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Abstract—This paper addresses the problem of 

multiplication with large operand sizes (N≥32).  We propose a 

new recursive recoding algorithm that shortens the critical 

path of the multiplier and reduces the hardware complexity of 

partial-product-generators as well. The new recoding 

algorithm provides an optimal space/time partitioning of the 

multiplier architecture for any size N of the operands. As a 

result, the critical path is drastically reduced to 3233 −/N  

with no area overhead in comparison to modified Booth 

algorithm that shows a critical path of N/2 in adder stages. For 

instance, only 7 adder stages are needed for a 64-bit two’s 

complement multiplier. Confronted to reference algorithms for 

N=64, important gain ratios of 1.62, 1.71, 2.64 are obtained in 

terms of multiply-time, energy consumption per multiply-

operation, and total gate count, respectively.  

 
Index Terms— High-Radix Multiplication, Low-Power 

Multiplication, Multibit Recoding Multiplication, Partial 

Product Generator (PPG), Register-Transfer-Level (RTL) 

I. BACKGROUND AND MOTIVATION 

N multiplication-intensive applications, as in digital signal 

processing or process control, multiply-time is a critical 

factor that limits the whole system performance. When these 

types of applications are embedded, energy consumption per 

multiply operation becomes an additional critical issue. 

Furthermore, in large-operand-size applications (N≥32), the 

need for a scalable architecture is essential to ensure a linear 

increase O(N) of multiply-time while multiplier size grows 

quadratically O(N2) with operand bit-length N.  

Consequently, high-speed, low-power, and highly-scalable 

architecture are the three major requirements for today’s 

general-purpose multipliers [1]. 

However, large operand size multipliers are very time 

consuming. To comply with time constraint of a given 

application, we need a multiplication algorithm that allows, 

to some extent, a parameterized reduction (N/r) of the 

multiply-time without sacrificing area. This is achieved if, 

and only if the total critical path can be properly shortened 

by reducing the number of partial products (PPs) and 

exploiting inherent parallelism. Theoretically, only the 

signed multibit recoding multiplication algorithm [2] is 

capable of such a drastic reduction (N/r) of the PP number, 

given that r+1 is the number of bits of the multiplier that are 

simultaneously treated (1<r≤N/2). Unfortunately, this 

algorithm requires the pre-computation of a number of odd-

multiples of the multiplicand (until (2r-1-1).X) that scales 

linearly with r. The large number of odd-multiples not only 

requires a considerable amount of multiplexers to perform 

the necessary complex recoding into partial product 

generators (PPG), but dramatically increases the routing 

density as well. Therefore, a reverse effect occurs that 

offsets speed and power benefits of the compression factor 

N/r. This is the main reason why the multibit recoding 

algorithm was abandoned. Moreover, in industry 

commercial designs do not exceed r=4 (radix-16). A hybrid 

radix-4/-8 is proposed in [3] for low-power multimedia 

applications. To increase the speed of the multiplier, most 

ancient processors employed radix-8, such as: Fchip [4], 

IBM S/390 [5], Alpha RISC [6], IA-32 [7] and AMDK7 [8]. 

While radix-16 is used only in the most recent Intel 

processors: 64 and IA-32 [9], and Itanium-Poulson [10].  

In research, the highest radix algorithms are proposed in 

the works of Seidel et al. [11] and Dimitrov et al. [12]. Both 

works   rely upon advanced arithmetic to determine minimal 

number-bases that are representatives of the digits resulting 

from larger multibit recoding. The objective is to eliminate 

information redundancy inside r+1 bit-length slices for a 

more compact PPG. This is achievable as long as no or just 

very few odd- multiples are required.  

Seidel introduced a secondary recoding of digits issued 

from an initial multibit recoding for 5≤r≤16. The recoding 

scheme is based on balanced complete residue system. 

Though it significantly reduces the number of partial 

products (N/r for 5≤r≤16), it requires some odd-multiples 

for r≥8. Dimitrov proposed a new recoding scheme based 

on double base number system for 6≤r≤11. The algorithm is 

limited to unsigned multiplication and requires larger 

number of odd-multiples. Both algorithms [11][12] require a 

PPG that includes a  number of adders to accumulate 

intermediary partial products corresponding to recoded 

elementary digits.  

In fact, odd-multiples are not the only problem for a 

compact PPG. Recoding large slices (r≥8) in a mono-bloc 

PPG such as in [11][12], requires the use of an RTL “case 

statement” with r+1 entries. In this case, 2r+1 combinations 

must be processed, which yields to a huge amount of 

multiplexer resources. Thus, mono-bloc PPG recoding is 

incompatible with high radix (r≥8) approach whose purpose 

is to reduce the multiply-time (N/r) of large operand size    

(N ≥32) multipliers. 

The objective of this paper is to overcome these two 

above-mentioned shortcomings. To achieve such a goal, the 

multibit recoding multiplication algorithm is revisited [2]. Its 

design space is extended by the introduction of a new 

recursive version that enabled to solve the hard problem of 

radix-2r two’s complement multiplication for any value of r. 

The solution consists essentially in dividing the high radix-2r 

mono-bloc PPGj (Fig. 1.a) into a number of lower              

sub-radix-2s odd-multiple free PPGji (Fig. 1.b), such as s is a 

divider of r . As direct benefits of the partitioning of Fig. 1.b:  

• there is no need to pre-compute odd-multiples of the 

multiplicand, which drastically reduces the required 

amount of hardware resources and routing;  

• since the size of PPGji entry is much smaller than the 

size of PPGj one (s≤r/2), the total multiplexing logic 

required by RTL “case statements” to recode the 

entries is greatly reduced; 
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         Fig. 1.  Generalized N×N bit radix-2r parallel multiplier.  

