
HAL Id: hal-00872326
https://hal.archives-ouvertes.fr/hal-00872326

Submitted on 11 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New High Radix-2r (r ≥ 8) Multibit Recoding
Algorithm for Large Operand Size (N ≥ 32) Multipliers.

Abdelkrim K. Oudjida, Nicolas Chaillet, Mohamed L. Berrandjia, Ahmed
Liacha

To cite this version:
Abdelkrim K. Oudjida, Nicolas Chaillet, Mohamed L. Berrandjia, Ahmed Liacha. A New High Radix-
2r (r ≥ 8) Multibit Recoding Algorithm for Large Operand Size (N ≥ 32) Multipliers.. Journal of
Low Power Electronics, American Scientific Publishers, 2013, 9, pp.50-62. �hal-00872326�

https://hal.archives-ouvertes.fr/hal-00872326
https://hal.archives-ouvertes.fr

Abstract—This paper addresses the problem of

multiplication with large operand sizes (N≥32). We propose a

new recursive recoding algorithm that shortens the critical

path of the multiplier and reduces the hardware complexity of

partial-product-generators as well. The new recoding

algorithm provides an optimal space/time partitioning of the

multiplier architecture for any size N of the operands. As a

result, the critical path is drastically reduced to 3233 −/N

with no area overhead in comparison to modified Booth

algorithm that shows a critical path of N/2 in adder stages. For

instance, only 7 adder stages are needed for a 64-bit two’s

complement multiplier. Confronted to reference algorithms for

N=64, important gain ratios of 1.62, 1.71, 2.64 are obtained in

terms of multiply-time, energy consumption per multiply-

operation, and total gate count, respectively.

Index Terms— High-Radix Multiplication, Low-Power

Multiplication, Multibit Recoding Multiplication, Partial

Product Generator (PPG), Register-Transfer-Level (RTL)

I. BACKGROUND AND MOTIVATION

N multiplication-intensive applications, as in digital signal

processing or process control, multiply-time is a critical

factor that limits the whole system performance. When these

types of applications are embedded, energy consumption per

multiply operation becomes an additional critical issue.

Furthermore, in large-operand-size applications (N≥32), the

need for a scalable architecture is essential to ensure a linear

increase O(N) of multiply-time while multiplier size grows

quadratically O(N2) with operand bit-length N.

Consequently, high-speed, low-power, and highly-scalable

architecture are the three major requirements for today’s

general-purpose multipliers [1].

However, large operand size multipliers are very time

consuming. To comply with time constraint of a given

application, we need a multiplication algorithm that allows,

to some extent, a parameterized reduction (N/r) of the

multiply-time without sacrificing area. This is achieved if,

and only if the total critical path can be properly shortened

by reducing the number of partial products (PPs) and

exploiting inherent parallelism. Theoretically, only the

signed multibit recoding multiplication algorithm [2] is

capable of such a drastic reduction (N/r) of the PP number,

given that r+1 is the number of bits of the multiplier that are

simultaneously treated (1<r≤N/2). Unfortunately, this

algorithm requires the pre-computation of a number of odd-

multiples of the multiplicand (until (2r-1-1).X) that scales

linearly with r. The large number of odd-multiples not only

requires a considerable amount of multiplexers to perform

the necessary complex recoding into partial product

generators (PPG), but dramatically increases the routing

density as well. Therefore, a reverse effect occurs that

offsets speed and power benefits of the compression factor

N/r. This is the main reason why the multibit recoding

algorithm was abandoned. Moreover, in industry

commercial designs do not exceed r=4 (radix-16). A hybrid

radix-4/-8 is proposed in [3] for low-power multimedia

applications. To increase the speed of the multiplier, most

ancient processors employed radix-8, such as: Fchip [4],

IBM S/390 [5], Alpha RISC [6], IA-32 [7] and AMDK7 [8].

While radix-16 is used only in the most recent Intel

processors: 64 and IA-32 [9], and Itanium-Poulson [10].

In research, the highest radix algorithms are proposed in

the works of Seidel et al. [11] and Dimitrov et al. [12]. Both

works rely upon advanced arithmetic to determine minimal

number-bases that are representatives of the digits resulting

from larger multibit recoding. The objective is to eliminate

information redundancy inside r+1 bit-length slices for a

more compact PPG. This is achievable as long as no or just

very few odd- multiples are required.

Seidel introduced a secondary recoding of digits issued

from an initial multibit recoding for 5≤r≤16. The recoding

scheme is based on balanced complete residue system.

Though it significantly reduces the number of partial

products (N/r for 5≤r≤16), it requires some odd-multiples

for r≥8. Dimitrov proposed a new recoding scheme based

on double base number system for 6≤r≤11. The algorithm is

limited to unsigned multiplication and requires larger

number of odd-multiples. Both algorithms [11][12] require a

PPG that includes a number of adders to accumulate

intermediary partial products corresponding to recoded

elementary digits.

