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Abstract

Two-sample tests for multivariate data and especially for non-Euclidean data are
not well explored. This paper presents a novel test statistic based on a similarity
graph constructed on the pooled observations from the two samples. It can be applied
to multivariate data and non-Euclidean data as long as a dissimilarity measure on
the sample space can be defined, which can usually be provided by domain experts.
Existing tests based on a similarity graph lack power either for location or for scale
alternatives. The new test utilizes a common pattern that was overlooked previously,
and works for both types of alternatives. The test exhibits substantial power gains in
simulation studies. Its asymptotic permutation null distribution is derived and shown
to work well under finite samples, facilitating its application to large data sets. The
new test is illustrated on two applications: The assessment of covariate balance in
a matched observational study, and the comparison of network data under different
conditions.

Keywords: nonparametrics, permutation null distribution, similarity graph, general alter-
natives.
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1 Introduction

Two-sample comparison is a classical problem in Statistics. As we entering the big data era,

this problem is encountering new challenges. Often, researchers want to combine features

of subjects together in one test, resulting in multivariate testing problems. Nowadays, the

number of features can be large and there can be underlying structures among them [de la

Sierra et al., 2011, Feigenson et al., 2014]. Also, more complex data types are receiving

increasing attention, such as image data and network data [Eagle et al., 2009, Kossinets

and Watts, 2006]. Effectively comparing samples of these data types is a challenging

but important problem. For parametric approaches, their power decreases quickly as the

dimension increases unless strong assumptions are made to facilitate the estimation of the

large number of parameters, such as the covariance matrix. In this work, we propose and

study a nonparametric testing procedure that works for both multivariate data and object

data against general alternatives.

Nonparametric testing for two sample differences has a long history and rich literature.

Some well known examples include the Kolmogorov-Smirnov test, the Wilcoxon test, and

the Wald-Wolfowitz runs test (see Gibbons and Chakraborti [2011] for a survey). People

have tried to generalize these procedures to multidimensional settings from long time ago.

Weiss [1960] generalized the Wald-Wolfowitz runs test through drawing the largest possible

non-overlapping spheres around one sample and count the number of spheres that do not

contain observations from the other sample. However, the null distribution of the statistic

is not known and is distribution dependent. Darling [1957] and Bickel [1969] generalized

the Kolmogorov-Smirnov test using the multivariate empirical cdf, while in order for these

methods to work well, the required sample size is exponential in dimension.

Friedman and Rafsky [1979] proposed the first practical test that can be applied to data

with arbitrary dimension. They used the pairwise distances among the pooled observations

to construct a minimum spanning tree (MST), which is a spanning tree that connects all

observations with the sum of distances of edges in the tree minimized. Tests were conducted

based on the MST. The principal one is a count statistic on the number of edges that connect

nodes (observations) from different samples, which can be viewed as a generalization of the

Wald-Wolfowitz runs test to the multidimensional setting. The rationale of the test is that,
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if the two samples are from different distributions, observations would be preferentially

closer to others from the same sample than those from the other sample. Thus edges in the

MST would be more likely to connect observations from the same sample. The test rejects

the null if the number of between-sample edges is significantly less than what is expected.

We call this test the edge-count test for easy reference.

The edge-count test can be applied to other similarity graphs. Friedman and Rafsky

[1979] also considered denser graphs, e.g., the k-MST, which is the union of the 1st, . . . ,

kth MSTs, where a kth MST is a spanning tree connecting all observations that minimizes

the sum of distances across edges subject to the constraint that this spanning tree does

not contain any edge in the 1st, . . . , k-1th MST(s). They showed that the edge-count

test on a 3-MST is usually more powerful than the edge-count test on a 1-MST. Schilling

[1986] and Henze [1988] used k-nearest neighbor (k-NN) graphs where each observation

is connected to its k closest neighbors. Rosenbaum [2005] proposed to use the minimum

distance non-bipartite pairing (MDP). This divides the N observations into N/2 (assuming

N is even) non-overlapping pairs in such a way as to minimize the sum of N/2 distances

within pairs. For an odd N , Rosenbaum suggested creating a pseudo data point that has

distance 0 to all observations, and later discarding the pair containing this pseudo point.

The edge-count test on the MDP is exactly distribution free because the structure of the

MDP only depends on the sample size under the null hypothesis.

Friedman and Rafsky [1979] proposed other tests based on the MST as well. They

viewed the MST as a generalization of the “sorted list” and formed generalizations of the

Smirnov test and the radial Smirnov test. They also proposed a degree test on the MST by

pooling observations into a 2×2 contingency table according to (i) whether the observation

is from the sample X or not, and (ii) whether the observation has degree 1 in the MST

or not, and tested their independence. The generalizations of the Smirnov test and the

radial Smirnov test in Friedman and Rafsky [1979] required the graph being a tree; while

the degree test can easily be generalized to other types of graphs. Rosenbaum [2005] also

proposed another test based on the MDP by using the rank of the distance within the pairs,

which is thus restricted to MDPs.

All these tests based on a similarity graph on observations can be applied to non-
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Euclidean data as long as a similarity measure on the sample space can be defined. Maa

et al. [1996] provided the theoretical basis for this type of test for the multivariate setting.

They showed that, under mild conditions, two multivariate distributions are equivalent if

and only if the distributions of interpoint distances within each distribution and between the

distributions are all equivalent. In addition, Henze and Penrose [1999] showed that the edge-

count test on the MST is consistent against all alternatives for multivariate distributions

when the MST is constructed using the Euclidean distance. Since non-Euclidean data can

often be embedded into a high-dimensional Euclidean space, these results also provide us

with confidence in applying these tests to non-Euclidean data.

However, the reality is not as promising for these existing tests. The two basic types

of alternatives are location and scale alternatives. Although all these tests were proposed

for general alternatives, none of them is sensitive to both kinds of alternatives in practical

settings. Asymptotically, the edge-count test is able to distinguish both types of alternatives

as proved by Henze and Penrose [1999]. In practice, the edge-count test has low or even

no power for scale alternatives when the dimension is moderate to high unless the sample

size is astronomical due to the curse-of-dimensionality. The detailed reason is given in

Section 2. For the other tests mentioned above, Friedman and Rafsky [1979] showed that

the generalization of the Smirnov test has no power for scale-only alternatives and the

generalization of the radial Smirnov test and the degree test on the MST have no power

for location-only alternatives. The rank test on the MDP proposed by Rosenbaum [2005]

has similar rationale and performance to the edge-count test on the MDP.

To solve the problem, we propose a new test which utilizes a common pattern in both

types of alternatives and thus works well for them both and even general location-scale

alternatives. The details of the new test are discussed in Section 3. We study the power of

the proposed test under different scenarios and compare it to other existing tests in Section

4. In Section 5, we derive the asymptotic permutation null distribution of the test statistic

and show how the p-value approximation based on the asymptotic null distribution works

for finite samples. In Section 6, the proposed test is illustrated by two applications: Ap-

praising covariate balance in matched college students, and comparing phone-call networks

under different conditions. We discuss a few other test statistics along the same line in
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Section 7, and conclude in Section 8.