(a) Critical path in conventional [2][4][5][6][7][8] and recent [3][9][10] 

[11][12] radix-2r multipliers. O(X) is the necessary set of odd-multiples 

corresponding to radix-2r recoding. PPGj of [11][12] includes a number 

of adders to accumulate intermediary partial product.   

(b) Critical path in our proposed radix-2r multipliers. Main features are: no 

odd-multiples, much more compact PPGj, much shorter critical path. 

(b) 

2r is the main radix and 

2s is the sub-radix 
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• the possibility to simultaneously process larger bit 

slices (r≥16) radically shortens the critical path in 

terms of adder levels, especially for very large operand 

sizes (N≥64).  

Guided by accurate area heuristics, the final result of an 

optimization process, gradually undertaken in this paper, 

delivers for each value of N (N=8..8192) the appropriate 

radix-2r (r=8..512) and sub-radix-2
s
 (s=4..32) that lead to 

the architecture with the shortest critical path ( 3233 −/N ) 

in adder stages. The couple (r,s) serves to partition the 

architecture so that maximum parallelism is exploited. As 

for area, our proposed architectures require as many 

hardware resources as modified Booth algorithm [13] with a 

critical path of N/2 [14][15][16][17]. For instance, a 64-bit 

two’s complement finely pipelined multiplier requires a 

latency of seven clock cycles only (critical path composed 

of a series of 7 adders). FPGA implementation on Virtex-6 

circuit of our 64-bit two’s complement radix-232 multiplier 

shows important gain ratios over Seidel [11] and Dimitrov 

[12] radix-28 algorithms. The respective gain ratios are 

enumerated as follows: 1.62, 1.71, 2.64 and 1.83, 1.71, 3.32 

are obtained in terms of multiply-time, energy consumption 

per multiply-operation, and total gate count, respectively. 

The paper is organized as follows. Section I outlines the 

main requirement specifications for a generalized radix-2r 

multiplication. Section II introduces the new recursive 

multibit recoding multiplication algorithm, illustrated by 

two high-radix (28 and 216) recoding examples in Section 

III. Section IV introduces some preliminary steps toward an 

optimal partitioning of the multiplier architecture, while the 

optimal partitioning is presented in Section V. Section VI 

compares and discusses the implementation results. Finally, 

Section VII provides some concluding remarks and 

suggestions for future work. 

II. THE NEW RECURSIVE MULTIBIT RECODING   

MULTIPLICATION ALGORITHM  

The equation (2.1.2) of the original multibit recoding 

algorithm presented in [2] does not offer hardware visibility. 

Let us rewrite it in a simpler hardware-friendly form, as 

follows: (∑−= ++− ⋅⋅⋅++++=
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Where 01 =−y  and *Ν∈r . For simplicity purposes and 

without loss of generality, we assume that r is a divider of N . 

In equation (1), the two’s complement representation of 

the multiplier Y is split into N/r two’s complement slices 

(
jQ ), each of r+1 bit length. Each pair of two contiguous 

slices has one overlapping bit.  In literature, equation (1) is 

referred to by radix-2r equation, to which corresponds a 

digit set ( )rD 2  such as ( ) { }11 2022 −−−=∈ rrr
j ,...,,...,DQ . 

   Thus, the signed multiplication between X and Y becomes: 

rj
r
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jQXYX 2...

1

0

∑−==  (2). Where each partial product can be 

expressed as follows: ( ) ( )XmQX ferj

j ..... 212 −= , with ( ) { }12312 1 −=∈ −rrOm ...,,,  such as ( ) 222 −= rrO . ( )rO 2  represents the required set of odd-multiples of the 

multiplicand (m.X) for radix-2r. Hence, the partial-product 

generation-process consists first in selecting one odd- 

multiple (m.X) among the whole set of pre-computed odd- 

multiples, which is then submitted to a hardwired shift of f 

positions, and finally conditionally complemented (-1)
e
 

depending on the bit sign e of Qj term. Table I provides a 

picture on how the number of odd-multiples grows when the 

radix becomes higher. While lower m.X can be obtained 

using just one addition (3X=2X+1X), the calculation of 

higher ones may require a number of computation steps 

(11X= 8X+2X+1X). 

To bypass the hard problem of odd-multiples, we exploit 

the fact that the N+1 bit-length two’s complement multiplier 

Y on which equation (1) is applied, is composed of a series 

(N/r) of r+1 bit-length two’s complement slices (
jQ digits) 

on which equation (1) can be recursively applied again. 

Based on this observation, let us announce the two 

following theorems accompanied with their respective 

proofs inserted in Appendix. 

TABLE I 

MAIN FEATURES OF THE MULTIBIT RECODING MULTIPLICATION ALGORITH 

Radix Nbr. of Partial Products Odd Multiples (m.X) 

21 N 1X 

22 N/2 1X 

23 N/3 1X, 3X 

24 N/4 1X, 3X, 5X, 7X 

25 N/5 1X, 3X, 5X, 7X, 9X, 11X, 13X, 15X 

|O(2r+1)|=2×|O(2r)|. In radix-2r, the multiplier Y is divided into N/r slices, 

each of r+1 bit length. Each pair of two contiguous slices has one 

overlapping bit.  



 

Theorem 1. Any digit ( )r
j DQ 2∈  can be represented in a 

combination of digits ( )s

ji DP 2∈ , such as s is a divider of r.   

When theorem (1) is applied to equation (1), it gives: 
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Theorem 2. Any digit ( )r
j DQ 2∈  can be represented in a 

combination of digits Pji+Tjk such as ( )s

ji DP 2∈ and ( )t

jk DT 2∈  with  s+t  a divider of r ,  and t < s. 