In fact, odd-multiples are not the only problem for a

compact PPG. Recoding large slices (r≥8) in a mono-bloc

PPG such as in [11][12], requires the use of an RTL “case

statement” with r+1 entries. In this case, 2r+1 combinations

must be processed, which yields to a huge amount of

multiplexer resources. Thus, mono-bloc PPG recoding is

incompatible with high radix (r≥8) approach whose purpose

is to reduce the multiply-time (N/r) of large operand size

(N ≥32) multipliers.

The objective of this paper is to overcome these two

above-mentioned shortcomings. To achieve such a goal, the

multibit recoding multiplication algorithm is revisited [2]. Its

design space is extended by the introduction of a new

recursive version that enabled to solve the hard problem of

radix-2r two’s complement multiplication for any value of r.

The solution consists essentially in dividing the high radix-2r

mono-bloc PPGj (Fig. 1.a) into a number of lower

sub-radix-2s odd-multiple free PPGji (Fig. 1.b), such as s is a

divider of r . As direct benefits of the partitioning of Fig. 1.b:

• there is no need to pre-compute odd-multiples of the

multiplicand, which drastically reduces the required

amount of hardware resources and routing;

• since the size of PPGji entry is much smaller than the

size of PPGj one (s≤r/2), the total multiplexing logic

required by RTL “case statements” to recode the

entries is greatly reduced;

A New High Radix-2r (r≥8) Multibit Recoding Algorithm

for Large Operand Size (N ≥32) Multipliers

 A.K. Oudjida1, N. Chaillet2, M.L. Berrandjia1, and A. Liacha1

I

(1) Centre de Développement des Technologies Avancées, Algiers, Algeria

(2) Institut FEMTO-ST, Besançon, France

 Fig. 1. Generalized N×N bit radix-2r parallel multiplier.

(a) Critical path in conventional [2][4][5][6][7][8] and recent [3][9][10]

[11][12] radix-2r multipliers. O(X) is the necessary set of odd-multiples

corresponding to radix-2r recoding. PPGj of [11][12] includes a number

of adders to accumulate intermediary partial product.

(b) Critical path in our proposed radix-2r multipliers. Main features are: no

odd-multiples, much more compact PPGj, much shorter critical path.

(b)

2r is the main radix and

2s is the sub-radix

PP: Partial Product

Critical path (DelT)

.

.

.

P2N-1 , 0

P2N-1 , 0

⎭⎬
⎫

⎩⎨
⎧ −−= XrXXXO)112(...,5,3)(

X
N

(a)

 PPG0

 PPG1

Y-1 , r-1

r+1

r+1

YN-r-1 , N-1

r+1

+

+ PPG(N/r)-1

.

.

.

PP0

PP1

PP(N/r)-1

()XO

.

.

.

PP1

YN-r-1 , N-1

∑

.

.

.

PPG00

. . .

PPG01

 PPG0 (r/s)-1

 PPG0

. . .

PPG10

. . .

PPG11

 PPG1 (r/s)-1

 PPG1

∑ . . .

PPG(N/r)-1 0

. . .

PPG(N/r)-1 1

PPG(N/r)-1 (r/s)-1

PPG(N/r)-1

∑ . . .

Y-1 , r-1

r+1

Yr-1 , 2r-1

r+1

r+1 PP(N/r)-1

PP0

+

+

N

Yr-1 , 2r-1

X

• the possibility to simultaneously process larger bit

slices (r≥16) radically shortens the critical path in

terms of adder levels, especially for very large operand

sizes (N≥64).

Guided by accurate area heuristics, the final result of an

optimization process, gradually undertaken in this paper,

delivers for each value of N (N=8..8192) the appropriate

radix-2r (r=8..512) and sub-radix-2
s
 (s=4..32) that lead to

the architecture with the shortest critical path (3233 −/N)

in adder stages. The couple (r,s) serves to partition the

architecture so that maximum parallelism is exploited. As

for area, our proposed architectures require as many

hardware resources as modified Booth algorithm [13] with a

critical path of N/2 [14][15][16][17]. For instance, a 64-bit

two’s complement finely pipelined multiplier requires a

latency of seven clock cycles only (critical path composed

of a series of 7 adders). FPGA implementation on Virtex-6

circuit of our 64-bit two’s complement radix-232 multiplier

shows important gain ratios over Seidel [11] and Dimitrov

[12] radix-28 algorithms. The respective gain ratios are

enumerated as follows: 1.62, 1.71, 2.64 and 1.83, 1.71, 3.32

are obtained in terms of multiply-time, energy consumption

per multiply-operation, and total gate count, respectively.

