
c-
en
st
for
er
is

v-

is-
re,
h-

e
f

ize,
fer-
ns.

n-
r

it

hy.
ed,
ts.
ses
re

i-

s
ks

as

A new high density and very low cost reprogrammable
FPGA architecture

Sinan Kaptanoglu, Greg Bakker, Arun Kundu, Ivan Corneillet
Actel Corporation

955 East Arques Avenue, Sunnyvale CA 94086
email: {sinan,gwb,kundu,ivan}@actel.com

Ben Ting
BTR Inc.

20410 Town Center Lane, Suite 210, Cupertino CA 95014
1. ABSTRACT

A new reprogrammable FPGA architecture is described
which is specifically designed to be of very low cost. It
covers a range of 35K to a million usable gates. In addi-
tion, it delivers high performance and it is synthesis effi-
cient. This architecture is loosely based on an earlier
reprogrammable Actel architecture named ES. By
changing the structure of the interconnect and by mak-
ing other improvements, we achieved an average cost
reduction by a factor of three per usable gate. The first
member of the family based on this architecture is fabri-
cated on a 2.5V standard 0.25µ CMOS technology with a
gate count of up to 130K which also includes 36K bits of
two port RAM. The gate count of this part is verified in a
fully automatic design flow starting from a high level
description followed by synthesis, technology mapping,
place and route, and timing extraction.

2. OVERVIEW

Actel introduced its first reprogrammable FPGA two years
ago, the ES family. The ES family addressed the low to
medium gate count ranges with good performance but only
average cost per gate compared with the other commercial
reprogrammable FPGAs.

In this paper, we describe Actel’s second generation repro-
grammable FPGA architecture. This architecture is similar
to the earlier ES architecture in terms of its choice of logic
blocks, but it has a different interconnect structure. The
main motivation for the new architecture has been the desire
to improve theease of usewith higher gate counts and lower
cost per gate. Ease of use is loosely defined as the ease of
place and route success, ability to fix pins, and predictable
performance. In this regard, we surpassed our goals by mak-
ing it possible to build FPGAs withgate countsof up to a

million gates(1) at 0.25µ technology, and up to two million
gates at 0.18µ. Furthermore, we achieved a sizeable redu
tion in the average cost per usable gate by a factor of 3 ev
excluding the geometry shrink factor. Despite this co
reduction, the new architecture seems to be more robust
ease of use than the ES family. When compared with oth
state of the art commercial reprogrammable FPGAs, th
architecture delivers competitive performance, while deli
ering the lowest cost per gate.

The next section describes the architecture. Section 4 d
cusses the CAD software that supports this architectu
where we present preliminary results from synthesis, tec
nology mapping, and place and route.

3. THE FPGA ARCHITECTURE

We call our architecturesemi-hierarchicalfor lack of a bet-
ter term. More precisely, this is an architecture with thre
levels of (true) hierarchy. However, within each level o
hierarchy, the structure islinear, more commonly known as
a two dimensional mesh. Each mesh is segmented. The s
the properties, and the segmentation of each mesh is dif
ent, the details of which appear in the next few sub-sectio

Each of the three levels of hierarchy has its own interco
nect. Switching from one to another (either going up o
down the hierarchy) is facilitated throughtabs which are
active connections with bi-directional buffers. In addition,
is also possible to short circuit the hierarchy by usinglocal
extensions of some of the resources of the lower hierarc
Such hierarchy crossing extensions when judiciously us
significantly increase the performance of the involved ne
Clearly the use of the hierarchy crossing extensions cea
to be beneficial if they are used for interconnections that a
not very local.

The top level of the routing hierarchy is made out of an arb
trary rectangular array oftiles called B16x16. Each tile is
surrounded by routing channels on all four sides.

The B16x16 tile is the middle level of the hierarchy. Thi
hierarchy itself is made out of 16x16 arrays of basic bloc

1 There is no established standard for gate counting for FPGAs
there is for gate arrays. We quoteusablegates not raw gates.

he
re
,
se

ntly
y.
c-

rar-
re
rm

al
m-

on
ile
in
a

h
-
he
to
fig-
he
g

of
called B1. This array is served by a two dimensional mesh
routing structure. The routing channels have logarithmic
segmentation. Each B16x16 tile also includes 9K bits of
user RAM and additional routing resources dedicated to it.

The lowest level of the hierarchy is the B1 block. This block
in a way is the most complicated level of hierarchy possess-
ing several different kinds of interconnect each serving a
different purpose. The units inside the B1 block are the
combinatorial and sequential logic modules, such as LUTs
and flip-flops.

3.1 The Top Level of the Hierarchy
As mentioned earlier, all devices in this FPGA architecture
are built as arbitrary rectangular arrays of B16x16 tiles
enclosed by IO blocks on the periphery. The IO blocks
include digitally implemented Delay-Locked-Loop (DLL)
components (see section 3.6.1). Figure 1 shows the floor-
plan of the 4-tile FPGA that was mentioned in the abstract.
Other devices, both smaller and much larger have similar
floorplans. Obviously, the smallest device in this architec-
ture contains only a single B16x16 tile surrounded by IOs.

