-GNSS context (Montenbruck et al. 2017). As stated 

in Liu et al. (2017), there is indeed a need to further develop 

GLONASS PPP ambiguity resolution. The presented model 

provides this opportunity and in particular to realize the inte-

ger recovery of the ambiguities for the GLONASS PPP-RTK 

users. Although we presented our model in DD form, it can 

also be formulated in undifferenced (UD) form, which is 

attractive for networks and/or when parameters other than 

those of positioning are of interest, such as, for instance, the 

satellite-phase biases as needed for PPP-RTK (Schonemann 

et al. 2011; Lannes and Prieur 2013; Odijk et al. 2015).

The presented model also enables a seamless combina-

tion with CDMA systems, be it for positioning or other 

GNSS parameter estimation needs. Even a direct combina-

tion of current GLONASS FDMA and the under develop-

ment GLONASS CDMA becomes now possible with the 

new model. As part of the GLONASS signal evolution plan 

(Urlichich et al. 2011; Langley 2017), CDMA signals are 

made available as a complement to the legacy FDMA sig-

nals. A first CDMA signal in the L3 band was introduced 

by the GLONASS-K1 satellite launched in 2011 and is also 

made available by the GLONASS-M satellites launched 

since 2014. An initial assessment of GLONASS CDMA 

L3 ambiguity resolution and positioning performance is 

given in (Zaminpardaz et al. 2017). Further signals will be 

added with each new generation of GLONASS satellites, 

whereby CDMA signals will also be transmitted in the L1 

and L2 bands to improve interoperability with other GNSSs. 

Despite the introduction of new CDMA signals, GLONASS 

will continue to provide the legacy FDMA signals in the 

future so as to provide backward compatibility. Hence, this 

offers great opportunities, now and in the future, for having 

the presented integer-estimable GLONASS model (2) take 

advantage of these combined FDMA-CDMA signals.
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Appendix

Proof of  Theorem  1 (Integer‑Estimability) Proof of esti-

mability: (⇒) Let z̃ = FTz = (ATB⟂X)Tz and ̂̃z = LTy . 

Then �(̂̃z) = LTAz + LTBb , which gives with the choice 

L
T
= X

T
B
⟂ , the unbiased result �(̂̃z) = (ATB⟂X)Tz = z̃ . 

(⇐) For ̂̃z = LTy to be unbiased estimable, we need 

LTAz + LTBb = FTz ∀z, b , from which follows that 

F
T
= A

T
L , for L satisfying LT

B = 0 . ◻ Proof of integer-

estimability Since any integer matrix FT
∈ ℤ

p×n of rank p 

can be written as FT = [H, 0]Z with integer H invertible, it 

follows for z̃ = FTz that H−1z̃ = [I, 0]Zz . Hence, the inte-

gerness of z̃ and z is only preserved iff H = I .   ◻.

Proof of  Corollary 1 (Integer‑estimability from  estima‑

ble integer functions) GTz is not integer-estimable since 

|L| ≠ ±1 . And from FT = [Ip, 0]Z
−1 follows F = GL

−T and 

FT
Z = [Ip, 0] , thus showing that both conditions of Theo-

rem 1 are satisfied. From GTz = L[Ip, 0]Z
−1z and z̃ = FTz , 

with FT = [Ip, 0]Z
−1 , follows GTz = Lz̃ .   ◻

Proof of Theorem 2 (Canonical Integer Decomposition) That 

the integer decomposition (32) holds true is easily verified 

by straightforward substitution. What then remains to be 

proven is that the integer matrix Z is admissible, i.e., has 

determinant equal to ±1 . As Z has been sequentially con-

structed, we first show how it builds up when its dimension 

increases. We therefore define Z
1
= 1 and Zi = [z1,… , zi] , 

with the column vectors zi given by (33). Note that Z ∶= Z
m
 . 

We then have according to (33) for i = 2 and i = 3,

(70)Z2 =

�
�1

a1

g2

�1

a2

g2

�
, Z3 =

⎡⎢⎢⎢⎣

�1 �2

a1

g2

a1

g3

�1 �2

a2

g2

a2

g3

�1 �2

a3

g3

⎤
⎥⎥⎥⎦

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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which shows that Z
3
 can be expressed in Z

2
 as

It is now not difficult to verify that Z
i+1

 can be expressed in 

a similar way in terms of Z
i
 as

with c
1
 and c

i
 being the canonical i-vectors having a ’1’ as 

their first and last entry, respectively. To determine its deter-

minant, we apply the determinant factorization rule (Teunis-

sen et al. 2005) to get

which shows, since Z
1
= 1 , that |Z

i
| = (−1)i−1 for 

i = 1,… , m . This concludes the proof of |Z| = ±1 .   ◻

Proof of  Corollary 3 (GLONASS integer‑estimable ambigui‑

ties) According to Corollary 1, the integer-estimable ambi-

guity vector z̃i ∈ ℤ
i and integer-inestimable ambiguity 

ñ
i+1

∈ ℤ are given with Z
i+1

 of (72) as

For i = 1 , we have

which proves (47). To determine the result for i > 1 , we 

apply the partitioned matrix inversion rule (Teunissen et al. 