The paper is organized as follows. Section I outlines the

main requirement specifications for a generalized radix-2r

multiplication. Section II introduces the new recursive

multibit recoding multiplication algorithm, illustrated by

two high-radix (28 and 216) recoding examples in Section

III. Section IV introduces some preliminary steps toward an

optimal partitioning of the multiplier architecture, while the

optimal partitioning is presented in Section V. Section VI

compares and discusses the implementation results. Finally,

Section VII provides some concluding remarks and

suggestions for future work.

II. THE NEW RECURSIVE MULTIBIT RECODING

MULTIPLICATION ALGORITHM

The equation (2.1.2) of the original multibit recoding

algorithm presented in [2] does not offer hardware visibility.

Let us rewrite it in a simpler hardware-friendly form, as

follows: (∑−= ++− ⋅⋅⋅++++=
1

0

2
2

1
10

1 222
r

N

j

rjrjrjrj yyyyY

) ∑−=−+−−+− =−+
1

0

1
1

2
2 2222

r

N

j

rj
j

rj
rrj

r
rrj

r Qyy (1)

Where 01 =−y and *Ν∈r . For simplicity purposes and

without loss of generality, we assume that r is a divider of N .

In equation (1), the two’s complement representation of

the multiplier Y is split into N/r two’s complement slices

(
jQ), each of r+1 bit length. Each pair of two contiguous

slices has one overlapping bit. In literature, equation (1) is

referred to by radix-2r equation, to which corresponds a

digit set ()rD 2 such as () { }11 2022 −−−=∈ rrr
j ,...,,...,DQ .

 Thus, the signed multiplication between X and Y becomes:

rj
r

N

j

jQXYX 2...

1

0

∑−== (2). Where each partial product can be

expressed as follows: () ()XmQX ferj

j 212 −= , with () { }12312 1 −=∈ −rrOm ...,,, such as () 222 −= rrO . ()rO 2 represents the required set of odd-multiples of the

multiplicand (m.X) for radix-2r. Hence, the partial-product

generation-process consists first in selecting one odd-

multiple (m.X) among the whole set of pre-computed odd-

multiples, which is then submitted to a hardwired shift of f

positions, and finally conditionally complemented (-1)
e

depending on the bit sign e of Qj term. Table I provides a

picture on how the number of odd-multiples grows when the

radix becomes higher. While lower m.X can be obtained

using just one addition (3X=2X+1X), the calculation of

higher ones may require a number of computation steps

(11X= 8X+2X+1X).

To bypass the hard problem of odd-multiples, we exploit

the fact that the N+1 bit-length two’s complement multiplier

Y on which equation (1) is applied, is composed of a series

(N/r) of r+1 bit-length two’s complement slices (
jQ digits)

on which equation (1) can be recursively applied again.

Based on this observation, let us announce the two

following theorems accompanied with their respective

proofs inserted in Appendix.

TABLE I

MAIN FEATURES OF THE MULTIBIT RECODING MULTIPLICATION ALGORITH

Radix Nbr. of Partial Products Odd Multiples (m.X)

21 N 1X

22 N/2 1X

23 N/3 1X, 3X

24 N/4 1X, 3X, 5X, 7X

25 N/5 1X, 3X, 5X, 7X, 9X, 11X, 13X, 15X

|O(2r+1)|=2×|O(2r)|. In radix-2r, the multiplier Y is divided into N/r slices,

each of r+1 bit length. Each pair of two contiguous slices has one

overlapping bit.

Theorem 1. Any digit ()r
j DQ 2∈ can be represented in a

combination of digits ()s

ji DP 2∈ , such as s is a divider of r.

When theorem (1) is applied to equation (1), it gives:

rj
r

N

j

s

r

i

si
jiPY 22

1

0

1

0

∑ ∑−

=

−

= ⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
= (3) ; where

() { }11 2022 −−−=∈ sss
ji ,...,,...,DP with

() { }12312 1 −= −ssO ,...,, such as
()() ks

s

r

O

O
2

2

2 = and

rj
r

N

j

s

r

i

si
jiP.XY.X 22

1

0

1

0

∑ ∑−

=

−

= ⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
= (4)

Theorem 2. Any digit ()r
j DQ 2∈ can be represented in a

combination of digits Pji+Tjk such as ()s

ji DP 2∈ and ()t

jk DT 2∈ with s+t a divider of r , and t < s.

Likewise, when theorem (2) is applied to equation (1), we

obtain: [] () rj
r

N

j

ts

r

i

itss

jiji TPY 222

1

0

1

0

∑ ∑−

=

−+

=
+

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
+= (5). Where

() { }11 2,...,0,...,22 −−−=∈ sss
ji DP with () { }12312 1 −= −ssO ...,,, and

 () { }11 2,...,0,...,22 −−−=∈ ttt
ji DT with

() { }12312 1 −= −ttO ...,,, such as
()() ()tsk

ts

r

O

O +
+ = 2

2

2

and [] () rj
r

n

j

ts

r

i

itss

jiji TXPXYX 222

1

0

1

0

∑ ∑−

=

−+

=
+

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
+= ... (6)

Theorem (1) and (2) allow an exponential reduction

(1/2ks and 1/2k(s+t), resp.) of the number of odd-multiples in

equations (4) and (6) in comparison to equation (2), but at

the expense of a linear increase (ks-1 and k(s+t)-1, resp.) in

the number of additions. The advantage by far outweighs

the cost, as practically shown in the next section.