Figure 1 - Floorplan of a 4-tile FPGA

The routing tracks that surround the B16x16 tiles are called
freeways. The width of the freeway channels is adjusted to
different values for different members of the family without
disturbing the internal structure of the B16x16 tile. This
modification is the only architectural adjustment required
for adding new members to this family of FPGAs. This abil-
ity to step and repeat B16x16 tiles rapidly is a real advan-
tage in bringing different devices to the marketplace.

The freeway tracks can be extended in any combination of
all three directions at each end through programmable
switches with bi-directional buffers forming a freeway turn
matrix (F-Turn). The IO blocks on the periphery of the

FPGA also have identical channels of freeway tracks on t
inside edge facing a B16x16 tile. Thus, when an enti
FPGA is built with an array of B16x16 tiles and IO blocks
the freeway channels along with the F-Turns form a coar
mesh of their own.

A freeway track will very rarely be utilized all by itself
without any extension, since such distances are abunda
covered by the routing resources in the middle hierarch
The freeways are primarily intended to be used in conjun
tion with one or more other freeway tracks inanydirection,
together spanning distances of two or more B16x16 tiles.

Figure 2 - F-Tabs

The freeway channels are accessed from the middle hie
chy through tabs with bi-directional buffers. These tabs a
called F-Tabs and are shown in Figure 2. F-Tabs perfo
dual function in that they not only provide on/off ramp
access to the freeways, but they also facilitate the loc
extension of B16x16 routing resources. They can even co
bine the two roles simultaneously for the same net!

3.2 The Middle Hierarchy

3.2.1 B16x16 and its Interconnect
The structure of the logic array in the B16x16 is based
the repetition and nesting of smaller tiles. The smallest t
that is directly replicated and stepped is the B2x2 block
an 8x8 array. Each B2x2 block contains four B1 blocks in
2x2 array.

The B16x16 tile also contains two RAM modules. Eac
RAM module has 512x9 bits with an interface of two com
pletely independent ports for write and read operations. T
RAM can be configured in bit mode and it has features
generate or check parity. The read operations may be con
ured in registered, pipelined or asynchronous modes. T
write and read ports interconnect with dedicated routin
resources that run vertically through each column
B16x16 tiles in the FPGA.

B16x16 B16x16

B16x16B16x16

IO IO

IOIO

IO
IO

IO
IO

F
Turn

F
Turn

F
Turn

F
Turn

F
Turn

F
Turn

F
Turn

F
Turn

F
Turn

B16x16

F
Turn

F
Turn

F
Turn

F
Turn

F-tabs

ted
E-
rn

ir
ss-
s,
ne
er-
The two dimensional mesh routing in the middle hierarchy
is called theexpresswaysystem and consists of three types
of routing tracks — M1, M2 and M3 that span distances of
2, 4 or 8 B1 blocks, respectively. All expressways run both
vertically and horizontally through every column or row of
B2x2 blocks as shown in Figure 3. Every expressway track
may be extended with a programmable switch for an identi-
cal distance along the same direction. The M3 tracks have
bi-directional buffers at each extension and can be utilized
to traverse long distances across the FPGA. The M3
expressways directly connects to the F-Tabs as described in
section 3.1.

The vertical and horizontal expressways have depopula
programmable connections to each other in a turn matrix (
Turn) located at the center of each B2x2 block. This tu
matrix is shown in Figure 4.

3.2.2 B2x2 and its Interconnect
The B2x2 contains four B1 blocks in a 2x2 array and the
interconnections with the expressway system. The expre
way routing is not accessible to a B1 block on all four side
only two sides, through two expressway-tabs (E-Tabs), o
to the horizontal expressway tracks and the other to the v
tical expressway tracks.
Figure 3 - B16x16

F
Turn

F
Turn

F
Turn

F
Turn

M1

B1

M3

M
3

M
1

M2

M
2

F

F

Extension

F-Tab

g a
—
fi-

cis,

.

en
e.
—

s
ts
us

ns
h-
in

n
so
cu-
e

An E-Tab has active buffers into the expressway and is
shared by two adjacent B1 blocks as shown in Figure 4. The
B1 block has two dedicated BlockConnect (BC) channels
corresponding to its two E-Tabs. Here, we show the inter-
face of the BCs to the expressways. The BCs directly con-
nect to the E-Tab, which can then connect with any
expressway level using its on-ramp capability. Once the
required distance has been traversed, an off-ramp E-Tab
provides a BC connection back down to the inputs of the
driven modules in the destination B1 block. The BC itself is
described in section 3.3.3.

Figure 4 - B2x2

The separation of the B1 hierarchy from the higher levels by
E-Tabs is designed in such a way as to render the place and
route problems inside and outside the B1 blocks to be inde-
pendent from each other. These two problems, therefore can
be solved separately, rather than simultaneously.

3.3 The Lowest Level of the Hierarchy
The lowest level of the hierarchy possesses the most compli-
cated interconnect. It also has somewhat unorthodox logic
modules. We first discuss the choice of the logic modules in
some length, and then proceed to describe the interconnect.