2 The problem

Although Henze and Penrose [1999] proved that the edge-count test on MST constructed on

Euclidean distance is consistent against all alternatives, the test does not work under some

common scenarios. As an illustration example, we consider the testing of two samples, both

sample sizes are 1,000, from two distributions, FX = N (0, Id) and FY = N (µ, σ2Id), d =

100, respectively, where Id is a d×d identity matrix. Here, N (µ,Σ) denotes a multivariate

normal distribution with mean µ and covariance matrix Σ. We use the common notation

‖ · ‖2 to denote L2 norm.

• Scenario 1: Only mean differs, ‖µ‖2 = 1, σ = 1.

• Scenario 2: Both mean and variance differ, ‖µ‖2 = 1, σ = 1.1.

In most simulation runs, the edge-count test on MST constructed on the Euclidean distance

rejects the null hypothesis under scenario 1, but does not reject the null hypothesis under

scenario 2. Of course, the additional difference in variance in scenario 2 would not make

the two distributions more similar. So what happened here?

We study a typical simulation run under scenario 2. The MST constructed on the

2,000 points (observations) based on the Euclidean distance contains 979 between-sample

edges, which is quite close to its null expectation (1,000). Thus, the edge-count test does

not reject the null hypothesis. However, if we take a closer look, in the MST, there are

991 edges connecting points within sample X, but only 29 edges connecting points within

sample Y. The fact that almost all points from sample Y find points from sample X closer

contributes a lot to the between-sample edges, making the edge-count test have low power

under this scenario. Then why do points in sample Y find points in sample X closer? In

Figure 2, we show the boxplots of distances of points in each sample to the center of all

points from both samples. We see that the two samples are well separated into two layers:

Sample X in the inner layer and sample Y in the outer layer.

When the dimension is moderate to high and the two distributions differ in scale, the

phenomenon that points in the outer layer find themselves to be closer to points in the
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Figure 1: Boxplots of the distances of the points in each sample to the center of all points

from both samples from a typical simulation run under scenario 2.

inner layer than other points in the outer layer is common unless the number of points

in the outer layer is extremely large. The reason is that the volume of a d-dimensional

space increases exponentially in d. When d is large, we can put a huge number of points

on the unit surface such that no pair of them is closer than 1. Then, each point on the

unit surface would find the origin to be closer than any other point on the unit surface. If

there are points on an inner layer inside of the unit surface, then most of the points on the

unit surface would find points in that inner layer to be closer than their closest points on

the unit surface. This argument can be extended to any pair of distributions differing in

scale under moderate to high dimension.

To give an idea on how large the number can be, we approximate it by the number of

non-overlapping (d−1)-dimensional balls with radius 0.5 on the surface of the d-dimensional

unit ball, which can further be approximated by the ratio of the surface area of the d-

dimensional unit ball,
dπd/2

Γ(d/2 + 1)
,

over the volume of the (d− 1)-dimensional ball with radius 1/2,

π(d−1)/2(1/2)d−1

Γ((d− 1)/2 + 1)
.
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This gives √
πdΓ(d/2 + 1/2)

Γ(d/2 + 1)
× 2d−1.

This approximate number is plotted versus dimension (d) in Figure 2. We can see that

the number is exponential in d (the y-axis is in a logarithmic scale). When the dimension

is 30, the number is around 1010. When the dimension is 65, the number is about 1020.

These numbers can hardly be achieved in reality in terms of the number of observations in

one sample. Therefore, in practice, the edge-count test on a similarity graph that connects

observations “closer” in the usual sense, e.g., Euclidean distance, does not work under the

scale alternative when the dimension is moderate to high.

Figure 2: The approximate number of points that can be put on the d-dimensional unit

ball such that the distance between any two points is larger than 1. The x-axis is the

dimension and the y-axis (in logarithmic scale) is the approximate number of points.

To solve this problem, there are some options. One way is to define a new sense of

“closeness”. For example, if we know the change is in scale and the distribution is isotropic,

we can define the closeness based on the distance to the center of all points: Points are

closer if their distances to the center are more similar. However, this relies heavily on the

type of the alternative and the “closeness” that works well for one alternative can work
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poorly for another.

In this paper, we adopt a different approach. We construct the similarity graph in the

usual sense of “closeness” but define a new test statistic that utilizes a common pattern in

the two types of alternatives. The details are in the following section.

3 A new test statistic

There is a key fact: In either location or scale alternatives, in the similarity graph con-

structed through the usual sense of “closeness”, the numbers of within-sample edges for

the two samples deviate from their null expectations, though the direction of deviations

can be different. In location alternatives, both numbers of within-sample edges for the two

samples would be more than their null expectations, so the edge-count test works. In scale

alternatives and when the dimension is moderate to high, the number of within-sample

edges for the sample in the inner layer would be more than its null expectation, while the

number of within-sample edges for the sample in the outer layer would be less than its null

expectation, making the edge-count test have low or no power. We can, however, incorpo-

rate both directions of deviations together and construct a test statistic that is powerful

for both types of alternatives.

Before defining the test statistic, we first give the formal formulation of the problem.

We have two independent samples {X1, . . . ,Xn} and {Y1, . . . ,Ym}, with the formal inde-

pendent and identically distributed according to a distribution FX and the latter FY. We

test for H0 : FX = FY versus a general alternative HA : FX 6= FY. We let N = n + m be

the total sample size.

Under the null hypothesis FX = FY, the group identity is exchangeable. In the follow-

ing, we work under the permutation null distribution, which places 1/
(
N
n

)
probability on

each of the
(
N
n

)
choices of n out of the total N observations as the X-sample. When there

is no further specification, we denote by P, E, Var probability, expectation, and variance,

respectively, under the permutation null distribution.

The new test statistic we propose utilizes a similarity graph constructed on the pooled

observations. Let G be an undirected similarity graph constructed in terms of usual “close-

ness” on the observations, such as a MST constructed using L2 or L1 distance. We restrict
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G to have no multi-edge. That is, any pair of nodes is connected by at most one edge. The

k-MST by construction satisfy this restriction. The similarity graph need not be derived

from a similarity measure. It can be directly provided by domain experts based on domain

knowledge.

We use G to refer to both the graph and its set of edges, when the vertex set is implicitly

obvious. The symbol | · | is used to denote the size of a set, so |G| is the number edges in

G. For any event x, we let Ix be the indicator function that takes value 1 if x is true, and 0

otherwise. We pool observations and index them by 1, . . . , N . Let gi = 0 if the observation

is from sample X and 1 otherwise. For an edge e = (i, j), we define

Je =


0 if gi 6= gj

1 if gi = gj = 0

2 if gi = gj = 1

,

Rk =
∑
e∈G

IJe=k, k = 0, 1, 2. (1)

Then R0 is the number of between-sample edges (which is the test statistic for the edge-

count test), R1 is the number of edges connecting observations both from sample X, and

R2 is the number of edges connecting observations both from sample Y.

The new test statistic is defined as follows:

S = (R1 − µ1, R2 − µ2)Σ−1

 R1 − µ1

R2 − µ2

 ,

where µ1 = E(R1), µ2 = E(R2), and Σ is the covariance matrix of the vector (R1, R2)′ under

the permutation null distribution. The test statistic is defined in this way so that either di-

rection of deviations of the number of within-sample edges from its null expectation would

contribute to the test statistic. Under the location-alternative, or the scale-alternative for

low-dimensional data, we would expect both R1 and R2 to be larger than their null expec-

tations, then S would be large. Under the scale-alternative for moderate/high-dimensional

data, the number of within-sample edges for the sample with a smaller variance is expected

to be larger than its null expectation, and the number of within-sample edges for the sam-

ple with a larger variance is expected to be smaller than its null expectation, then S would

also be large. Therefore, the test defined in this way is sensitive to both location and scale

alternatives.
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The analytic expressions for µ1, µ2, and Σ = (Σi,j)i,j=1,2 can be calculated through

combinatorial analysis. They are given in the following lemma.