Likewise, when theorem (2) is applied to equation (1), we 

obtain:    [ ] ( ) rj
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Theorem (1) and (2) allow an exponential reduction   

(1/2ks and 1/2k(s+t), resp.) of the number of odd-multiples in 

equations (4) and (6) in comparison to equation (2), but at 

the expense of a linear increase (ks-1 and k(s+t)-1, resp.) in 

the number of additions. The advantage by far outweighs 

the cost, as practically shown in the next section.   

The translation of equation (4) into architecture is 

depicted by Fig. 1.b, where each PPGj (Qj) is built up using 

r/s identical PPGji (Pji). This is not the case for equation (6) 

which requires two different PPGji (Pji and Tji) . Theorem (1) 

and (2) can be merged together to produce PPGj made of a 

number of different PPGji (Pji ,Tji ,Uji ,Vji ,...). This is the 

general case that is thoroughly studied in next sections in 

order to determine the optimal multiplier.  

III. TWO HIGH RADIX (28
 AND 216 ) ILLUSTRATIVE EXAMPLES  

Theorems (1) and (2) permit to build up any high radix-2r 

multiplication algorithm based on lower sub-radices, 

employing much less odd-multiples.  The objective 

hereafter is to generate high radix-2r multiplication without 

odd-multiples for a maximum reduction of multiplexer 

complexity inside PPGj. To achieve such a goal, a number 

of odd-multiple free low-radix algorithms are used, such as 

Booth algorithm  (radix-21) [18], modified Booth algorithm  

(radix-22) [13], Seidel et al. algorithms  (radix-25 and   

radix-28) [11][19]. Booth and modified Booth recoding 

(McSorley algorithm [13]) can be derived from equation (3) 

for (r,s)=(1,1) and (r,s)=(2,2), respectively. They are 

respectively summarized as follows: ( ) ∑∑ −
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    With ( ) }{ 2,1,0,1,222 −−=D   and   ( ) { }122 =O  

Seidel radix-25 recoding [11][19] is described as follows: 

[ ]( )
j
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+=   (9)  with { } ;,,,,Q j 21012 −−∈  

 { }4210124 ,,,,,,Pj −−−∈ and ( ) { }125 =O . 

And Seidel radix-28 recoding is given by the following 

equation: [ ]( )
j
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=
++=  (10) with 

{ }21012 ,,,,Qj −−∈  ; { }16,8,4,2,1,0,1,2,4,8,16, −−−−−∈jj TP  

and ( ) { }128 =O . Note that while equations (9) and (10) are 

odd-multiple free since all included digits are power of 2, 

they require a post-accumulation to deal with odd numbers 

(7, 11 and 121). Thus, a number of extra-adders are needed.   

Optimized higher radices are obtained as follows. 

A. Our new radix-28 recoding 

Based on theorem (2), each 8+1 bit slice is split into 5+1, 

2+1, and 1+1 overlapping slices using Seidel radix-25, 

McSorley radix-22, and Booth radix-21 algorithms, 

respectively. The new recoding is given by the following 

equation: ( ) ( )[ ]( )∑−

=
+++= 18
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852 2227
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jjjj ..SRPQ.Y     (11) 

With { }21012 ,,,,Q j −−∈  ; { }4210124 ,,,,,,Pj −−−∈  ; 

{ }21012 ,,,,R j −−∈  ; { }101 ,,S j −∈  and ( ) { }128 =O  

B. Our new radix-216 recoding 

Likewise, using theorem (2), each 16+1 bit slice is split 

into 8+1, 5+1, 2+1, and 1+1 overlapping slices using Seidel 

radix-28 and radix-25, McSorley radix-22, and Booth radix-

21 algorithms, respectively. The new recoding is described 

by the following equation: 

( ) ( )[∑−= +++++=
1

16

0

82 271111

N

j

jjjjj .SR.TP.Q.Y  

             ( ) ] j
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{ }21012 ,,,,R j −−∈ ; { }4210124 ,,,,,,S j −−−∈  ; 

{ }21012 ,,,,U j −−∈  ; { }101 ,,V j −=  and ( ) { }1216 =O  

In our preceding work [20], we pursued this combination 

process farther and generated a series of higher radix (224, 

232, …) recoding schemes with ( ) { }12 =rO . However, what 

still remains unknown is to determine, for a given N value, 

the proper radix (2r) that leads to the optimal architecture.  



 

The translation of equations (11) and (12) into 

architectures is depicted in Fig. 2.a and 2.b, respectively. 

All Dimitrov algorithms developed in [12] are unsigned. 

For an equitable comparison, we had to develop a new 

two’s complement radix-28 recoding version with ( ) { }753128
,,,=O  based on Dimitrov unsigned radix-2
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recoding (mult_7b2d in [12]) with ( ) { }753127
,,,=O . The 
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For the comparative study, our proposed algorithms     

(eq. 11 and 12) as well as Seidel and Dimitrov algorithms 

(eq. 10 and 13, resp.) are first analytically characterized and 

then physically implemented. 

C. Analytical characterization of area and speed 

Prior implementation, we need to develop a generalized 

theoretical model which predicts area and speed features of 

each recoding algorithm with respect to N and r values.  

1) Area 

Three basic components are necessary for the 

implementation of RTL multipliers:  

• multiplexers (Mux1) to recode the digit terms (Qj,Pj,…) 

included in the recoding expression; 

• shifters (Mux2) for partial product generation;  

• and adders for partial product summation.  

Whereas the exact number of adders can be known in 

advance, we need to develop heuristics for the two others. 