The translation of equation (4) into architecture is

depicted by Fig. 1.b, where each PPGj (Qj) is built up using

r/s identical PPGji (Pji). This is not the case for equation (6)

which requires two different PPGji (Pji and Tji) . Theorem (1)

and (2) can be merged together to produce PPGj made of a

number of different PPGji (Pji ,Tji ,Uji ,Vji ,...). This is the

general case that is thoroughly studied in next sections in

order to determine the optimal multiplier.

III. TWO HIGH RADIX (28
 AND 216) ILLUSTRATIVE EXAMPLES

Theorems (1) and (2) permit to build up any high radix-2r

multiplication algorithm based on lower sub-radices,

employing much less odd-multiples. The objective

hereafter is to generate high radix-2r multiplication without

odd-multiples for a maximum reduction of multiplexer

complexity inside PPGj. To achieve such a goal, a number

of odd-multiple free low-radix algorithms are used, such as

Booth algorithm (radix-21) [18], modified Booth algorithm

(radix-22) [13], Seidel et al. algorithms (radix-25 and

radix-28) [11][19]. Booth and modified Booth recoding

(McSorley algorithm [13]) can be derived from equation (3)

for (r,s)=(1,1) and (r,s)=(2,2), respectively. They are

respectively summarized as follows: () ∑∑ −

=

−

= − =−= 1

0

1

0

1 22
N

j

j

j

j
N

j

jj QyyY (7)

With () { }10121 ,,D −= and () { }121 =O

 ()() ()∑∑ −

=

−

= +− =−+= 12

0

22
12

0

12212 222
/N

j

j
j

j
/N

j

jjj QyyyY (8)

 With () }{ 2,1,0,1,222 −−=D and () { }122 =O

Seidel radix-25 recoding [11][19] is described as follows:

[]()
j

/N

j

jj PQ.Y 5
15

0

27∑−

=
+= (9) with { } ;,,,,Q j 21012 −−∈

 { }4210124 ,,,,,,Pj −−−∈ and () { }125 =O .

And Seidel radix-28 recoding is given by the following

equation: []()
j

/N

j

jjj TP.Q.Y 8
18

0

2 21111∑−

=
++= (10) with

{ }21012 ,,,,Qj −−∈ ; { }16,8,4,2,1,0,1,2,4,8,16, −−−−−∈jj TP

and () { }128 =O . Note that while equations (9) and (10) are

odd-multiple free since all included digits are power of 2,

they require a post-accumulation to deal with odd numbers

(7, 11 and 121). Thus, a number of extra-adders are needed.

Optimized higher radices are obtained as follows.

A. Our new radix-28 recoding

Based on theorem (2), each 8+1 bit slice is split into 5+1,

2+1, and 1+1 overlapping slices using Seidel radix-25,

McSorley radix-22, and Booth radix-21 algorithms,

respectively. The new recoding is given by the following

equation: () ()[]()∑−

=
+++= 18

0

852 2227
/N

j

j
jjjj ..SRPQ.Y (11)

With { }21012 ,,,,Q j −−∈ ; { }4210124 ,,,,,,Pj −−−∈ ;

{ }21012 ,,,,R j −−∈ ; { }101 ,,S j −∈ and () { }128 =O

B. Our new radix-216 recoding

Likewise, using theorem (2), each 16+1 bit slice is split

into 8+1, 5+1, 2+1, and 1+1 overlapping slices using Seidel

radix-28 and radix-25, McSorley radix-22, and Booth radix-

21 algorithms, respectively. The new recoding is described

by the following equation:

() ()[∑−= +++++=
1

16

0

82 271111

N

j

jjjjj .SR.TP.Q.Y

 ()] j

jj VU 16132 222 ..+ (12) with { }21012 ,,,,Q j −−∈ ;

{ }1684210124816 ,,,,,,,,,,T,P jj −−−−−∈ ;

{ }21012 ,,,,R j −−∈ ; { }4210124 ,,,,,,S j −−−∈ ;

{ }21012 ,,,,U j −−∈ ; { }101 ,,V j −= and () { }1216 =O

In our preceding work [20], we pursued this combination

process farther and generated a series of higher radix (224,

232, …) recoding schemes with () { }12 =rO . However, what

still remains unknown is to determine, for a given N value,

the proper radix (2r) that leads to the optimal architecture.