Lemma 3.1. We have

µ1 = |G| n(n− 1)

N(N − 1)

µ2 = |G|m(m− 1)

N(N − 1)

Σ11 = µ1(1− µ1) + 2C
n(n− 1)(n− 2)

N(N − 1)(N − 2)

+ (|G|(|G| − 1)− 2C)
n(n− 1)(n− 2)(n− 3)

N(N − 1)(N − 2)(N − 3)

Σ22 = µ2(1− µ2) + 2C
m(m− 1)(m− 2)

N(N − 1)(N − 2)

+ (|G|(|G| − 1)− 2C)
m(m− 1)(m− 2)(m− 3)

N(N − 1)(N − 2)(N − 3)

Σ12 = Σ21 = (|G|(|G| − 1)− 2C)
nm(n− 1)(m− 1)

N(N − 1)(N − 2)(N − 3)
− µ1µ2.

where C = 1
2

∑N
i=1 |Gi|2 − |G|, with Gi being the subgraph in G that includes all edge(s)

that connect to node i.

The quantity C is the number of edge pairs that share a common node. The proof to

this lemma is in Appendix A.1.

To ensure that the proposed test statistic is well defined, Σ needs to be invertible.

Theorem 3.2. For N > 3, |G| > 0, the proposed test statistic S is well defined except for

the following two kinds of graphs.

(1) All nodes have exactly the same degree, i.e., |G1| = |G2| = · · · = |GN |.

(2) The perfect star-shaped graph, that is, one node has degree N −1 and all other nodes

have degree 1.
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Proof. The elements in Σ can be re-organized as

Σ11 =
nm(n− 1)(m− 1)

N(N − 1)(N − 2)(N − 3)

(
|G|+ n− 2

m− 1

(
N∑
i=1

|Gi|2 −
4|G|2

N

)
− 2

N(N − 1)
|G|2

)
,

Σ12 =
nm(n− 1)(m− 1)

N(N − 1)(N − 2)(N − 3)

(
|G| −

(
N∑
i=1

|Gi|2 −
4|G|2

N

)
− 2

N(N − 1)
|G|2

)
,

Σ22 =
nm(n− 1)(m− 1)

N(N − 1)(N − 2)(N − 3)

(
|G|+ m− 2

n− 1

(
N∑
i=1

|Gi|2 −
4|G|2

N

)
− 2

N(N − 1)
|G|2

)
,

and the determinant of Σ can be expressed as

|Σ| = nm

N(N − 1)(N − 2)

(
N∑
i=1

|Gi|2 −
4|G|2

N

)(
(N − 2)|G|+ 2

N − 1
|G|2 −

N∑
i=1

|Gi|2
)
.

From the Cauchy-Schwarz inequality, we know that

N∑
i=1

|Gi|2 ≥
4|G|2

N
.

Here, equality only holds when |Gi|’s are equal for all i’s, which leads to the first kind of

graph for which the Σ is non-invertible.

We next figure out the kind of graph that (N − 2)|G|+ 2
N−1
|G|2 −

∑N
i=1 |Gi|2 = 0.

If |G| < N − 1, then
∑N

i=1 |Gi|2 ≤ |G|2 + |G|. So

(N − 2)|G|+ 2

N − 1
|G|2 −

N∑
i=1

|Gi|2 ≥ (N − 2)|G|+ 2

N − 1
|G|2 − |G|2 − |G|

= (N − 3)|G|
(

1− |G|
N − 1

)
> 0.

If |G| ≥ N − 1, we let |G| =
∑s

i=1(N − i) + t where 1 ≤ s ≤ N − 1 and 0 ≤ t < N − s.

Then the graph with the maximum
∑N

i=1 |Gi|2 is that s node(s) connect to every other

node (side node) and one side node connects to t other side nodes. Therefore,

N∑
i=1

|Gi|2 ≤ s(N − 1)2 + (s+ t)2 + t(s+ 1)2 + (N − s− 1− t)s2

= s(N − 1)2 + s2(N − 1)− s2(s− 1) + 4st+ t2 + t.

Noticing that |G| =
∑s

i=1(N − i) + t = s(N − 1)− s(s− 1)/2 + t, we have,

(N − 2)|G|+ 2

N − 1
|G|2 −

N∑
i=1

|Gi|2

≥ −N − 3

N − 1
t2 +

(
N − 3− 2s(s− 1)

N − 1

)
t+

s(s− 1)(N − s)(N − s− 1)

2(N − 1)
:= h(N, s, t).
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Now, h(N, s, t), 0 ≤ t ≤ N − s− 1, is a quadratic function of t and the coefficient of t2 is

negative, so its minimum is achieved at either t = 0 or t = N − s− 1. It follows that

h(N, s, 0) =
s(s− 1)(N − s)(N − s− 1)

2(N − 1)
≥ 0,

h(N, s,N − s− 1) = (N − s− 1)

(
−N − 3

N − 1
(N − s− 1) +N − 3− 2s(s− 1)

N − 1
+
s(s− 1)(N − s)

2(N − 1)

)
=
s(s+ 1)(N − 1− s)(N − 2− s)

2(N − 1)
≥ 0.

Therefore, when |G| ≥ N − 1, we have (N − 2)|G| + 2
N−1
|G|2 −

∑N
i=1 |Gi|2 ≥ 0. Here,

equality holds only when (i) t = 0, s = 1 and the graph is perfectly star-shaped; or (ii)

t = 0, s = N − 1 and G is the complete graph (all nodes have degree N − 1).

Remark 3.3. If N is even, and a k-MDP is constructed, then all nodes have degree k and

Σ is non-invertible. It would not be a problem when N is odd (and k < N). However, since∑N
i=1 |Gi|2 − 4|G|2/N is very small in k-MDP compared to |G|, the condition number of Σ

is large and its inversion is unstable. The same problem arises when the graph is roughly

star-shaped. Therefore, if such similarity graphs are obtained, we recommend not to use

the proposed test statistic or one can seek better ways to construct the graph.

In the following, we refer to |G|, n,m → ∞, n/(n + m) → p ∈ (0, 1) as the usual

limiting regime.

Remark 3.4. In the usual limiting regime, when
∑N

i=1 |Gi|2 − 4|G|2
N

= O(|G|), which is

commonly achieved for the k-MST, k = O(1), (see the proof of Theorem 5.2), the limiting

quantities for µ1/|G|, µ2/|G| and Σ/|G| are

lim
N→∞

µ1

|G|
= p2,

lim
N→∞

µ2

|G|
= q2,

lim
N→∞

Σ

|G|
= p2q2

 1 + rp/q 1− r

1− r 1 + rq/p

 ,

where q = 1− p, and r = limN→∞
∑N

i=1(|Gi|2 − 4|G|2/N)/|G|.
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If the graph is a k-MST, k = O(1), then |G| = k(N − 1), and r is a function of k and

the dimension of the data if they lie in an Euclidean space and the k-MST is constructed

based on the Euclidean distance (see the proof of Theorem 5.2).