3.3.1 The Choice of Logic Modules
The sequential modules used in this architecture are quite
simple in that they are clock edge triggered D-flip-flops (FF)
with dedicated (asynchronous or synchronous) set/reset as
well as data-enable signals. The FF can be configured to
respond to either edge of the clock signal, and it can also be
configured as a D-Latch instead of a D-flip-flop.

The combinatorial modules by contrast, are rather unusual
— we use a mixture of LUT2 and LUT3 function genera-
tors. Two questions about our choice of the combinatorial
modules need to be answered. The first is regarding hetero-

geneity — why do we not use only LUT2, or only LUT3
logic blocks, and what advantage is to be gained by havin
mix of both? The second question is a little less obvious
why not use LUT4s, which are shown to be the most ef
cient LUT-k blocks for any integer value of k for SRAM
based reprogrammable FPGAs by J. S. Rose, R. J. Fran
D. M. Lewis and P. Chow in [1], J. Kouloheris and A. El-
Gamal in [2], and S. D. Brown, R. J. Francis and Z. G
Vranesic in [3].

Consider the heterogeneity issue first. This choice is driv
by two different observations about the functional usag
The first observation is about the technology mappers
when required to do technology mapping for ahomoge-
neousLUT-k type logic block, all commercially available
tools produce netlists which contain a mixture of function
ranging from 2 to k inputs. For example, Table 1 presen
the results of mapping by such a tool for a homogeneo
FPGA architecture made out of LUT3 blocks and FFs.

The table gives the percentage of 2 and 3 input functio
produced by this mapper on a set of 20 internal Actel benc
marks. The table shows that on average 15% of the blocks
the mapped circuit were two input logic functions eve
though the mapper was solely targeted for LUT3s. We al
observed that this behavior is quite universal and not a pe
liarity of one vendor’s tools, and it does not depend on th

B1 B1

B1B1

BC

BC

BC

BC

BC

BC

BC

M1
M2

M3

M
1

M
2

M
3

BC

E-Turn

E-Tab

E
-T

ab

E
-T

ab

E-Tab

Table 1 - Technology mapping to LUT3

benchmarks 3-input
functions

2-input
functions

bm1 83% 17%

bm2 96% 4%

bm3 87% 13%

bm4 98% 2%

bm5 89% 11%

bm6 95% 5%

bm7 66% 34%

bm8 92% 8%

bm9 92% 8%

bm10 75% 25%

bm11 75% 25%

bm12 74% 26%

bm13 86% 14%

bm14 90% 10%

bm15 83% 17%

bm16 91% 9%

bm17 65% 35%

bm18 98% 2%

bm19 98% 2%

bm20 85% 15%

average 85% 15%

es
one
ure
hi-

the
c-
gy
st
rds
y-
at
by
e,

ns
s

a
er-
i-
or
si-

]
nol-
ap-
in
no
e

ting

d

m-

g
ea
of

out

ur
t
od-
n
e

ut
nt

the
t
hi-
y,
y

le
ut
-

design size(1). We therefore take this result as an experimen-
tal fact and conclude that a homogeneous FPGA architec-
ture with LUT3 logic blocks gets under-utilized by about
15%.

The second observation is related to the optimal arithmetic
and datapath macros that are generated by our ACTGen
Macro Builder tool (see section 4.2). Many of these highly
optimized macros like up/down counter, adder/subtracter or
multiplier tend to use a mixture of1/3 LUT2s and 2/3
LUT3s. Although the mapping experiment showed an aver-
age demand of 15% LUT2s, we settled on the1/3 fraction
for the sake of uniformity. Based on these two observations,
we conclude that our heterogeneous architecture with1/3
LUT2s and2/3 LUT3s is more optimal than a homogeneous
architecture based on LUT3s alone.

Recent mapping algorithms to heterogeneous LUT technol-
ogy, such as the ones developed by J. Cong and S. Xu in [4]
and [5] have shown that mapping algorithms targeted to
homogeneous LUTs tend to use more area than those which
considered heterogeneous LUTs. The approach in [4] and
[5] is directly applicable to heterogeneous LUTs that are
composed of smaller LUT blocks, which is not the case in
our architecture. [4] and [5] have demonstrated promising
reduction in delays as well. The efficiency of mapping
should certainly improve when such algorithms emerge that
will be able to map to FPGAs with bounded resources and a
fixed ratio of heterogeneous LUT blocks.

Next we compare our choice of logic blocks to the more
common choice of LUT4s. As we mentioned earlier [1], [2]
and [3] systematically analyzed the area efficiency of LUT-k
blocks as a function of k, and concluded that the most effi-
cient value of k was near 3.5. The most efficient integer
value was found to be k=4, closely followed by k=3 which
was about 10% less efficient.