2005) to (72) to get

(71)Z3 =

⎡
⎢⎢⎢⎢⎣

Z2

�
1

�2

�
g2

g3

Z2

�
0

1

�

[1, 0]Z2

�
1

0

�
+ �2

�
0

1

�T
a3

g3

⎤
⎥⎥⎥⎥⎦

(72)Zi+1
=

⎡⎢⎢⎢⎣

Zi

�
Ii−1

�i

�
gi

gi+1

Zici

cT
1
Zi

�
Ii−1

0

�
+ �ic

T
i

ai+1

gi+1

⎤⎥⎥⎥⎦

(73)

|Zi+1
| =|Zi

[
Ii−1

�i

]
| × |

ai+1

gi+1

−
�i

�i

gi

gi+1

|

=|Zi| ×
�iai+1

− �igi

gi+1

=|Zi| × (−1)

(74)

⎡
⎢
⎢
⎣

z̃i
i×1

ñi+1
1×1

⎤
⎥
⎥
⎦
= Z

−1

i+1

⎡
⎢
⎢
⎣

z1

1r

⋮

z
i+1

1r

⎤
⎥
⎥
⎦

for i = 1,… , (m − 1)

(75)

[

z̃
1

ñ
2

]

=

[

𝛼
1

a
1

g
2

𝛽
1

a
2

g
2

]

−1
[

z
1

1r

z
2

1r

]

=

[

−

a
2

g
2

a
1

g
2

𝛽
1

− 𝛼
1

]

[

z
1

1r

z
2

1r

]

with dT

i
= c

T

1
Z

i
+ �

i
c

T

i
 and �i =

�ia1(i+1)+gi+1

�igi

 . Substitution of 

(76) into (74) proves the result.   ◻

Proof of  Theorem  4 (Recovery of  Integer‑Estimability) We 

first show how (52) with rank-deficient [M, C] can be trans-

formed to (53) with full rank [MZ1, C] . Using the stated 

properties of Z and Y
2
 , we define

Using the reparametrization

in (52) gives then (53) with the given definitions of z̃
1
 and 

c̃ . We now show that z̃
1
= FTz , with FT = [In−p, 0]Z

−1 , is 

indeed integer-estimable. To do so, we need to verify the 

two conditions of Theorem 1. The second condition is eas-

ily verified, since by construction FT
Z = [In−p, 0] . To verify 

the first condition, we need to show that F = M
T
C
⟂

X for 

some X. Thus, we need to show that Z−T
[In−p, 0]T = MTC⟂X 

or [In−p, 0]T = Z
TMTC⟂X  , which is indeed true for 

X = ((MZ
1
)TC

⟂)−1 . The estimability of c̃ is proven along 

similar lines.   ◻

Proof of  Corollary 4 (Phase‑only integer‑estimabil‑

ity) With reference to Theorem  4, we have p = m − 1 , 

M = 𝛬⊗ L , C = −𝜇 ⊗ I
m−1

 , and � = (1, (�0

2
∕�0

1
)2)T  . A 

basis matrix of the null space of [M, C] follows then from 

(𝛬⊗ L)(𝛬−1𝜇 ⊗ I
m−1

) + (−𝜇 ⊗ I
m−1

)(1 ⊗ L) = 0 as

with X an arbitrary invertible (m − 1) × (m − 1) matrix. 

Matrix X will help us to find a proper scaling such that Z
2
 

can indeed be extended to an admissible Z = [Z1, Z2] . Since 

the GLONASS wavelength ratio is �0

2
∕�0

1
= 9∕7 , we have 

�−1� =
1

7�1

(7, 9)T . This shows that by choosing X = 7�
1
I
m−1

 , 

we find Z , its inverse Z−1 , and Y
2
 as

Combining this with Theorem 4 proves the result.   ◻

(76)Z
−1

i+1
=

⎡⎢⎢⎢⎣

��
Ii−1

1

�i

�
−

gi

gi+1

cid
T
i

�
Z

−1

i

gi

gi+1

ci

�id
T
i
Z

−1

i
− �i

⎤
⎥⎥⎥⎦

(77)T =

[

Z 0

(0, Y2) Ip

]

with T−1 =

[

Z
−1

0

−(0, Y2)Z
−1 Ip

]

(78)

[

z

c

]

= T

[

z̃

c̃

]

, z = Z

[

z̃1

z̃2

]

(79)

[

Z
2

Y
2

]

=

[

𝛬−1𝜇 ⊗ I
m−1

1 ⊗ L

]

X

(80)

Z =

[

60 7

77 9

]

⊗ I
m−1, Z

−1
=

[

9 − 7

−77 60

]

⊗ I
m−1, Y2 = 7𝜆1 ⊗ L
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