The topology of G completely determines the permutation distribution of the test statis-

tic. One can compute higher moments in the same manner as the variance in Lemma 3.1,

which is however very tedious when the order of moments is high. To obtain the permuta-

tion p-value, for small enough sample size, it is feasible to calculate directly the distribution

of S over all permutations. This, however, can be time consuming for large sample sizes.

We show that the permutation null distribution of S approaches the χ2
2 distribution under

some mild conditions on the graph (see details in Section 5).

4 Power comparison

The utility of the test presented in the previous section lies in its power to discriminate

against a wide variety of alternative hypotheses. In this section, we present results of various

simulation studies in examining the power of the test for several alternative hypotheses in

various dimensions.

To have a baseline for comparison, we choose the distribution to be multivariate Gaus-

sian distribution so that we have the asymptotically most powerful tests based on the

normal theory – the Hotelling’s two-sample T 2 test if assuming equal covariance matrices

[“Hotelling’s T 2”], and the generalized likelihood ratio test if not assuming equal covariance

matrices [“GLR”]. The test statistic of the Hotelling T 2 is

nm

N
(x̄− ȳ)′W−1(x̄− ȳ),

with x̄ =

∑n
i=1 xi
n

, ȳ =

∑m
i=1 yi
m

, W =

∑n
i=1(xi − x̄)(xi − x̄)′ +

∑m
i=1(yi − ȳ)(yi − ȳ)′

N − 2
,

and the test statistic of GLR is N log |Σ̂0| − n log |Σ̂x| −m log |Σ̂y|, where Σ̂0, Σ̂x, and Σ̂y

are the maximum likelihood estimators of the covariance matrix of the whole data, sample

X and sample Y.

In addition to the two tests based on the normal theory, we include in the comparison

the new test on the MST, 3-MST and 5-MST [“S: 1-,3-,5-MST”], the edge-count test on
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MSTs [“R0: 1-,3-,5-MST”] and on MDPs [“R0: 1-,3-,5-MDP”], as well as the degree test

on the MST proposed in Friedman and Rafsky [1979] [“deg 1”]. All MSTs and MDPs are

constructed using the Euclidean distance.

Table 1 shows results for two multivariate Gaussian distributions with different means

(the L2 distance of the two means is ∆). The results are from low dimension (d = 2) to high

dimension (d = 100). For each case, the specific alternative hypothesis was chosen so that

the tests have moderate power. We see that Hotelling’s T 2 test is doing very well when the

dimension is low to moderate since all assumptions for Hotelling’s T 2 test hold. However,

when the dimension becomes higher, the power of Hotelling’s T 2 test is outperformed by

the edge-count tests and the new test. In the table, we show only up to d = 100, while the

edge-count tests and the new test are not limited by the dimension. Based on the current

trend, even if we keep the same amount of ∆, the power of the edge-count tests and the new

test decrease slowly as the dimension increases. This is the scenario where the edge-count

test works and we see that the new test is only slightly worse than the edge-count test.

Table 1: Number of trials (out of 100) with significance less than 5%, normal data. The

means of the two distributions differ in ∆ in L2 distance. n = m = 50.

Location alternatives

d 2 10 30 50 70 90 100

∆ 0.6 0.8 1.1 1.4 1.7 2 2

Hotelling’s T 2 77 71 74 76 70 26 -

GLR 52 30 14 - - - -

R0: 1-,3-,5-MST 22 35 40 12 35 47 27 46 49 37 67 73 41 76 89 61 85 92 57 85 90

R0: 1-,3-,5-MDP 9 25 32 10 26 38 18 36 43 21 47 64 27 63 86 41 74 89 50 75 87

deg 1 4 6 4 4 3 4 4

S: 1-,3-,5-MST 10 22 24 9 23 34 20 30 34 25 40 59 23 54 80 36 76 83 34 74 82

Table 2 shows results for two multivariate Gaussian distributions with different variances

(differ in a multiple of σ). Since the equal covariance matrices assumption for Hotelling’s

T 2 test does not hold here, Hotelling’s T 2 test is doing poorly. The GLR test is doing

well in very low dimension (d = 2). When the dimension increases a bit (d = 5), it is
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already outperformed by the new test. The reason is that the number of parameters that

need to be estimated for the GLR test increases quickly as the dimension increases and its

power decreases quickly, while the new test is relatively dimension-free. This is the scenario

where the edge-count test becomes not working properly as the dimension increases. We

see that the edge-count test is working okay in low dimensions, but has much lower power

than the new test as the dimension increases. The degree test, which has no power in the

location-only alternative (Table 1), is powerful here, but it is dominated by the new test.

Table 2: Number of trials (out of 100) with significance less than 5%, normal data, n =

m = 50.

Scale alternatives

d 2 5 10 20

σ 1.4 1.25 1.2 1.15

Hotelling’s T 2 7 7 5 5

GLR 69 42 28 12

R0: 1-,3-,5-MST 22 34 41 12 22 24 7 17 28 7 15 18

R0: 1-,3-,5-MDP 16 28 36 12 14 17 7 9 18 5 5 10

deg 1 8 27 59 62

S: 1-,3-,5-MST 20 43 56 37 64 64 57 76 78 66 73 80

We also compare all the tests for log normal data. The distributions are products of

independent log normal distributions with alternatives differing in the location parameter

(the difference of the two location parameters is ∆). Changing location parameter changes

both the mean and variance of a log normal distribution, so the alternative is both location

and scale. We see that, when the dimension is moderate to high, the new test dominates

all other tests (Table 3).

From the simulation results, the new test exhibits high power for both location and

scale alternatives, as well as for general location-scale alternatives. Unless we are very

confident that the alternative is location-only, the new test is preferred in moderate to high

dimensions.

Remark 4.1. In all simulation studies, the power of both the edge-count test and the new
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Table 3: Number of trials (out of 100) with significance less than 5%, product log normal

data, n = m = 50.

Log location alternatives

d 2 10 30 50 70 90

∆ 0.8 1 1.3 1.3 1.5 1.7

Hotelling’s T 2 82 81 79 52 39 20

GLR 27 18 16 - - -

R0: 1-,3-,5-MST 38 58 62 26 49 58 22 45 51 14 44 52 16 48 60 21 42 53

R0: 1-,3-,5-MDP 25 44 54 18 34 50 11 31 40 11 23 35 15 36 49 12 34 47

deg 1 4 10 29 41 50 47

S: 1-,3-,5-MST 19 39 53 25 46 57 43 52 61 40 57 62 46 65 69 51 69 75

test increase when the similarity graph becomes denser, from a 1-MST to a 5-MST. This

is reasonable because 5-MST has more “similarity” information than 1-MST does. To the

other extreme, if we make the similarity graph too dense, we would include edges that do

not provide any “similarity” information or even provide counter information. This would

reduce the power of the test. For example, the test on the complete graph would have no

power at all. Therefore, there is an optimal density of the graph for each application. For

the simulation settings, the 5-MST has not achieved the optimal point since the trend of

increasing power from a 1-MST to a 5-MST has not been stabilized. On the other hand,

if we make the graph denser, the computation cost is also higher. These tradeoffs are not

explored in this paper. From a practical point of view, the 5-MST is a reasonable initial

choice when the sample sizes are in hundreds.