The translation of equations (11) and (12) into

architectures is depicted in Fig. 2.a and 2.b, respectively.

All Dimitrov algorithms developed in [12] are unsigned.

For an equitable comparison, we had to develop a new

two’s complement radix-28 recoding version with () { }753128
,,,=O based on Dimitrov unsigned radix-2

7

recoding (mult_7b2d in [12]) with () { }753127
,,,=O . The

new recoding is: ()()() () ij
n

j

j
he

j
k PQY 878

18

0

21212
+−

=
−−+= ∑/ ..

 (13)

 With { } { } { }1,07,6,5,4,3,2,1,0,;7,5,3,1, ∈∈∈ eandhkPQ jj

For the comparative study, our proposed algorithms

(eq. 11 and 12) as well as Seidel and Dimitrov algorithms

(eq. 10 and 13, resp.) are first analytically characterized and

then physically implemented.

C. Analytical characterization of area and speed

Prior implementation, we need to develop a generalized

theoretical model which predicts area and speed features of

each recoding algorithm with respect to N and r values.

1) Area

Three basic components are necessary for the

implementation of RTL multipliers:

• multiplexers (Mux1) to recode the digit terms (Qj,Pj,…)

included in the recoding expression;

• shifters (Mux2) for partial product generation;

• and adders for partial product summation.

Whereas the exact number of adders can be known in

advance, we need to develop heuristics for the two others.

The total multiplexer complexity (Mux1) of a radix-2r

multiplier depends on:

• the number (N/r) of PPGj; • the number (i) of lower sub-radices (21, 22, 25, and 28)

used to build up the higher radix-2r. To each sub-

radix-2s used (PPGji) corresponds an RTL “case

statement” that recodes the digit terms (Qji,Pji,Tji,…)

present in the equation;

• the number of entries (es+1) in each “case statement”

corresponding to each sub-radix-2s;

• the number (ds) of digit terms (Qji,Pji,Tji,…) that

figures in each “case statement”; • and on the number of necessary odd-multiples (|Os|)

used to calculate the digit terms.

Hence, we can announce that: ()∑ +=
i

ss
se

Od
r

N
Mux || ...

1
21

For Dimitrov algorithm (eq. 13), this gives: r=8, i=1,

es =8, ds =2, and |Os|=4. Thus, Mux1 = 512 N.

The synthesis of the RTL “shift statement” infers

multiplexers whose complexity depends on the number (psj)

of different shift positions for all odd-multiples involved in

the calculation of each digit term (j). Thus, we can write: ()∑∑=
i j

sjsj Op
r

N
Mux || ..2 . For Dimitrov algorithm

(eq. 13), this gives: r = 8, i=1, j=2, ps1 =ps2 =8, and |Os1| =

|Os2| = 4. Thus, Mux2=8N. Hence, the total multiplexer

complexity becomes: MuxT = Mux1+Mux2=520N.

A N-bit radix-2r multiplier generates N/r PP. Thus, The

total number of adders comprises:

• () 1/ −rN adders to sum the N/r PP;

• plus the necessary adders inside each PPGj to

accumulate the intermediate PP issuing from PPGji;

• plus a number of adders included inside each PPGji

depending on the recoding scheme used.

 For example, in Seidel algorithm (eq. 10), the term

jijiji TPQ ++11112 is calculated as follows:

 () () jijijijijijiji TPPPQQQ +−+++− 2337 2222 , which

requires 6 adders for post-accumulation operation [11][19].

Hence, the total number of necessary adders is:

AddT= () () () 1878618 −=+− N//N/N .

PP0

+

Y23 , 28

Y28 , 30

Y30 , 31

Y15 , 23

Y39 , 44

Y44 , 46

Y46 , 47

Y31 , 39

Y55 , 60

Y60 , 62

Y62 , 63

Y47 , 55

64

P127 - 0

PP1

PP2

PP3

X

(b)

Y7 , 12

Y12 , 14

Y14 , 15

Y-1 , 7

U0

V0

R0 S0
+

PPG0

Q0 P0

T0

U1

+ V1

R1 S1 +

PPG1

Q1 P1

T1

+

U2

+ V2

R2 S2 +

PPG2

Q2 P2

T2

+

U3

+ V3

R3 S3 +

PPG3

Q3 P3

T3

+

+

+

+

+

 Fig. 2. Two’s complement 64×64 bit multiplier.