The total multiplexer complexity (Mux1) of a radix-2r 

multiplier depends on:  

• the number (N/r) of PPGj; • the number (i) of lower sub-radices (21, 22, 25, and 28) 

used to build up the higher radix-2r. To each sub-

radix-2s used (PPGji) corresponds an RTL “case 

statement” that recodes the digit terms (Qji,Pji,Tji,…) 

present in the equation; 

• the number of entries (es+1) in each “case statement” 

corresponding to each sub-radix-2s;  

• the number (ds) of digit terms (Qji,Pji,Tji,…) that 

figures in each “case statement”; • and on the number of necessary odd-multiples (|Os|) 

used to calculate the digit terms.  

Hence, we can announce that: ( )∑ +=
i

ss
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r

N
Mux || ...

1
21  

For Dimitrov algorithm (eq. 13), this gives: r=8, i=1,       

es =8, ds =2, and |Os|=4. Thus, Mux1 = 512 N. 

The synthesis of the RTL “shift statement” infers 

multiplexers whose complexity depends on the number (psj) 

of different shift positions for all odd-multiples involved in 

the calculation of each digit term (j). Thus, we can write: ( )∑∑=
i j

sjsj Op
r

N
Mux || ..2 . For Dimitrov algorithm   

(eq. 13), this gives: r = 8,  i=1, j=2, ps1 =ps2 =8, and |Os1| = 

|Os2| = 4. Thus, Mux2=8N.  Hence, the total multiplexer 

complexity becomes: MuxT = Mux1+Mux2=520N. 

A N-bit radix-2r multiplier generates N/r PP. Thus, The 

total number of adders comprises:  

• ( ) 1/ −rN  adders to sum the N/r PP; 

• plus the necessary adders inside each PPGj  to 

accumulate the intermediate PP issuing from PPGji; 

• plus a number of adders included inside each PPGji 

depending on the recoding scheme used. 

 For example, in Seidel algorithm (eq. 10), the term 

jijiji TPQ ++11112  is calculated as follows: 

 ( ) ( ) jijijijijijiji TPPPQQQ +−+++− 2337 2222 , which 

requires 6 adders for post-accumulation operation [11][19]. 

Hence, the total number of necessary adders is:                  

AddT= ( ) ( ) ( ) 1878618 −=+− N//N/N .  
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                  Fig. 2.  Two’s complement 64×64 bit multiplier. 

(a) Radix-28 multiplier. Space partitioning according to equation (11) 

(b) Radix-216 multiplier. Space partitioning according to equation (12) 
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PPGji including a fixed  

number of adders 

 DelT is the delay in adder levels of 

the total critical path. Del is the 

delay in adder levels inside PPGj

and ds is the delay due to 

multiplexer logic inside PPGji 



 

TABLE II 

MAIN FEATURE COMPARISON 

Our recoding algorithms 
Features 

Eq. (11) Eq. (12) 

McSorley 

[13] Eq. (8) 

Seidel [11] 

[19] Eq. (10) 

Dimitrov  

[12] Eq. (13)

Radix 28 216 22 28 28 

DelT 53
8

d
N ++  

88
16

d
N ++  

21
2

d
N +−  

85
8

d
N ++  'd

N
8

8
+  

MuxT N19  N106  N5  N194  N520  

AddT 1
8

5 −N  1
8

6 −N  1
2
−N  1

8

7 −N  1
4
−N  

N is the operand size and 2r is the radix used. DelT is the total delay in terms 

of adder levels in the critical path of a linear reduction tree. ds is the delay 

due to multiplexer logic inside PPGji. ds depends on Mux factor 

(d1<d2<d5<d8<d'8). MuxT=(N/r)Mux, where Mux is an estimation of the 

multiplexer logic required by PPGj. AddT is the total number of adders 

required in the whole multiplier. 

TABLE III 

IMPLEMENTATION RESULTS OF A TWO’S COMPLEMENT 64-BIT PARALLEL 

MULTIPLIER ON XILINX XC6VSX475T-2FF1156 CIRCUIT 

Our recoding algorithms 
Results 

Eq. (11) Eq. (12) 

McSorley 

[13] Eq. (8) 

Seidel [11] 

[19] Eq. (10) 

Dimitrov 

[12] Eq. (13)

Area1
 3219 4659 2103 5251 6599 

Energy2 1.63 2.11 1.46 2.49 2.48 

Speed3 52.4 49.34 30.04 48.62 43.17 

Synthesis tool was forced to map RTL code to distributed slices of FPGA 

and avoid mapping to builtin 18x18 bit hardwired multipliers (DSP slices). 

1: Area occupation in number of Virtex-6 slices. 2: Energy consumption per 

multiplication operation (pJ). 3: Million multiplications per second 

(MMPS). 

2) Delay 

The total delay (DelT) along the critical path is the 

summation of PPGj delay and reduction tree delay. Based on 

the total number of adders (AddT), the critical path of the 

multiplier in terms of logic levels is: DelT= N/r-1+Del+ds, 

where Del is the delay due to adder stages inside PPGj and 

ds is the delay due to multiplexer logic inside PPGji. This 

latter depends on Mux factor of used PPGji (2
1, 22, 25, or 28). 

Therefore, d1 < d2 < d5 < d8.   Note that ds is fixed and Del 

depends on r and s values. For instance, according to 

equation (10), Seidel algorithm exhibits a critical path of: 

DelT= N/8-1+6+d8=N/8+5+d8. Table II provides the area 

occupation and delay for each recoding algorithm. 