To have a better understanding of the edge-count test and the new test, we plot their

rejection regions in Figure 3. The horizontal and vertical axes in both plots are R1−E(R1)

and R2−E(R2), respectively. When there is only a locational difference or the dimension is

very low, the alternative appears in the first quadrant, so the edge-count test has a slightly

higher power than the new test. But the new test can gain power quickly as the amount

of change increases. When there is a scale change and the dimension is moderate to high,

the alternative would appear in the second or the fourth quadrant unless the sample size
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is astronomically large. The new test still has good power, while the edge-count test has

very poor power. The consistency of the new test statistic under a multivariate setting is

discussed in Section 5.2.

Edge-count test (R0) The new test (S)

Figure 3: Rejection regions (shaded) of the edge-count test (R0) and the new test (S). The

horizontal and vertical axises are R1 − E(R1) and R2 − E(R2), respectively.

5 Asymptotics

When the sample size is small, we can obtain the permutation p-value directly from the

permutation distribution of S. This is time consuming when the sample size is large.

In this section, we show that, in the usual limiting regime (see its definition in Remark

3.4), the permutation null distribution of S approaches the χ2
2 distribution under some

mild conditions on the similarity graph G. This facilitates the application of the new

test to large data sets. If the data is multivariate, then the k-MST, k = O(1), based on

the Euclidean distance satisfies all the conditions required for getting the asymptotic null

distribution. In addition, if the two multivariate distribution are continuous and differ on a

set of positive measure, then the proposed test based on the k-MST, k = O(1), is consistent

against all alternatives. We also study how well the asymptotic null distribution works in

approximating p-values for finite samples.
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5.1 Asymptotic null distribution

Before stating the theorem, we define two additional terms on the similarity graph G:

Ae = {e} ∪ {e′ ∈ G : e′ and e share a node},

Be = Ae ∪ {e′′ ∈ G : ∃ e′ ∈ Ae, such that e′′ and e′ share a node}.

So Ae is the subgraph in G that connects to edge e, and Be is the subgraph in G that

connects to any edge in Ae.

Theorem 5.1. If |G| = O(N),
∑N

i=1 |Gi|2 = O(N),
∑

e∈G |Ae||Be| = o(N1.5), and
∑N

i=1 |Gi|2−

4|G|2/N = O(N), in the usual limiting regime, under the permutation null,

S := (R1 − µ1, R2 − µ2)Σ−1

 R1 − µ1

R2 − µ2

 D→ χ2
2. (2)

This theorem can be proved through extensions of the methods used in Chen and Zhang

[2013] and Chen and Zhang [2015]. The complete proof is in Appendix A.2.

The condition
∑N

i=1 |Gi|2 − 4|G|2/N = O(N) ensures the invertibility of Σ in the usual

limiting regime. The other three conditions prevent the existence of a node with a large

degree (so-called hub) or a cluster of small hubs. We show that all these conditions are

satisfied if the graph is a k-MST, k = O(1), based on the Euclidean distance for multivariate

data.

Theorem 5.2. When the graph is a k-MST, k = O(1), based on the Euclidean distance,

then S
D→ χ2

2 in the usual limiting regime under the null hypothesis.

The proof of this theorem is in Appendix A.3. Since non-Euclidean data object can

usually be embedded in a high-dimensional Euclidean space, this theorem is useful for

object data as well when such a correspondence exists.

5.2 Consistency results for multivariate data

Henze and Penrose [1999] showed that the edge-count test on MST is consistent against all

alternatives under the multivariate setting. Extending their arguments, we can show that

the new test statistic on k-MST, k = O(1), is consistent against all alternatives under the

multivariate setting.
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Theorem 5.3. For two continuous multivariate distributions, if the graph is a k-MST,

k = O(1), based on the Euclidean distance, the test based on S is consistent against all

alternatives in the usual limiting regime.

The complete proof of this theorem is in Appendix A.4. This consistency result is also

useful for object data as many of them can be embedded in a high-dimensional Euclidean

space.

5.3 Accuracy of p-value approximations from the asymptotic null

distribution for finite sample sizes

The asymptotic distribution of the test statistic shown in Theorem 5.1 can be used to cal-

culate the approximate p-value of the test. But how large a sample size must be so that the

approximate p-value is good enough? Here, we examine the approximate p-value for finite

samples by comparing it to the permutation p-value calculated from 10,000 permutations,

which serves as a good surrogate of the true permutation p-value. Under different settings

of sample sizes, we take the difference of the two p-values and see how close it is to 0.

Figure 4 shows boxplots of the differences of the two p-values (approximated p-value

minus permutation p-value) from 100 simulation runs, under different choices of n, m, d

and the graph G. We can see from the boxplots that the approximate p-value is slightly

more conservative in general. As the graph becomes denser, from a 1-MST to a 5-MST, the

approximate p-value becomes more accurate, so the slightly denser graph is also preferred

here. The accuracy of the approximation increases as the sample sizes increases. Increasing

the dimension of the data slightly decreases the accuracy of the approximate p-value. From

the plots, sample sizes in hundreds are large enough to use the approximate p-value based

on the asymptotic distribution.

6 Real Data Examples

In this section, we illustrate the new test on two applications: The appraisal of covariate

balance in a matched observational study, and the comparison of phone-call network data

under two conditions.
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d = 10 :

d = 100 :

Figure 4: Boxplots of the differences between the p-value based on the asymptotic distri-

bution and the p-value calculated directly from 10,000 permutations (100 simulation runs

for each setting. FX = FY = N (0, Id)).
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6.1 Covariates appraisal

The new test is applied to a study on assessing a matched design for comparing ultimate

educational attainment for students who start college at two-year vs. four-year colleges in

the United States [Rouse, 1995, Heller et al., 2010]. In the study, 429 students starting at

two-year colleges (the treatment group T) were matched to three nonoverlapping control

groups of students attending four-year colleges (C-1, C-2, C-3) according to 20 observed

covariates, including gender, ethnics, test score, etc. Each matched control group contains

429 students. The control groups are layered: the first control group (C-1) is an optimal

pair matching; the second (C-2) is an optimal pair matching from the unused controls; the

third (C-3) is an optimal pair matching from the still unused controls.

The goal of the matching was to produce treated and control groups that had covariate

balance, i.e., the same distribution of covariates, so it is important to appraise how well the

matching is. (See Hansen and Bowers [2008] for discussion of evaluating balance in matched

observation studies.) As there are 20 covariates in this case, it is not easy to appraise the

matching through parametric approaches. In Heller et al. [2010], they appraised covariate

balance by testing whether the distributions of covariates were the same in the treated and

each control group (and also in each control group vs. each other control group) by using

the MDP test. Their results are shown in the first column (R0: MDP) in Table 4 where the

four groups (T, C-1, C-2, C-3) are compared two at a time with each other. We also made

the six comparisons through the edge-count test on MST (R0: MST, the second column

of Table 4) and the new test on MST (S : MST, the third column). The same distance

in Heller et al. [2010], a ranked-based Mahalanobis distance, was used in constructing the

MST.

From Table 4, it is clear that C-3 is very different from the other three groups, so we

focus on the comparisons among T, C-1 and C-2 (rows 1, 2 and 4 in the table). In all three

tests, the treatment group (T) is very similar to C-1, but significantly different from C-2.