(a) Radix-28 multiplier. Space partitioning according to equation (11)

(b) Radix-216 multiplier. Space partitioning according to equation (12)

Critical path (DelT = N/r-1+Del+ds)

(a)

X 64

Y-1 , 4

Y4 , 6

Y6 , 7

Y7 , 12

Y12 , 14

Y14 , 15

Y15 , 20

Y20 , 22

Y22 , 23

Y23 , 28

Y28 , 30

Y30 , 31

Y31 , 36

Y36 , 38

Y38 , 39

Y39 , 44

Y44 , 46

Y46 , 47

Y47 , 52

Y52 , 54

Y54 , 55

Y55 , 60

Y60 , 62

Y62 , 63

+

PP7

PP0

PP1

PP2

PP3

PP4

PP5

PP6

P127 - 0

R0

S0

Q0 P0

PPG0

R1

S1

Q1 P1

PPG1

R2

S2

Q2 P2

PPG2

R3

S3

Q3 P3

PPG3

R4

S4

Q4 P4

PPG4

R5

S5

Q5 P5

PPG5

R6

S6

Q6 P6

PPG6

R7

S7

Q7 P7

PPG7

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

PPGji including a fixed

number of adders

 DelT is the delay in adder levels of

the total critical path. Del is the

delay in adder levels inside PPGj

and ds is the delay due to

multiplexer logic inside PPGji

TABLE II

MAIN FEATURE COMPARISON

Our recoding algorithms
Features

Eq. (11) Eq. (12)

McSorley

[13] Eq. (8)

Seidel [11]

[19] Eq. (10)

Dimitrov

[12] Eq. (13)

Radix 28 216 22 28 28

DelT 53
8

d
N ++

88
16

d
N ++

21
2

d
N +−

85
8

d
N ++ 'd

N
8

8
+

MuxT N19 N106 N5 N194 N520

AddT 1
8

5 −N 1
8

6 −N 1
2
−N 1

8

7 −N 1
4
−N

N is the operand size and 2r is the radix used. DelT is the total delay in terms

of adder levels in the critical path of a linear reduction tree. ds is the delay

due to multiplexer logic inside PPGji. ds depends on Mux factor

(d1<d2<d5<d8<d'8). MuxT=(N/r)Mux, where Mux is an estimation of the

multiplexer logic required by PPGj. AddT is the total number of adders

required in the whole multiplier.

TABLE III

IMPLEMENTATION RESULTS OF A TWO’S COMPLEMENT 64-BIT PARALLEL

MULTIPLIER ON XILINX XC6VSX475T-2FF1156 CIRCUIT

Our recoding algorithms
Results

Eq. (11) Eq. (12)

McSorley

[13] Eq. (8)

Seidel [11]

[19] Eq. (10)

Dimitrov

[12] Eq. (13)

Area1
 3219 4659 2103 5251 6599

Energy2 1.63 2.11 1.46 2.49 2.48

Speed3 52.4 49.34 30.04 48.62 43.17

Synthesis tool was forced to map RTL code to distributed slices of FPGA

and avoid mapping to builtin 18x18 bit hardwired multipliers (DSP slices).

1: Area occupation in number of Virtex-6 slices. 2: Energy consumption per

multiplication operation (pJ). 3: Million multiplications per second

(MMPS).

2) Delay

The total delay (DelT) along the critical path is the

summation of PPGj delay and reduction tree delay. Based on

the total number of adders (AddT), the critical path of the

multiplier in terms of logic levels is: DelT= N/r-1+Del+ds,

where Del is the delay due to adder stages inside PPGj and

ds is the delay due to multiplexer logic inside PPGji. This

latter depends on Mux factor of used PPGji (2
1, 22, 25, or 28).

Therefore, d1 < d2 < d5 < d8. Note that ds is fixed and Del

depends on r and s values. For instance, according to

equation (10), Seidel algorithm exhibits a critical path of:

DelT= N/8-1+6+d8=N/8+5+d8. Table II provides the area

occupation and delay for each recoding algorithm.

D. Physical implementation

All recoding schemes mentioned in Table II underwent

several verification steps. First all equations were

validated with a random C-program. Then, they were

implemented at RTL level in Verilog-2001 (IEEE 1364) as

technology-independent reusable IP-cores [1], using exactly

the same optimized coding style for an equitable

comparison. They are compile-time reconfigurable

according to N and r. Reader is referred to [11], [19], and

[12] for recoding tables used in equations (9), (10), and

(13), respectively.

All RTL codes went through a severe cycle-accurate

functional verification procedure using Modelsim SE-6.3f

logic simulator. They were first challenged against a set of

special and severe test cases, and then submitted to a

random test for a very large number of vectors. After a

successful functional verification, physical tests were

performed. They were integrated into an FPGA evaluation

board for an ultimate validation. Afterwards, all equations

were synthesized and mapped to the same Virtex-6 FPGA

circuit (xc6vsx475t-2ff1156) using Xilinx ISE 13.2 release

version [21]. We used for comparison a two’s complement

64×64 bit parallel multiplier. The implementation results are

grouped in Table III.

Although Dimitrov recoding exhibits the shortest critical

path in adder stages (N/8), the impact of multiplexer logic

(d'8) on the total performance is important (Table III).