D. Physical implementation  

All recoding schemes mentioned in Table II underwent 

several  verification  steps.  First all equations were 

validated with a random C-program. Then, they were 

implemented at RTL level in Verilog-2001 (IEEE 1364) as 

technology-independent reusable IP-cores [1], using exactly 

the same optimized coding style for an equitable 

comparison. They are compile-time reconfigurable 

according to N and r. Reader is referred to [11], [19], and 

[12] for recoding tables used in equations (9), (10), and 

(13), respectively. 

All RTL codes went through a severe cycle-accurate 

functional verification procedure using Modelsim SE-6.3f 

logic simulator. They were first challenged against a set of 

special and severe test cases, and then submitted to a 

random test for a very large number of vectors. After a 

successful functional verification, physical tests were 

performed. They were integrated into an FPGA evaluation 

board for an ultimate validation. Afterwards, all equations 

were synthesized and mapped to the same Virtex-6 FPGA 

circuit (xc6vsx475t-2ff1156) using Xilinx ISE 13.2 release 

version [21]. We used for comparison a two’s complement 

64×64 bit parallel multiplier. The implementation results are 

grouped in Table III. 

Although Dimitrov recoding exhibits the shortest critical 

path in adder stages (N/8), the impact of multiplexer logic 

(d'8) on the total performance is important (Table III). 

Besides, it is the most area consumer despite the fact that it 

employs the lowest number of adders (N/4-1). Adversely, 

Seidel algorithm is the most adder consumer (7N/8-1). To 

determine which factor, MuxT or AddT, exerts more 

influence on area occupation, let us compare their respective        

ratios for Seidel and Dimitrov algorithms: 

MuxT(Eq.13)/MuxT(Eq.10)=2.7   and  

AddT(Eq.10)/AddT(Eq.13)=3.5. 

Significant conclusion: the area occupation is dominated 

by MuxT factor, and becomes larger as MuxT number 

becomes higher (Table II and III). This correlation is 

advantageously used to minimize area occupation as will be 

shown in the next section. 

McSorley algorithm (eq. 8) is the least area consumer and 

the slowest recoding scheme for any value of N. The best 

area/speed compromise for N=64 is given by our recoding 

scheme based on equation (11). However, this latter will be 

outperformed by equation (12) for larger values of N (N>64) 

since a higher radix (216) is employed. 

While energy consumption is function of the switched 

capacitance, Table III shows a direct correlation between 

area occupation and energy consumption. Making MuxT 

indicator lower, will result in a less energy-consumer 

recoding algorithm.  

 Finally, based on theory and implementation results, we 

conclude that the best tradeoff related to our recoding 

schemes depends on N and r values. For larger N values 

(N>64), larger radices are necessary to reduce the critical 

path. But for larger radices (r>16) we need to duplicate 

some of the elementary PPGji (21,22,25,28) to build up the 

radix-2r PPGj. Therefore, at this level a relevant question 

arises: given N, what is the value of r and its corresponding 

elementary PPGji configuration (optimal partitioning of 

PPGj) that leads to the shortest critical path (DelTmin) with 

minimum hardware resources (MuxTmin)? The answer to this 

question is given in the next sections. 

IV. PRELIMINARY STUDY TO AN OPTIMAL PARTITIONNING 

We extend the recoding-space of our equations (11) and 

(12) to the general case as follows: each r+1 bit slice is 

recoded using a, b, c, d instances of radix 28, 25, 22, 21 

algorithms, respectively,  such that 8a+5b+2c+d=r. To this 

recoding scheme corresponds the following equation: 

∑ ∑ ∑ ∑−
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The translation of equation (14) into architecture is 

depicted in Fig. 1.b (top view only), where each PPGj is built 
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 Fig. 3.  Critical path (Del+di)  inside a generalized PPGj 
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up using a mixture of four different PPGji depending on the 

quadruplet (a,b,c,d) as illustrated by Fig. 3. For instance, to 

equations (11) and (12) correspond (0,1,1,1) and (1,1,1,1), 

respectively. Note that because of the general nature of 

equation (14), the ds term of DelT is equal to max(d8,d5,d2,d1) 

of used PPGji. 

Given N and r, to determine the optimal partitioning of 

the whole multiplier (global optimum since PPGj are 

identical), we need to find first the quadruplet (a,b,c,d) that 

satisfies the condition 8a+5b+2c+d=r and leads to the PPGj 

with minimum hardware ressources (Muxmin) and the 

shortest critical path (Delmin). As it is not sure that such a 

solution exists, we are using composite metrics AiTj of area 

(A) and delay (T) for i and j varying from 0 to 5 [22]. A 

total of 11 metrics (A, A5T,  A4T,  A3T,  A2T,  AT,  AT2,  

AT3,  AT4,  AT5, T) are used. The A metric alone delivers 

the best area solution (Muxmin), while T metric provides the 

best delay solution (Delmin). In between(AiTj), more-or-less 

balanced solutions are obtained. The 

implementation of this solution 

requires the (Mux, Del) couple  

(Table IV) corresponding to each 

basic recoding algorithm (28,25,22,21). 

Because of an explosive number of 

possible combinations (N>>), the 

solution space is exhaustively 

explored using a deterministic         

C-program for r varying from 8 to 

1024. The obtained results are 

reported in Table V.  