Even though it was systematic, the analysis in [1], [2] and
[3] depended on general routing models, and it had certain
limitations(2). For example, the analysis excluded heteroge-
neous logic blocks and hierarchical routing structures
explicitly, both of which directly apply to our architecture.
They also excludedover the cell routing, which is again
very relevant to us. Later, J. He, V. Betz, and J. Rose have
studied some heterogeneous architectures in [6] and [7].
They observed that certain combinations of LUT2s and
LUT4s (as well as LUT2s and LUT5s) may be more effi-
cient than a pure LUT4 architecture. A. Agarwal and D.
Lewis while analyzing LUT based hierarchical architectures
in [8], observed that purely hierarchical architectures can be

up to 15% more area efficient than linear architectur
because they may need fewer programmable switches. N
of these later studies however, considered an architect
like ours which is both heterogeneous and semi-hierarc
cal.

We next make some observations about the issue of over
cell routing. This is not so much a property of the archite
ture in question as it is a feature of the process technolo
and the custom layout style one might employ. In the la
decade, the CMOS technology has evolved not only towa
smaller minimum feature sizes, but also towards more la
ers of interconnect. Today a typical CMOS process offers
least five layers of metal interconnect, often augmented
additional local interconnect such as a silicide or a salicid
which happen to be particularly useful for the connectio
from the SRAM memory bits to the routing switches. Thi
should be compared to the state of affairs approximately
decade ago when we had only three layers of metal int
connect. At that time, over the cell routing was not a feas
ble alternative for SRAM based reprogrammable FPGAs f
any reasonable layout style. Today, of course, this is pos
ble, especially if the interconnect has hierarchy(3).

We therefore believe that the conclusions in [1], [2] and [3
should be re-examined based on the latest process tech
ogy parameters, as well as using the latest technology m
pers. Of course, any strong conclusions are likely to rema
unaltered, while others based on small differences may
longer be valid. Indeed this is what we have observed. W
have analyzed the mapping results and estimated the rou
areas in a 0.25µ technology with five layers of metal. Unlike
the general work by [1], [2] and [3], we have not attempte
to extend our analysis to arbitrary LUT-k blocks with k
larger than 4, but we considered many heterogeneous co
binations of LUT4s, LUT3s and LUT2s. Yet again unlike
[1], [2] and [3], we did not use general models for routin
area estimation. We directly measured the layout ar
instead. Since our comparison included a small number
competing choices, it was possible to estimate each lay
area directly, rather than relying on general models.

At the end of our analysis, we convinced ourselves that o
choice of LUT3s and LUT2s in the ratio of 2:1 is as efficien
as a homogeneous architecture based purely on LUT4 m
ules. Parts of our analysis will be briefly discussed in a
Appendix at the end of this paper in order not to disrupt th
general flow of the architecture description. It turns o
however, that the choice we made is not the most efficie
one. We have strong indications that a choice containing
right mixture of LUT4s, LUT3s and LUT2s is somewha
more optimal. Such a choice was not adopted in our arc
tecture to maintain backward compatibility to the ES famil
but Actel may use such a mixture of LUTs in a future famil
of reprogrammable FPGAs.1 Actually there is some dependence on the design size for small

designs. However, this slight dependence disappears for designs
larger than 1,000 LUT3s. We have observed this behavior with
designs ranging all the way up to 20,000 LUT3s.

2 We have not discovered these limitations on our own. They were
explicitly stated in [1].

3 With 5+ layers of general purpose interconnect, this is possib
even for FPGA architectures with linear mesh interconnect. B
it fits particularly easily and naturally with hierarchical or semi
hierarchical architectures.

ra-

.
h
he
ds
s.
en
ff

sec-

th
er-
b
f

hy
y
lp

ec-
ou
he
e
g
m

e
e
i-
r-
in
ro-

in
3.3.2 The Logic Content of the B1 Block
We associate a FF with a pair of LUT3s. This trio of logic
has two outputs, which can be driven either by the pair of
LUT3s, or else by the FF and either one of the LUT3s. Each
LUT3 has its own unshared inputs, while the FF has no data
input other than the one that can be directly driven from the
LUT3s. A trio and a LUT2 constitute aquad of the basic
logic block (B1) which contains 4 such quads as shown in
Figure 5. Therefore the ratios of LUT3s, LUT2s and FFs are
precisely 2:1:1. The LUT2s do not share any inputs or out-
puts with any of the others.

Figure 5 - B1 Block

3.3.3 The Interconnect for the B1 Block
The B1 block contains its own dedicated routing of three
types — DirectConnect (DC), LocalMesh (LM) and BC.
The DC is a high performance direct connection between
LUT3s in adjacent quads. The DC forms a vertical connec-
tion between adjacent B1 blocks, and provides excellent

support for datapath functions such as counters, compa
tors, adders and multipliers (see section 4.2).

A B1 block has 4 channels of LM and two channels of BC
LM and BC are two-dimensional routing meshes whic
span two horizontal quads or a B1 block, respectively. T
LM provides connection within and between adjacent qua
for low fanout connections. The BC performs two function
The first is to support mesh connections within and betwe
adjacent B1 blocks. The second function is to provide on/o
ramp access into the expressway routing as described in
tion 3.2.2.