Besides, it is the most area consumer despite the fact that it

employs the lowest number of adders (N/4-1). Adversely,

Seidel algorithm is the most adder consumer (7N/8-1). To

determine which factor, MuxT or AddT, exerts more

influence on area occupation, let us compare their respective

ratios for Seidel and Dimitrov algorithms:

MuxT(Eq.13)/MuxT(Eq.10)=2.7 and

AddT(Eq.10)/AddT(Eq.13)=3.5.

Significant conclusion: the area occupation is dominated

by MuxT factor, and becomes larger as MuxT number

becomes higher (Table II and III). This correlation is

advantageously used to minimize area occupation as will be

shown in the next section.

McSorley algorithm (eq. 8) is the least area consumer and

the slowest recoding scheme for any value of N. The best

area/speed compromise for N=64 is given by our recoding

scheme based on equation (11). However, this latter will be

outperformed by equation (12) for larger values of N (N>64)

since a higher radix (216) is employed.

While energy consumption is function of the switched

capacitance, Table III shows a direct correlation between

area occupation and energy consumption. Making MuxT

indicator lower, will result in a less energy-consumer

recoding algorithm.

 Finally, based on theory and implementation results, we

conclude that the best tradeoff related to our recoding

schemes depends on N and r values. For larger N values

(N>64), larger radices are necessary to reduce the critical

path. But for larger radices (r>16) we need to duplicate

some of the elementary PPGji (21,22,25,28) to build up the

radix-2r PPGj. Therefore, at this level a relevant question

arises: given N, what is the value of r and its corresponding

elementary PPGji configuration (optimal partitioning of

PPGj) that leads to the shortest critical path (DelTmin) with

minimum hardware resources (MuxTmin)? The answer to this

question is given in the next sections.

IV. PRELIMINARY STUDY TO AN OPTIMAL PARTITIONNING

We extend the recoding-space of our equations (11) and

(12) to the general case as follows: each r+1 bit slice is

recoded using a, b, c, d instances of radix 28, 25, 22, 21

algorithms, respectively, such that 8a+5b+2c+d=r. To this

recoding scheme corresponds the following equation:

∑ ∑ ∑ ∑−

=
−
=

−
=

−
=

+++
⎢⎢⎣
⎡ +++=

1

0

1

0

1

0

1

0

582858 2.2.2.
r

N

j

a

i

b

i

c

i

baij
i

aij
i

ij
i CBAY

 rj
d

i

cbaij
iD 2.2.

1

0

258

⎥⎥⎦
⎤∑−= +++ (14) where

j
i

j
i

j
i

j
i TP.Q.A ++= 11112 with { }21012 ,,,,Q j

i −−∈ and

{ }1684210124816 ,,,,,,,,,,T,P j
i

j
i −−−−−∈ ;

j

i

j

i

j

i SRB += .7 with { }21012 ,,,,−−∈j

iR and { }4210124 ,,,,,, −−−∈j

iS ;

j
i

j
i

j
i

j
i yyyC 12212 2 +− −+= with }{ 21012 ,,,,C j

i −−∈ ;

finally j
i

j
i

j
i yyD −= −1

 with { }101 ,,D j
i −∈ .

The translation of equation (14) into architecture is

depicted in Fig. 1.b (top view only), where each PPGj is built

 PPGj

. . .

j
D0

j
D1

j
dD 1−

. . .

j

cC 1−

 j
B0

 j
B1

. . .

 j
bB 1−

 j
A0

 j
A1

. . .

 j
aA 1−

d

c

b

a

2
 b

it
s

3
 b

it
s

6
 b

it
s

9
 b

it
s

+

. . .

+

+

+

. . .

+

+

+

. . .

+

+

+

+

. . .

j

C0

j

C1

PPj

 Fig. 3. Critical path (Del+di) inside a generalized PPGj

r
+

1

b

it
s

up using a mixture of four different PPGji depending on the

quadruplet (a,b,c,d) as illustrated by Fig. 3. For instance, to

equations (11) and (12) correspond (0,1,1,1) and (1,1,1,1),

respectively. Note that because of the general nature of

equation (14), the ds term of DelT is equal to max(d8,d5,d2,d1)

of used PPGji.

Given N and r, to determine the optimal partitioning of

the whole multiplier (global optimum since PPGj are

identical), we need to find first the quadruplet (a,b,c,d) that

satisfies the condition 8a+5b+2c+d=r and leads to the PPGj

with minimum hardware ressources (Muxmin) and the

shortest critical path (Delmin). As it is not sure that such a

solution exists, we are using composite metrics AiTj of area

(A) and delay (T) for i and j varying from 0 to 5 [22]. A

total of 11 metrics (A, A5T, A4T, A3T, A2T, AT, AT2,

AT3, AT4, AT5, T) are used. The A metric alone delivers

the best area solution (Muxmin), while T metric provides the

best delay solution (Delmin). In between(AiTj), more-or-less

balanced solutions are obtained. The

implementation of this solution

requires the (Mux, Del) couple

(Table IV) corresponding to each

basic recoding algorithm (28,25,22,21).