As conclusion, optimal area solutions (Mux=Muxmin) are 

exclusively based on radix-22 algorithm (0,0,c,0), but they 

are excessively slow (Del>>Delmin). While optimal speed 

solutions (Del=Delmin) are entirely composed of radix-28 

algorithm (a,0,0,0), but they are exaggeratedly large 

(Mux>>Muxmin). Finally, balanced area/speed solutions are 

mainly based on radix-25 algorithm with at most one or two 

instances of radices 21 and 22 algorithms (0,b,c,d). However, 

even the “balanced” solution is not really balanced enough 

since the mean values of Del and Mux are 1.4×Delmin and 

5.2×Muxmin , respectively. The reason is due to the large 

disparity between Mux values of the basic radices        

(Table IV). To correct this disequilibrium, we replace 

respectively the two Seidel radix-28 and 25 expressions 

( j
iA and j

iB ) included in equation (14) by their 

mathematically equivalent counterparts as follows: 

∑== 3

0

22
k

ji

k

kj

i CA  and jijijij

i CCDB 1

3

00 22 ++= . These new 

expressions are radix-28 and 25 , respectively. They produce 

respectively the same intermediary partial products at PPGji 

output as their Seidel counterparts.  In fact j
iA  is formed by 

a succession of four instances of McSorley algorithm, while 
j

iB is composed of one instance of Booth algorithm 

followed by two instances of McSorley algorithm. Del and 

Mux values of the new basic radices are grouped in Table 

VI. Results delivered by the deterministic C-program are 

reported in Table VII. All solutions are optimal since 

Del=Delmin and Mux=Muxmin. They 

are all based on radix-28 algorithm 

(a,0,0,0). In case r is not a multiple 

of 8, optimal solutions are also 

obtained, composed mainly of radix-

28 algorithm with at most one 

instance of radix-21, 22 or 25 

algorithms, depending on the 

remainder of r by 8 division.   

TABLE IV 

DELAY AND MULTIPLEXER

COMPLEXITY OF BASIC 

RADICES: STEP #1 

Algorithm Del Mux 

21 0 5 

22 0 10 

25 2 133 

28 6 1548 

Mux values are extracted 

from the heuristic 

developed in Section III. 

Ex: 1548=194 × 8. 

TABLE V 

OPTIMAL PPGj SOLUTION (a,b,c,d) LEADING TO THE OPTIMAL 

RADIX-2
r
 MULTIPLIER ACCORDING TO COMPOSITE METRICS A

i
T

j
 

Instance Number r size  

(bits) 
Criteria 

a b c d 
Del Mux Delmin Muxmin 

8 A – T 0 0 4 0 3 40 3 40 

A – AT5 0 0 8 0 7 80 
16 

T 0 3 0 1 5 404 
5 80 

A – AT3 0 0 16 0 15 160 
32 

AT4 – T 0 6 1 0 8 808 
8 160 

A – AT2 0 0 32 0 31 320 

AT3 – AT5 0 12 2 0 15 1616 64 

T 8 0 0 0 13 12384 

13 320 

A – AT2 0 0 64 0 63 640 

AT3 – AT5 0 25 1 1 28 3340 128 

T 16 0 0 0 21 24768 

21 640 

A – AT 0 0 128 0 127 1280 

AT2 – AT5 0 51 0 1 53 6788 256 

T 32 0 0 0 37 49536 

37 1280 

A – AT 0 0 256 0 257 2560 

AT2 – AT5 0 102 1 0 104 13576 512 

T 64 0 0 0 69 99072 

69 2560 

A – AT 0 0 512 0 512 5120 

AT2 – AT5 0 204 2 0 207 27152 1024

T 128 0 0 0 133 198144 

133 5120 

A – T: all the metric span A, A5T, A4T, A3T, A2T, AT, AT2, AT3,

AT4,  AT5, T. To A and T metrics correspond respectively the

minimal values Muxmin and Delmin that serve as reference for the

optimization process.  

TABLE VI 

DELAY AND MULTIPLEXER

COMPLEXITY OF THE NEW 

BASIC RADICES: STEP #2 

Algorithm Del Mux 

21 0 5 

22 0 10 

25 2 25 

28 3 40 



 

TABLE VII 

OPTIMAL PPGJ SOLUTION (a,b,c,d) LEADING TO THE 

OPTIMAL  RADIX-2
r
 MULTIPLIER ACCORDING TO 

COMPOSITE METRICS A
I
T

J
 

 Instance Number r size  

(bits) a b c d 
Del Mux Delmin Muxmin 

8 1 0 0 0 3 40 3 40 

16 2 0 0 0 4 80 4 80 

32 4 0 0 0 6 160 6 160 

64 8 0 0 0 10 320 10 320 

128 16 0 0 0 18 640 18 640 

256 32 0 0 0 34 1280 34 1280 

512 64 0 0 0 66 2560 66 2560 

1024 128 0 0 0 130 5120 130 5120 

The new results are so interesting that we are encouraged 

to pursue further the optimization process using higher basic 

sub-radices (s>8) to reduce the total delay (DelT) of the 

multiplier. Let us this time replace j
iA  and j

iB  as follows: 

∑== 7

0

22
k

ji

k

kj

i CA  and ∑== 3

0

22
k

ji

k

kj

i CB .We eliminate radix-25 

since it can be derived from radix-21 and 22. The new Del 

and Mux values of basic radices are grouped in Table VIII.  

The C-program shows up even 

more interesting results since starting 

from r≥64 (Table IX), lower delays 

are obtained with the same 

multiplexer complexities as the ones 

reported in Table VII. Based on the 

obtained results, we pushed farther 

the optimization process using even 

higher basic sub-radices (s=16..32). 

All optimal solutions come either on the form (a,0,0,0) or 

(0,b,0,0). At this level we can draw a significant conclusion: 

since the optimal solution is always in the form (a,0,0,0) or 

(0,b,0,0) with a=2k and b=2k', there exists an integer s=2k'' 

such as either (s,0,0,0) or (0,s,0,0) is the optimal solution.  