Outside the B1, an LM or a BC track may be extended wi
a programmable switch along the same direction or the p
pendicular direction to an adjacent B1 block. Each E-Ta
itself provides such an extension facility for a BC in one o
the two directions as shown in Figure 6. These hierarc
crossing connections in close proximity allow significantl
better performance than a strict hierarchy. They also he
avoid congesting the expressways.

Figure 6 - LM and BC extensions

3.4 Delays for General Routing Resources
At the beginning, we mentionedpredictabledelays as an
important ease of use goal. The net delays in this archit
ture, depend on the routing topology (such as whether y
cross a hierarchy or not) but they only weakly depend on t
net fanout. This kind of predictability is mostly due to th
active routingapproach which provides automatic bufferin
of nets, thus freeing the designers and mapping tools fro
doing analysis to buffer them explicitly. Note that the activ
routing on the F-turn matrices is somewhat similar to th
active routing examples one may find in other FPGA arch
tectures. This kind is motivated by reducing the RC inte
connect delay. On the other hand, the active routing
between the hierarchies has the additional advantage of p
viding predictability byisolation. Table 2 shows the span
and the typical delay on a path including a LUT3 module

A
 B

 Y
A

 B
 C

 Y
Y

 C
 B

 A

L
U

T
2

L
U

T
3

L
U

T
3

Q

CLK
S/R
EN

A
 B

 Y
A

 B
 C

 Y
Y

 C
 B

 A

D
L

U
T

2
L

U
T

3
L

U
T

3

FF

Q

CLK
S/R
EN

A
 B

 Y
A

 B
 C

 Y
Y

 C
 B

 A

D
L

U
T

2
L

U
T

3
L

U
T

3

FF

Q

CLK
S/R
EN

A
 B

 Y
A

 B
 C

 Y
Y

 C
 B

 A

D
L

U
T

2
L

U
T

3
L

U
T

3

FF

E
-T

a
b

E-Tab

extension boxes

U
til

iti
e

s

BlockConnect BlockConnect

Local MeshLocal Mesh

Local MeshLocal Mesh

U
til

iti
es

Q

CLK
S/R
EN

D

FF

B1 B1

B1B1

LM

LM

LM

LM

BC

BC

LM

LM

LM

LM

BC

BC

LM

LM

LM

LM

BC

BC

LM

LM

LM

LM

BC

BC
E

-T
ab

E-Tab

E
-T

ab

E-Tab

m

n
y
nd
y
ame
l 4
a
f
e

s.
ig-
2

d

ta
ny

d
the

ck
ry
ts.
k-
0.25µ technology for the various general routing resources
in the architecture.

Table 2 - Routing Resources

3.5 Global and Other Utility Signals
We classify high fanout nets in FPGA designs into four cat-
egories —global utilities, local clock/set/reset,control sig-
nals and high fanoutdata. Examples of global utilities are
clock, set or reset signals that define the main clock domains
in the design reaching many FFs in the FPGA. Local clock/
set/reset signals occur relatively few times in a design and
usually have low to medium high fanout.

Well known examples of control signals are FF-enable and
multiplexor-select, yet there is a more general description.
Control functions are alwaysorthogonalto the data flow in
the design. Such signals have medium to high fanout and
may occur several times in a design. In our observation,
another important characteristic of any control signal, has
been that its source may originate in a different logic com-
ponent and therefore the control signal driver may not be
situated in the same physical hierarchy as its loads. We refer
to the remaining high fanout signals that do not qualify for
control as data.

We recognize the support of high-speed, high-fanout nets to
be crucial in the acceptance of FPGAs with capacity of up to
a million gates. We have taken a fresh approach to meet the
requirements of all four categories above, keeping the area
cost low while maintaining considerable flexibility. First,
there are 32 chip-wide utilities in all members of the family
that may be sourced from IOs or from logic internal to the
FPGA. In addition, each B8x8 block has 12 G3 resources
that span the width of a B8x8 block. Every G3 track may be
sourced from inside the B8x8 through a vertical M3
expressway track, from an adjacent B8x8 block through a
vertical M3 or a horizontal G3 extension, or from a distant
B16x16 tile through a vertical freeway track. The two RAM
modules in the B16x16 tile may select their clocks or enable
signals from the 44 (32 chip-wide + 12 G3) utilities and

each B4x4 block can independently choose 8 signals fro
the same 44, as shown in Figure 7.

Figure 7 - B8x8 Utilities

The 8 utilities in a B4x4 block are pruned down to 4 withi
a B1 block in two parallel steps. First, each B2x2 block ma
select a clock and a set/reset signal from the 8 utilities a
distribute to all its 4 B1 blocks. Each B1 block in turn ma
select an enable and a general-purpose signal from the s
8 utilities. The clock, set/reset and enable signals drive al
FFs in the B1 block with common controls, effectively on
nibble basis. All 4 utilities in the B1 block can drive most o
the LUT3 modules and each of the utilities in turn, may b
driven by a LUT2 or a LUT3 module.