The interesting part is the comparison between C-1 and C-2. Both edge-count tests say

that C-1 is not that different from C-2 (not rejected at 0.01 significance level), which is

not completely different from but somewhat in opposition to the result that the treatment

group is very different from C-2, given that T and C-1 are not close to being significantly
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Table 4: p-values for comparing matched groups two at a time.

p-value

Match R0: MDP R0: MST S: MST

T versus C-1 0.66 0.91 0.20

T versus C-2 0.00013 0.0020 0.0065

T versus C-3 3.6× 10−32 7.4× 10−59 2.8× 10−57

C-1 versus C-2 0.028 0.010 0.0027

C-1 versus C-3 1.3× 10−25 2.5× 10−48 8.1× 10−48

C2 versus C-3 1.2× 10−17 7.5× 10−27 1.9× 10−25

different. On the other hand, the results from the new test are much more consistent: The

difference between the treatment group and C-2 and the difference between C-1 and C-2

are quite similar, which is in line with the result that the treatment group and C-1 are very

similar.

6.2 Social network

The MIT Media Laboratory conducted a study following 106 subjects, students and staff

in an institute, who used mobile phones with pre-installed software that can record call

logs from July 2004 to June 2005 [Eagle et al., 2009]. Given the richness of this data set,

lots of aspects can be studied. One question of interest is whether phone call patterns on

weekdays are different from those on weekends. They can be viewed as representations of

professional relationship and personal relationship, respectively.

We bin the phone calls by day and, for each day, construct a directed phone-call network

with the 106 subjects as nodes and a directed edge pointing from person i to person j if

person i made at least one call to person j on that day. Among the 106 subjects, 87 of

them made calls within themselves during the study. The distance between two networks is

defined as the number of different directed edges in them (the direction matters). k-MSTs

are constructed on the pooled 330 networks based on this distance. The p-values of the

edge-count test and the new test on k-MSTs for different k’s are shown in Figure 5. We

see that the new test rejects the null hypothesis on all k-MSTs at 0.05 significance level
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except for the 1-MST, while the edge-count test does not reject on any of them. We have

learned from the simulation studies in Section 4 that making the similarity graph slightly

denser than the 1-MST would increase the power of the test. In this case, the new test

on the 1-MST is not powerful enough. So the conclusion from the new test is to reject

the null hypothesis while the conclusion from the edge-count test is not to reject the null

hypothesis.

Figure 5: The p-values of the edge-count tests (points) and the new tests (triangles) on

k-MSTs with different k’s (x-axis). The horizontal line is of level 0.05.

Since the two tests provide contradictory conclusions, we next examine which one makes

more sense. Considering the 3-MST as an example, there are 508 between-sample edges,

which is larger than its null expectation (E(R0) = 403.3). According to the rationale of the

edge-count test, the two samples are well connected, so they are from the same distribution.

However, if we explore more into the 3-MST, we see that the phone-call networks on

weekdays are much less likely to be connected within themselves (R1 = 330 compared to

its null expectation E(R1) = 504.2), while the phone-call networks on weekends are much

more likely to be connected within themselves (R2 = 149 compared to its null expectation

E(R2) = 79.5). Both are strong evidences indicating that the two samples are different.

The summary statistics are given in Table 5.

Hence, we see the same phenomenon here as that in moderate/high-dimensional data

with a scale change: Both numbers of within-sample edges deviate from their null expecta-

tions, but the directions of the deviations are different. As non-Euclidean data can usually
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Table 5: Summary statistics for the 3-MST. Sample 1: phone-call networks on weekdays;

sample 2: phone-call networks on weekends.

R0 = 508 E(R0) = 403.3 R0 − E(R0) = 104.7

R1 = 330 E(R1) = 504.2 R1 − E(R1) = −174.2

R2 = 149 E(R2) = 79.5 R2 − E(R2) = 69.5

be embedded into a high-dimensional Euclidean space, it is not surprising to see the same

phenomenon in network data. For this specific example, one plausible explanation is that

personal relationship (reflected by call activities on weekends) is more stable than profes-

sional relationship (reflected by call activities on weekdays), thus the phone-call networks

on weekends have a smaller “variance” compared to those on weekdays.

7 Discussion

In this section, we briefly discuss several other test statistics along the same line as the

new statistic S by utilizing the deviation from the null expectation in both directions. The

following are four such test statistics:

T1 = |R1 − µ1|+ |R2 − µ2|

T2 =
|R1 − µ1|√

Σ11

+
|R2 − µ2|√

Σ22

T3 = (R1 − µ1)2 + (R2 − µ2)2

T4 =
(R1 − µ1)2

Σ11

+
(R2 − µ2)2

Σ22

When n = m, T2 is equivalent to T1, and T4 is equivalent to T3. When n 6= m,

the performances of T2 and T4 are slightly better than those of T1 and T3 for location

alternatives (see Tables 6 and 7).

Comparing these four tests to the proposed test (S), we found that they all are compa-

rable in low dimensions (Table 6, d = 10). For data in high dimension (Table 7, d = 100),

the proposed test (S) is much more powerful than these four tests (T1−T4) for location-only

alternatives, though the proposed test (S) is slightly less powerful than these four tests for

scale-only alternatives. Therefore, we still recommend the proposed test (S) in general
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scenarios unless one is very confident that the alternative is scale-only, under which T2 or

T4 would be preferred.

Table 6: Number of trials (out of 100) with significance less than 5%, normal data, d = 10.

The similarity graph is the MST based on the Euclidean distance.

Location alternatives (∆ = 1)

T1 T2 T3 T4 S

n = 100,m = 100 33 33 29 29 36

n = 100,m = 200 42 45 37 41 48

Scale alternatives (σ = 1.1)

T1 T2 T3 T4 S

n = 100,m = 100 45 45 42 42 37

n = 100,m = 200 57 55 48 56 48

Table 7: Number of trials (out of 100) with significance less than 5%, normal data, d = 100.

The similarity graph is the MST based on the Euclidean distance.

Location alternatives (∆ = 2)

T1 T2 T3 T4 S

n = 100,m = 100 20 20 28 28 71

n = 100,m = 200 23 27 31 38 83

Scale alternatives (σ = 1.05)

T1 T2 T3 T4 S

n = 100,m = 100 84 84 82 82 71

n = 100,m = 200 96 94 95 94 89

8 Conclusion

We propose a new graph-based test statistic for comparing two distributions. It utilizes

a common pattern under the location alternatives and scale alternatives and has good

power for detecting general alternatives for multivariate data and non-Euclidean data.
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The asymptotic permutation null distribution of the test statistic is χ2
2 under some mild

conditions on the graph. P -value approximation based on the asymptotic null distribution

works well for samples in hundreds and beyond, making the test an easy off-the-shelf tool

for analyzing large data sets.

Under the multivariate setting, if the graph is a k-MST, k = O(1), based on the

Euclidean distance, then all the conditions on the graph for obtaining the asymptotic null

distribution are satisfied and we have the unconditional limiting null distribution. The test

based on k-MST, k = O(1), on Euclidean distance is also consistent against all alternatives.