Consequently, equation (14) is rewritten accordingly, as 

follows: rj
r

N

j

s

r
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s
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k yyyC 12212 2 +− −+=  with }{ 21012 ,,,,C
ji

k −−∈ . 

Based on heuristic developed in Section III, multiplexer 

complexity of equation (15) for the whole multiplier is 

always equal to MuxT=10×N/2=5N for any value of r and s. 

As for the multiplier delay (DelT), we need to determine the 

couple (r,s) that leads to the shortest critical path in terms of 

adder levels. This is what is achieved in the next section. 

V. THE OPTIMAL PARTITIONNING 

The total delay (DelT) of the whole multiplier related to 

equation (15) is: DelT= N/r-1+Del+d2 where Del is the PPGj 

delay equal to (r/s-1)+(s/2-1), and d2 is the multiplexer 

delay corresponding to the recoding logic of radix-22. Thus,   

DelT= N/r+r/s+s/2-3+d2.  

The optimal delay with regard to r is obtained for (r,s) 

couples satisfying ( ) 0/ =∂∂ rDelT , which gives N.sr = . 

When r is substituted by N.s  into DelT expression, we 

obtain: 
232//2 dssNDelT +−+= .  Likewise, the optimal 

delay with regard to s is obtained for s value satisfying ( ) 0/ =∂∂ sDelT . We obtain 3 2/2 Ns = . Hence, the optimal 

delay becomes:
2

3 32/3 dNDelT +−= .  

Finally, we conclude that the optimal N-bit multiplier, in 

comparison to equation (8) [13], relies on the new triple 

recursive equation (15) with (r,s)=( 3 22 N. , 3 22 /N ).   

Table X provides the s and r values that lead to the 

optimal partitioning with respect to the operand size N. The 

values s and r correspond to the number of multiplier bits 

that are treated simultaneously inside each PPGji and each 

PPGj, respectively. For N=64, the optimal partitioning is 

obtained with (r,s)=(32,8) as illustrated by Fig. 4. Whereas 

equations (15) and (8) require the same amount of hardware 

resources (MuxT , AddT)=(320,31), they exhibit different 

critical paths: 7 and 31 in terms of adder levels, 

respectively. 

VI. DISCUSSION OF THE IMPLEMENTATION RESULTS 

We proved via FPGA implementation (Table III) how 

much accurate are the area heuristics developed in Section 

III (Table II). Based on this, we have undertaken a gradual 

theoretical optimization process that yielded to equation 

(15). This latter is implemented on FPGA with N=64, and 

the results in terms of multiply-time, energy consumption 

per multiply-operation, and total gate count, are as follows: 

78.98 MMPS, 1.45pJ and 1987 slices, respectively. 

Compared to implementation results of Seidel and Dimitrov 

algorithms (Table III), gain ratios of 1.62, 1.71, 2.64 and 

1.83, 1.71, 3.32 are obtained, respectively. A 64-bit 

multiplier generated by Xilinx Coregen exhibits 75.86 

MMPS and consumes twelve 18×18 bit DSP-slice 

multipliers.  

The real reasons behind these important results are 

cleared up as follows. 

TABLE VIII 

DELAY AND MULTIPLEXER

COMPLEXITY OF THE NEW 

BASIC RADICES: STEP #3 

Algorithm Del Mux 

21 0 5 

22 0 10 

28 3 40 

216 7 80 

TABLE X 

THE OPTIMAL PARTITIONING VERSUS OPERAND SIZE N 

Our recoding 

Equation (15) 

McSorley[13] 

 Equation (8) 

Seidel[11][19] 

Equation (10) 

Dimitrov [12]

Equation (13)N   

(bits)
s r DelT DelT DelT DelT 

8 4 8 2 3 6 1 

16 4 8 3 7 7 2 

32 8 16 5 15 9 4 

64 8 32 7 31 13 8 

128 8 32 9 63 21 16 

256 16 64 13 127 37 32 

512 16 128 17 255 69 64 

1024 16 128 21 511 133 128 

2048 32 256 28 1023 261 256 

4096 32 512 35 2047 517 512 

8192 32 512 45 4095 1029 1024 

 s value corresponds to the number of bits that are treated 

simultaneously inside each PPGji , while r value indicates the number 

of bits that are processed simultaneously inside each PPGj. ds is not 

included in DelT since d2<d8<d'8. 

TABLE IX 

OPTIMAL PPGJ SOLUTION (a,b,c,d) LEADING TO THE 

OPTIMAL  RADIX-2
r
 MULTIPLIER ACCORDING TO 

COMPOSITE METRICS A
I
T

J
 

 Instance Number r size  

(bits) a b c d 
Del Mux Delmin Muxmin 

8 0 1 0 0 3 40 3 40 

16 0 2 0 0 4 80 4 80 

32 0 4 0 0 6 160 6 160 

64 4 0 0 0 10 320 10 320 

128 8 0 0 0 14 640 14 640 

256 16 0 0 0 22 1280 22 1280 

512 32 0 0 0 38 2560 38 2560 

1024 64 0 0 0 70 5120 70 5120 

     : Optimal solution moved from (0,b,0,0) to (a,0,0,0)   
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Fig. 4.  Optimal partitioning of a two’s complement

64×64 bit radix-232 parallel multiplier based on

equation (15) with (r,s)=(32,8). 
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A. Area occupation 

For operand size N=64, equation (15)  is a composite 

radix-232 algorithm (Table X), where each PPGj processes 

simultaneously 32+1 inputs that are split on four sub-radix- 

28 PPGji made of four instances ( ji
kC ) of McSorley algorithm 

(Fig. 4). Seidel and Dimitrov algorithms are rather radix-28 

algorithms, based on mono-bloc PPGj.  