The chip-wide resources are targeted for the global utilitie
The G3 resources are intended for high fanout control s
nals. The utility selection at each step into the B4x4, B2x
or B1 block, is entirely optional from the higher level an
may be sourced from logic within the level itself, allowing
the possibility of any clock, set/reset, enable, control or da
signal in a more localized scope. The provision of so ma
flexible ranges of utility resources isuniqueto this FPGA
architecture, opening up the potential of structure
approaches to placement and may considerably ease
routing of complex designs.

3.6 Other Architectural Features

3.6.1 DLL and Clock-doubler
The DLL and Clock-doubler components enhance clo
delay control for improved system performance and eve
member of the family contains 2 or more such componen
The DLL technology can track and adjust an internal cloc
timing so that it may coincide precisely in time with an
external clock from which it is derived. This allows the
manipulation of the Clock-to-Out delay (pad-to-pad) from

Hierarchy Resource Span Delay (ns)
Lowest
level

DC 1 quad 0.25

LM 2 quads 1.10

LM+LM 1 B1 block 1.30

BC 1 B1 block 1.25

Middle
level

BC+BC 2 B1 blocks 1.60

M1 2 B1 blocks 2.20

M1+M1 4 B1 blocks 2.40

M2 4 B1 blocks 2.30

M2+M2 8 B1 blocks 2.80

M3 8 B1 blocks 2.80

M3+M3 16 B1 blocks 3.50

F 16 B1 blocks 4.60

Top level F+F 32 B1 blocks 5.50

p-
ll
-
h-
e

le
til-
es.

e
s

not
d
l
ar
es

at
e

e

30ns down to 0ns, in addition to a 100ps/increment user-
programmable mode to support a wide range of delays. The
Clock doubler can multiply frequencies to 150Mhz.

3.6.2 Power Supplies
This FPGA family can operate in a 2.5V system, a 3.3V sys-
tem, a 5V system or mixed-voltage systems. Three separate
Vcc supply networks are provided on the device — one for
the array core, one for the output drive level and one for the
input tolerance level. Level transistors are provided to
accommodate all possible combinations of voltage levels for
the input and output signals. All three supplies can be driven
with 2.5V, the output drive level can go up to 3.3V while the
input tolerance level can be raised to 5V.

3.6.3 I/O
Programmable options for IO pads include 3.3V PCI driv-
ers, four-level slew rate control from 2.9V/ns down to 1.2V/
ns at 35pF loading, and polarity control for output data and
output enable. Open-source or open-drain output configura-
tions are possible to support the emerging standards like
GTL.

3.6.4 JTAG
This family implements a subset of the IEEE 1149.1 Bound-
ary Scan test (BST) instructions, in addition to a private
instruction to allow Actel’sActionProbefacility for real-
time debugging of user designs (see section 4.4). The device
supports in-system programmability and may itself be pro-
grammed via the JTAG inputs with yet another instruction.

4. DESIGN FLOW AND SOFTWARE

This architecture is specifically targeted to be used in a com-
pletely automatic push button design flow, where one starts
from a high level description of the design functionality and
timing constraints. Beyond this initial specification, no other
user input is needed such as pin assignment, interactive
floorplanning or manual hints to the automatic place and
route.

In general there are fours steps to design with an FPGA —
Design Specification, Implementation, Programming and
System Debug. Design specification is supported by sche-
matic capture and high level design. Register-transfer-level
(RTL) circuit description in VHDL or Verilog can be readily
synthesized and mapped by commercial EDA tools or by
our ACTmap. The ACTgen Macro Builder may also be uti-
lized to automatically generate high performance custom
datapath macros. Some related architecture considerations
are covered in section 4.2 below.

Actel’s Designer tool performs the implementation step
completely automatically. The DirectTime tools allow the
user to analyze all paths and specify timing requirements for
place and route. The bit-stream for Programming the
devices can be programmed into an EPROM in the target
system to configure the FPGA. Alternatively, Actel’s Silicon
Explorer can directly download the bit-stream into the
FPGA during prototyping. System debugging capabilities
for the final step are discussed in section 4.4 below.

4.1 Synthesis and Technology Mapping
In this section, we present some results of technology ma
ping for our architecture (based on LUT3 mapping) as we
as for the traditional LUT4 logic blocks. The set of 20 inter
nal Actel benchmarks were mapped to the two target tec
nologies with a commercially available synthesis tool. Th
number of logic blocks and the count of therouted input
pins in each of the two mapped circuits are shown in Tab
3. We exclude those inputs that are driven by the global u
ities as they do not consume any place and route resourc

It is clear from this table that the LUT3 mapping is quit
efficient in terms of the total number of routed input pin
which are approximately(1) the same for LUT3 and LUT4
mappings. This was a bit of a surprise since we expected
only fewer blocks used for LUT4s, but also fewer route
input pins. As the logic blocks grow in size and functiona
capability, one would expect some input pins to disappe
from the netlist, having been absorbed as internal nod
inside the bigger logic blocks. Indeed this is exactly wh
happens when we go from LUT2 to LUT3 mapping. Th