The new test has been applied to two real data sets. In assessing the covariate balance

in a matched observational study, the new test provides more consistent results than the

existing graph-based tests. In comparing network data under two conditions, the new test

is able to capture the “variance” difference in networks.
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A Proofs

A.1 Proof to Lemma 3.1

Under permutation null distribution, we have

ER1 =
∑
e∈G

P(Je = 1) =
∑

(i,j)∈G

P(gi = 1, gj = 1) = |G| n(n− 1)

N(N − 1)
.

E(R2
1) =

∑
e1,e2∈G

P(Je1 = 1, Je2 = 1)

=
∑

(i,j)∈G

P(gi = 1, gj = 1) +
∑

(i,j),(i,k)∈G; j 6=k

P(gi = 1, gj = 1, gk = 1)

+
∑

(i,j),(k,l)∈G; i,j,k,l all different

P(gi = 1, gj = 1, gk = 1, gl = 1)

= |G| n(n− 1)

N(N − 1)
+ 2C

n(n− 1)(n− 2)

N(N − 1)(N − 2)

+ (|G|(|G| − 1)− 2C)
n(n− 1)(n− 2)(n− 3)

N(N − 1)(N − 2)(N − 3)
.

Then Σ11 = E(R2
1) − (ER1)2 follows readily. The expectation and variance of R2 can be

done in a similar manner. For the covariance between R1 and R2, we have

E(R1R2) =
∑

e1,e2∈G

P(Je1 = 1, Je2 = 2)

=
∑

(i,j),(k,l)∈G; i,j,k,l all different

P(gi = 1, gj = 1, gk = 2, gl = 2)

= (|G|(|G| − 1)− 2C)
n(n− 1)m(m− 1)

N(N − 1)(N − 2)(N − 3)
,

and Σ12 = E(R1R2)− ER1ER2 follows readily.

A.2 Proof of Theorem 5.1

The proof of Theorem 5.1 relies on Stein’s method. Consider sums of the formW =
∑

i∈J ξi,

where J is an index set and ξ are random variables with Eξi = 0, and E(W 2) = 1. The

following assumption restricts the dependence between {ξi : i ∈ J }.

Assumption A.1. [Chen and Shao, 2005, p. 17] For each i ∈ J there exists Ki ⊂ Li ⊂ J

such that ξi is independent of ξKc
i

and ξKi
is independent of ξLc

i
.
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We will use the following theorem in proving Theorem 5.1.

Theorem A.1. [Chen and Shao, 2005, Theorem 3.4] Under Assumption A.1, we have

sup
h∈Lip(1)

|Eh(W )− Eh(Z)| ≤ δ,

where Lip(1) = {h : R→ R}, Z has N (0, 1) distribution and

δ = 2
∑
i∈J

(E|ξiηiθi|+ |E(ξiηi)|E|θi|) +
∑
i∈J

E|ξiη2
i |

with ηi =
∑

j∈Ki
ξj and θi =

∑
j∈Li

ξj, where Ki and Li are defined in Assumption A.1.

To prove Theorem 5.1, we take one step back to study the statistic under the bootstrap

null distribution, which is defined as follows: For each observation, we assign it to be from

sample X with probability n/N , and from sample Y with probability 1 − n/N , indepen-

dently of other observations. Let nX be the number of observations that are assigned to

be from sample X. Then, conditioning on nX = n, the bootstrap null distribution be-

comes the permutation null distribution. We use PB, EB, VarB to denote the probability,

expectation, and variance under the bootstrap null distribution, respectively. (We here

add the subscript P to denote the corresponding quantities under the permutation null

distribution.)

Let pn = n/N, qn = 1 − pn, then limN→∞ pn = p, limN→∞ qn = q. Given that the gi’s

are independent under the bootstrap null distribution, we have

EBR1 = |G|p2
n := µB1 ,

EBR2 = |G|q2
n := µB2 ,

VarB(R1) = |G|p2
nq

2
n +

N∑
i=1

|Gi|2p3
nqn := (σB1 )2,

VarB(R2) = |G|p2
nq

2
n +

N∑
i=1

|Gi|2pnq3
n := (σB2 )2.

Let

WB
1 =

R1 − µB1
σB1

, W1 =
R1 − µ1

σ1

,

WB
2 =

R2 − µB2
σB2

, W2 =
R2 − µ2

σ2

,

WB
3 =

nX − n√
Npnqn

.
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Under the conditions of Theorem 5.1, as N →∞, we can prove the following results:

(1) (WB
1 ,W

B
2 ,W

B
3 ) becomes multivariate Gaussian distributed under the bootstrap null.

(2)
σB1
σ1

→ c1,
µB1 − µ1

σB1
→ 0;

σB2
σ2

→ c2,
µB2 − µ2

σB2
→ 0,

where c1 and c2 are constants.

(3) | limN→∞ corrP(W1,W2)| < 1.

From (1) and given that VarB(WB
3 ) = 1, the conditional distribution of (WB

1 ,W
B
2 )′

given WB
3 is a bivariate Gaussion distribution under the bootstrap null distribution as

N → ∞. Since the permutation null distribution is equivalent to the bootstrap null

distribution given WB
3 = 0, (WB

1 ,W
B
2 ) follows a bivariate Gaussian distribution under the

permutation null distribution as N →∞. Since

W1 =
σB1
σ1

(
WB

1 +
µB1 − µ1

σB1

)
, W2 =

σB2
σ2

(
WB

2 +
µB2 − µ2

σB2

)
,

given (2), we have (W1,W2) follows a bivariate Gaussian distribution under the permutation

null distribution as N → ∞. Together with (3), we have the conclusion in Theorem 5.1.

In the following, we prove the results (1)-(3).

To prove (1), by Cramér-Wold device, we only need to show that W = a1W
B
1 +a2W

B
2 +

a3W
B
3 is asymptotically Gaussian distributed for any combination of a1, a2, a3 such that

VarB(W ) > 0.

Let

ξe = a1
IJe=1 − p2

n

σB1
+ a2

IJe=2 − (1− pn)2

σB2
,

ξi = a3
Igi=0 − pn√
Npn(1− pn)

.

Let a = max(|a1|, |a2|, |a3|), σ = min(σB1 , σ
B
2 ,
√
Npn(1− pn)), then σ = O(N0.5), and

|ξe| ≤ 2a/σ, |ξi| ≤ a/σ. Let J = {e ∈ G} ∪ {1, . . . , N}.

For e = (e−, e+) ∈ J , let

Ke = Ae ∪ {e−, e+},

Le = Be ∪ {nodes in Ae}.
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Then Ke and Le satisfy Assumption A.1.

For i ∈ {1, . . . , N}, let

Ki = {e ∈ Gi} ∪ {i},

Li = {e ∈ Gi,2} ∪ {nodes in Gi}.

Then Ki and Li satisfy Assumption A.1.

For j ∈ J , let ηj =
∑

k∈Kj
ξk, θj =

∑
k∈Lj

ξk. By Theorem A.1, we have suph∈Lip(1) |EBh(W )−

Eh(Z)| ≤ δ for Z ∼ N (0, 1), where

δ =
1√

VarB(W )

(
2
∑
j∈J

(EB|ξjηjθj|+ |EB(ξjηj)|EB|θj|) +
∑
j∈J

EB|ξjη2
j |

)

≤ 1√
VarB(W )

(
5
∑
e∈G

8a3

σ3
(|Ae|+ 2)(|Be|+ |Ae|+ 1) + 5

N∑
i=1

a3

σ3
(|Gi|+ 1)(|Gi,2|+ |Gi|+ 1)

)

≤ 1√
VarB(W )

(
360a3

σ3

∑
e∈G

|Ae||Be|+
10a3

σ3

N∑
i=1

(|Gi|+ 1)(|Gi,2|+ 1)

)
.