In fact, although radix-28 PPGji of equation (15) and 

radix-28 PPGj of Seidel and Dimitrov are based on different 

recoding schemes, they are mathematically equivalent since 

they produce the same partial product PPji/PPj. Based on 

theory (Table II) and implementation results (Table III), 

Dimitrov recoding is the most space consuming due to the 

use of odd-multiples of the multiplicand. On the other hand, 

Seidel  recoding does not require odd-multiples,  but  since 

9 inputs are treated simultaneously in a mono-bloc PPGj, a 

large amount of multiplexer resources is needed to recode 

the 29=512 input combinations. Finally, radix-28 PPGji of 

equation (15) is the least area consumer because it does not 

employ odd-multiples and requires a small amount of 

multiplexers as the total number of input combinations in 

each radix-28 PPGji is equal to 8+8+8+8=32. Note that the 

three recoding schemes are incorporating a number of 

adders in their PPGji/PPGj which is 3, 6, and 1 for equation 

(15), Seidel and Dimitrov algorithms, respectively. 

Significant conclusion: the area occupation is dominated 

by the Mux factor, and becomes larger as Mux number 

becomes higher.  

B. Delay 

Using higher radices (r>>) will certainly shortens the 

critical path. However, for high r values, mono-bloc PPGj 

recoding induces an important delay (ds) due to the high 

density of multiplexer logic that significantly degrades the 

whole performance of the multiplier. This is clearly 

illustrated by Dimitrov radix-28 recoding whose critical-path 

totalizes 8 adder levels but exhibits a lower multiply rate 

(43.17 MMPS) compared to Seidel recoding that have a 

critical-path composed of 13 adder levels but shows a more 

interesting rate (48.62 MMPS) due to lower multiplexer 

complexity (Table II and III). As for equation (15), since a 

composite PPGj is used, ds is equal to d2 ( ji
kC  delay) which is 

the smallest delay (d2 < d5 < d8). Besides, the critical path 

goes through the smallest number (7) of adder stages, 

exploiting maximum parallelism that can be provided by the 

triple-recursive equation (15). Thus, it is not surprising that 

equation (15) achieves the best performance (78.98 MHz), 

even when compared to Xilinx Coregen multiplier based on 

DSP-slices (75.86 MHz). A double-recursive (s=2) version 

of equation (15) served to design a scalable 16-bit setpoint 

Finite-Word-Length PID controller, employing five 

multiplication cores. The implementation results 

outperformed the published ones at all levels [23]. 

Significant conclusion: using composite recoding in 

conjunction with an optimal partitioning (r and s values) 

provides the shortest critical path. 

Equation (15) shows high aptitude for pipelining. Two 

finely and coarsely grained systolic architectures for 64-bit 

multiplier are depicted in Fig. 5.a and Fig. 5.b, respectively. 

Fig. 5.a architecture is more suitable for high throughput 

applications, with 7 clock-cycle latency.  



 

VII. CONCLUSION AND FUTUR WORK 

Upon the basis of the new multibit recoding 

multiplication algorithm, we developed optimal parallel 

multipliers with shortest critical paths and minimum 

hardware resources for any value of operand size N. We 

demonstrated by theory and FPGA implementation the 

superiority of our high-radix algorithms over their existing 

counterparts. Because exploiting the maximum parallelism 

inherent in multiply operation, our look-up-table based 

multiplier (eq. 15) is even speed-competitive with Xilinx’s 

hardwired multiplier employing DSP-Slices (18×18 bit full-

custom multipliers).  

More importantly, we demonstrated also that the current 

trend relying upon minimal number-bases for the 

development of high radix-2r recoding (r≥8) with mono-

bloc PPG requires an excessive amount of multiplexer 

resources, which offsets speed and power benefits of the 

compressor factor N/r. On the other hand, we proved that 

composite PPG based on the new recursive multibit 

recoding algorithm is the best realistic alternative. 

The topology of our proposed recoding schemes shows 

high capabilities for pipelining which can be finely or 

coarsely grained to satisfy both high throughput and low 

latency applications. A radix-232 64-bit parallel multiplier 

was finely pipelined, resulting in a systolic architecture with 

seven clock-cycle latency.  

While the theoretical concept was validated using FPGA 

as a preliminary step, an ASIC implementation based on a 

standard-cell library is necessary for an ultimate validation 

of the whole optimization work. This issue will be explored 

in the near future, and we intend to report our results in a 

forthcoming paper.  
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APPENDIX 

Proof of theorem 1: Initially, the multiplier Y is an N bit string. But to comply with the requirement 

of the multibit recoding algorithm [2], we need to add a zero bit (y-1) to the less significant side of Y. 

Thus, the total size becomes N+1.   
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In the multibit recoding algorithm, the multiplier Y is split into N/r two’s complement slices (
jQ ), 

each of r+1 bit length. Two contiguous slices (Qj with Qj-1, and Qj with Qj+1) have one overlapping 

bit in common. Thus Y becomes:   
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In fact the Qj term is no more than a two’s complement representation of  r+1  bit string which can 

be split in its turn into r/s two’s complement overlapping slices (Pji), each of s+1 bit length. Thus Y 

becomes: 
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        A synoptic scheme is depicted in Fig. 1 to illustrate the use of theorem 1 in the partitioning of 

a 16-bit Y operand.  

 

 

 

 

 

Proof of theorem 2: Likewise, Y can also be rewritten as follows: 
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A synoptic scheme is depicted in Fig. 2 to illustrate the use of theorem 2 in the partitioning of a 16-

bit Y operand.  
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