Table 3 - Technology Mapping to LUT3 and LUT4

LUT3 mapping LUT4 mapping routed
input

pin sav-
ings for
LUT4s

logic
blocks

routed
input
pins

logic
blocks

routed
input
pins

bm1 1908 5435 1454 5116 5.9%

bm2 2258 6731 1829 7218 -7.2%

bm3 1991 5711 1411 5126 10.2%

bm4 2155 6427 1779 6820 -6.1%

bm5 5227 15137 3970 14146 6.5%

bm6 1657 4892 1319 5194 -6.2%

bm7 2746 7311 2017 7359 -0.7%

bm8 2228 6515 1691 6399 1.8%

bm9 2536 7417 1924 7286 1.8%

bm10 2461 6806 1738 6589 3.2%

bm11 3841 10561 2685 10276 2.7%

bm12 5161 14141 3586 13801 2.4%

bm13 3507 10109 2627 9526 5.8%

bm14 5081 14773 3781 13872 6.1%

bm15 1908 5435 1454 5116 5.9%

bm16 2172 6386 1882 5955 6.7%

bm17 3868 10264 2640 10062 2.0%

bm18 6260 18660 5170 20439 -9.5%

bm19 18704 55988 15536 61804 -10.4%

bm20 4705 13455 3467 12420 7.7%

average routed input pin savings for LUT4s 1.4%

1 1.4% advantage that the LUT4 mapping enjoys is well within th
fluctuations from design to design.

hi-
oth
cal
, in

d,
g

he
lso
ions
us
-
-k

le
ers.

is
i-
ly
-

ry
r-
sur-

ees
his
we

ng-
r-

d

a

n)
,

a
and
d

out
er

ore
We

the
e

ot
number of logic blocks and the total number of routed input
pins both decrease. However, the same did not happen when
we went from LUT3 to LUT4 mapping.

4.2 Hard Macro Support
The high speed of DC routing between the quads inside a
B1 block in this architecture offers opportunities to create
high performance datapath components based on a simple
ripple style of logic design. This scheme of chaining the
critical path of a ripple structure with DC tracks from quad
to quad can be extended to the B1 block below to create a
ripple macro of arbitrary width. At 0.25ns per bit, the total
performance is quite attractive. We have also observed that
all the logic inside a quad (including the LUT2) tends to be
highly utilized with such 1-bit macros and since a ripple
implementation is usually the most compact in logic area,
the overall capacity of the FPGA increases with more of
these instances in a design. The routing of these macros in a
pipelined section with the help of utility resources to carry
the control signals, creates a regular structure which may
potentially relieve some congestion from surrounding
regions.

The ACTgen Macro Builder provides the capability to auto-
matically generate high performance custom datapath mac-
ros. It allows the designer to trade-off speed with efficient
use of resources to decide on the optimum implementation
suitable for the design. Synthesis tools can infer ACTgen
macros during optimization.

4.3 Place and Route Results
We have placed and routed the 20 benchmark designs
referred above, with the exception of bm19, which is too
large to fit on the first device we are currently sampling.

4.4 System Debug
This architecture features Actel’sActionProbe circuitry
which allows access to any internal node from certain exter-
nal pins. In other programmable logic devices, designers
would have to re-layout their device and add muxing to
bring signals out to an external pin. This added to the time
to reprogram the device, could introduce other errors, often
changed critical timing, and changed loading and fanout on
the signals. The number of pins available for looking at
internal nodes is usually limited also, so for any one layout
only a few nodes are observable. Alternatively, designers
could get access to more nodes with some sort of JTAG/
SCAN or static single-stepping methods. A larger number
of internal nodes can be accessed, however it is only a static
view of the state of the node, making it almost impossible to
trouble shoot timing problems.

The Silicon Explorer is an integrated hardware and software
solution that, in conjunction with the Designer tools, allow
users to examineall internal FPGA nodes while the device
is operating in the target system -- inreal time! Itsnon-inva-
sivemethod does not alter any timing or loading effects and
will help shorten the debug step.

5. CONCLUDING REMARKS

In conclusion, we presented some details of our new arc
tecture, which attempts to combine the best features of b
the linear mesh type routing structures and the hierarchi
ones, while suppressing the less desirable effects of both
very large and high performance FPGAs.

During the development of this architecture, we discovere
somewhat to our own surprise, that the LUT3s as buildin
blocks have become as efficient as LUT4s, contrary to t
results of earlier studies nearly a decade ago. We a
observed that there are many heterogeneous combinat
of small LUTs that do better than either homogeneo
LUT3 or LUT4 logic blocks. Our analysis was not as gen
eral as the earlier studies and does not cover all LUT
blocks, especially the larger k values. This is still a ferti
research area in the light of the new technology paramet

The first member of the family of FPGAs based on th
architecture has already fully functional silicon and prelim
nary CAD software to support it. The software (especial
the place and route) is not yet fully optimized for the fea
tures of this architecture. Despite that, the prelimina
results fully indicate that we meet the capacity and perfo
mance targets even at this early stage, and we expect to
pass them as the software matures.