Notice that for e = (i, j), we have Gi, Gj ⊆ Ae, Gi,2, Gj,2 ⊆ Be, so (|Gi|+1)(|Gi,2|+1) ≤

(|Ae| + 1)(|Be| + 1). For each node i, we can randomly pick an edge that has i as one of

its end points, then each edge in the graph can be picked at most twice since an edge only

has two end points. Therefore,

N∑
i=1

(|Gi|+ 1)(|Gi,2|+ 1) ≤ 2
∑
e∈G

(|Ae|+ 1)(|Be|+ 1) ≤ 8
∑
e∈G

|Ae||Be|.

Hence,

δ ≤ 440a3√
VarB(W )

1

σ3

∑
e∈G

|Ae||Be|.

Since 440a3/
√

VarB(W ) is of constant order, σ = O(N0.5), when
∑

e∈G |Ae||Be| = o(N1.5),

we have δ → 0 as N →∞.

Next we prove result (2). Since |G| = O(N),
∑N

i=1 |Gi|2 − 4|G|2/N = O(N), let

limN→∞ |G|/N = b1 and limN→∞ |Gi|2/N−4|G|2/N2 = b2; b1, b2 ∈ (0,∞). Then limN→∞ |Gi|2/N =

b2 + 4b2
1, and

lim
N→∞

σ2
1

N
= p2q2(b1 + b2p/q) = p2q2b1 + p3qb2
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so

lim
N→∞

σB1
σ1

= lim
N→∞

√
(|G|p2

nq
2
n +

∑
i |Gi|2p3

nqn)/N

σ2
1/N

=

√
1 +

4pb2
1

qb1 + pb2

.

Similarly, we have

lim
N→∞

σB2
σ2

=

√
1 +

4qb2
1

pb1 + qb2

.

Also,

µB1 − µ1 = |G| n
2

N2
− |G| n(n− 1)

N(N − 1)
= −|G| nm

N2(N − 1)
,

so

lim
N→∞

µB1 − µ1

σB1
= − lim

N→∞

r(1− r)|G|/N
σB1

= 0,

since |G| = O(N), σB1 = O(N0.5).

Similarly, we have

lim
N→∞

µB2 − µ2

σB2
= 0.

Next, we prove result (3). We utilize the expression of Σ in Remark 3.3 and obtain

lim
N→∞

corrP(W1,W2) = lim
N→∞

EP(R1R2)− µ1µ2

σ1σ2

= lim
N→∞

Σ12√
Σ11Σ22

=
b1 − b2√

(b1 + b2p/q)(b1 + b2q/p)
=

b1 − b2√
(b1 − b2)2 + b1b2

pq

.

Since b1b2
pq

is strictly positive, we have | limN→∞ corrP(W1,W2)| < 1.

A.3 Proof of Theorem 5.2

For the k-MST, we have |G| = k(N−1). If k = O(1), then |G| = O(N). Following the argu-

ments in Henze and Penrose [1999], for k-MST constructed under Euclidean distance on an

iid sample, we have limN→∞
∑N

i=1 |Gi|2/N = E(D2
d,k) and

∑
e∈G |Ae||Be|/N = O(E(D4

d,k)),

where Dd,k is the degree of the vertex at the origin (0) in the k-MST on a homogeneous

Poisson process on Rd of rate 1, with a point added at the origin, and the expectation and

variance are in terms of the Poisson process.
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Let Dd,(j) be the degree of the origin in the jth MST. Then Dd,k =
∑k

j=1 Dd,(j). Fol-

lowing Lemma 7 of Aldous and Steele [1992], E(Dd,(j)) = 2, so E(Dd,k) = 2k. Then

lim
N→∞

1

N

(
N∑
i=1

|Gi|2 −
4|G|2

N

)
= E(D2

d,k)− 4k2 = V ar(Dd,k).

We only need to show that V ar(Dd,k) and E(D4
d,k) are bounded. Since k = O(1), it is

enough to show that V ar(Dd,1) and E(D4
d,1) are bounded. The part for V ar(Dd,1) has been

shown in Henze and Penrose [1999]. Let αi,d = P (Dd,1 = i). Then E(D4
d,1) =

∑∞
i=1 i

4αi,d.

When d increases, it is more likely to have larger degrees (see Table 1 in Henze and Penrose

[1999]) and E(D4
d,1) becomes larger, so we only need to show that E(D4

∞,1) is bounded.

Penrose [1996] showed that αi,d → αi as d→∞, where

αi =

∫ 1

0

exp(−ψ(u))
ψ(u)k−1

(k − 1)!
du, 1 and ψ(u) =

∫ u

0

log(1/x)

1− x
dx, u < 1.

According to these formulas, it is not hard to calculate the numerical value of E(D4
∞,1),

which is 63.3.

A.4 Proof of Theorem 5.3

Let the density functions of the two multivariate distributions be f and g. Following the

approach in Henze and Penrose [1999], we have

R1

N
→ k

∫
p2f 2(x)

pf(x) + qg(x)
dx almost surely, and

R2

N
→ k

∫
q2g2(x)

pf(x) + qg(x)
dx almost surely.

Let

δ1 = lim
N→∞

R1 − µ1

N
, δ2 = lim

N→∞

R2 − µ2

N
,

1There is a typo in the equation for αi in Henze and Penrose [1999], pp. 292. See Proposition 2 in

Aldous [1990].
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and b = V ar(Dd,k) as defined in Appendix A.3. Then

lim
N→∞

S

N
= lim

N→∞

(
R1

N
− µ1

N
,
R2

N
− µ2

N

)(
Σ

N

)−1
 R1

N
− µ1

N

R2

N
− µ2

N


=

1

p2q2kb
(δ1, δ2)

 pqk + q2b −pq(k − b)

−pq(k − b) pqk + p2b

 δ1

δ2


=
pqk(δ1 − δ2)2 + b(qδ1 + pδ2)2

p2q2kb
.

We next show that qδ1 + pδ2 > 0 when f and g differ on a set of positive measure.

Noticing that

qδ1 + pδ2

k
=

∫
qp2f 2(x) + pq2g2(x)

pf(x) + qg(x)
dx− (qp2 + pq2) = pq

(∫
pf 2(x) + qg2(x)

pf(x) + qg(x)
dx− 1

)
,

since∫
pf 2(x) + qg2(x)

pf(x) + qg(x)
dx− 1 =

∫
pf(x)(f(x)− g(x))

pf(x) + qg(x)
dx =

∫
qg(x)(g(x)− f(x))

pf(x) + qg(x)
dx,

we have

qδ1 + pδ2

kpq
= q

∫
pf(x)(f(x)− g(x))

pf(x) + qg(x)
dx+ p

∫
qg(x)(g(x)− f(x))

pf(x) + qg(x)
dx

= pq

∫
(f(x)− g(x))2

pf(x) + qg(x)
dx.

So qδ1 + pδ2 is strictly positive when f and g differ on a set of positive measure.
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