6. ACKNOWLEDGEMENTS

We are indebted to many past and present Actel employ
and contractors who helped us with the development of t
architecture. Even though we cannot name them all here,
would like to explicitly acknowledge the contributions by
Jeff Schlageter, Robert Smith, Peter Pani, Yinan Shen, Ju
Cheun Lien, Jerome Fron, Chuck Hastings, Gajus Wo
thington, Bill Plants and Warren Miller. We thank Ken
O’Neill and Luther Abel for reading the manuscript an
making many helpful suggestions.

7. APPENDIX: Estimating Routing Area for
LUT-k Blocks

Before we make logic block comparisons, we start with
brief digression. We ask the following general question —
given an FPGA (of which the architecture is already chose
and two designs with (a) N1 nets and P input pins to route
(b) N2 nets and P input pins to route, where P > N2 > N1,
which design requires more routing resources, hence
larger routing area? We considered several architectures
many different routing topologies in each one of them an
have convinced ourselves that both problems require ab
the same total area of routing. The first design has few
nets, but the average fanout per net is larger requiring m
complicated topologies and longer average net length.
then concluded that unless N2 is much larger than N1 the
routing areas needed for these two problems are about
same irrespective of the choice of logic blocks and th
underlying interconnect architecture. By this we do n

e-

5.

r-

.

imply that the routing area is not affected by the choice of
logic blocks or the structure of the interconnect. On the con-
trary, the required routing area strongly depends on these
choices. But once these choices are made, the two problems
stated above require the same amount of routing area as
each other. The routing areas change from one choice to
another, but they always remain approximately equal to
each other for each choice. This means that the routing area
is proportional to P, the number of routed input pins, but it is
to a large degree independent from N1 and N2.

This observation of ours is somewhat different from that of
[1], [2] and [3], who in their routing models use all pins,
both inputs and outputs. If the FPGA is large enough so that
the number of logic blocks is much larger than the number
of IOs, then the number of output pins is approximately N,
the same as the number of nets. Their models assumed that
the routing area is proportional to (P+N), whereas we con-
vinced ourselves that the output pins do not matter very
much. If P >> N, there is little difference between P and
(P+N) and the routing models in [1], [2] and [3] approach
that of ours. Indeed, for LUT-k type logic blocks where k is
large, we have P >> N, and P≈ P + N. But for small values
of k (especially for k < 5), the two estimates could differ sig-
nificantly. For small k, our estimate of the routing area will
be smaller. If our observation is correct, LUT2s will benefit
the most, LUT3s the next, and so on.

We can now summarize our results for the area efficiencies
for various logic blocks. There are three apparently unre-
lated effects, each of which makes the smaller LUTs more
attractive than they were a decade ago. The first of these
three reasons is the observation we made above, namely that
only therouted input pinsmatter for estimating the routing
area. The second reason was the dawn of the age ofover the
cell routing. The details of this is beyond the scope of this
appendix as they are trade secrets, which we are unable to
publish(1). The third reason is that LUT-k mapping is not
equally efficient for all k. It appears thatLUT3 mapping is
exceptionally efficient(2) (see section 4.1).

The combined effect of these three observations is still not
enough to promote the LUT2s to the top of the list, even
though LUT2s probably get the biggest boost. However the
combined effect is more than enough to push the LUT3s to a
virtual tie with the LUT4s. Furthermore, it also makes sev-
eral heterogeneous combinations of LUT4s, LUT3s, and
LUT2s significantly better than LUT4s.

8. REFERENCES

[1] J. S. Rose, R. J. Francis, D. M. Lewis, and P. Chow,
IEEE Journal of Solid State Circuits, Vol. 25, No. 5,

Oct. 1990, pp. 1217-1225.

[2] J. Kouloheris and A. El-Gamal, ACM/SIGDA Work-
shop on FPGAs (FPGA ‘92), Feb. 1992, pp. 9-14.

[3] S. D. Brown, R. J. Francis, J. S. Rose, and Z. G. Vran
sic, Field Programmable Gate Arrays, Kluwer Aca-
demic Publishers, 1992, pp. 87-115.

[4] J. Cong, and S. Xu, Design Automation Conference,
June 1998, pp. 704-707.

[5] J. Cong, and S. Xu, IEEE/ACM International Confer-
ence on Computer Aided Design, Nov. 1998, pp. 40-4

[6] J. He and J. Rose, Custom Integrated Circuits Confe
ence, May 1993, pp. 7.4.1-7.4.5.

[7] V. Betz and J. Rose, ACM/SIGDA International Sym-
posium on FPGAs (FPGA ‘95), Feb. 1995, pp. 10-16

[8] A. A. Agarwal, and D. M. Lewis, ACM/SIGDA Work-
shop on FPGAs (FPGA ‘94), February 1994.

1 Most of the details we cannot publish are related to the layout
style to take advantage of the extra layers of interconnect.

2 We do not have a good explanation as to why the LUT3 mapping
is the most efficient. We are not even sure if this will always be
true in the future either. But for the present, we have to take it as
an observed fact, and take advantage of it.