Because of an explosive number of

possible combinations (N>>), the

solution space is exhaustively

explored using a deterministic

C-program for r varying from 8 to

1024. The obtained results are

reported in Table V.

As conclusion, optimal area solutions (Mux=Muxmin) are

exclusively based on radix-22 algorithm (0,0,c,0), but they

are excessively slow (Del>>Delmin). While optimal speed

solutions (Del=Delmin) are entirely composed of radix-28

algorithm (a,0,0,0), but they are exaggeratedly large

(Mux>>Muxmin). Finally, balanced area/speed solutions are

mainly based on radix-25 algorithm with at most one or two

instances of radices 21 and 22 algorithms (0,b,c,d). However,

even the “balanced” solution is not really balanced enough

since the mean values of Del and Mux are 1.4×Delmin and

5.2×Muxmin , respectively. The reason is due to the large

disparity between Mux values of the basic radices

(Table IV). To correct this disequilibrium, we replace

respectively the two Seidel radix-28 and 25 expressions

(j
iA and j

iB) included in equation (14) by their

mathematically equivalent counterparts as follows:

∑== 3

0

22
k

ji

k

kj

i CA and jijijij

i CCDB 1

3

00 22 ++= . These new

expressions are radix-28 and 25 , respectively. They produce

respectively the same intermediary partial products at PPGji

output as their Seidel counterparts. In fact j
iA is formed by

a succession of four instances of McSorley algorithm, while
j

iB is composed of one instance of Booth algorithm

followed by two instances of McSorley algorithm. Del and

Mux values of the new basic radices are grouped in Table

VI. Results delivered by the deterministic C-program are

reported in Table VII. All solutions are optimal since

Del=Delmin and Mux=Muxmin. They

are all based on radix-28 algorithm

(a,0,0,0). In case r is not a multiple

of 8, optimal solutions are also

obtained, composed mainly of radix-

28 algorithm with at most one

instance of radix-21, 22 or 25

algorithms, depending on the

remainder of r by 8 division.

TABLE IV

DELAY AND MULTIPLEXER

COMPLEXITY OF BASIC

RADICES: STEP #1

Algorithm Del Mux

21 0 5

22 0 10

25 2 133

28 6 1548

Mux values are extracted

from the heuristic

developed in Section III.

Ex: 1548=194 × 8.

TABLE V

OPTIMAL PPGj SOLUTION (a,b,c,d) LEADING TO THE OPTIMAL

RADIX-2
r
 MULTIPLIER ACCORDING TO COMPOSITE METRICS A

i
T

j

Instance Number r size

(bits)
Criteria

a b c d
Del Mux Delmin Muxmin

8 A – T 0 0 4 0 3 40 3 40

A – AT5 0 0 8 0 7 80
16

T 0 3 0 1 5 404
5 80

A – AT3 0 0 16 0 15 160
32

AT4 – T 0 6 1 0 8 808
8 160

A – AT2 0 0 32 0 31 320

AT3 – AT5 0 12 2 0 15 1616 64

T 8 0 0 0 13 12384

13 320

A – AT2 0 0 64 0 63 640

AT3 – AT5 0 25 1 1 28 3340 128

T 16 0 0 0 21 24768

21 640

A – AT 0 0 128 0 127 1280

AT2 – AT5 0 51 0 1 53 6788 256

T 32 0 0 0 37 49536

37 1280

A – AT 0 0 256 0 257 2560

AT2 – AT5 0 102 1 0 104 13576 512

T 64 0 0 0 69 99072

69 2560

A – AT 0 0 512 0 512 5120

AT2 – AT5 0 204 2 0 207 27152 1024

T 128 0 0 0 133 198144

133 5120

A – T: all the metric span A, A5T, A4T, A3T, A2T, AT, AT2, AT3,

AT4, AT5, T. To A and T metrics correspond respectively the

minimal values Muxmin and Delmin that serve as reference for the

optimization process.

TABLE VI

DELAY AND MULTIPLEXER

COMPLEXITY OF THE NEW

BASIC RADICES: STEP #2

Algorithm Del Mux

21 0 5

22 0 10

25 2 25

28 3 40

TABLE VII

OPTIMAL PPGJ SOLUTION (a,b,c,d) LEADING TO THE

OPTIMAL RADIX-2
r
 MULTIPLIER ACCORDING TO

COMPOSITE METRICS A
I
T

J

 Instance Number r size

(bits) a b c d
Del Mux Delmin Muxmin

8 1 0 0 0 3 40 3 40

16 2 0 0 0 4 80 4 80

32 4 0 0 0 6 160 6 160

64 8 0 0 0 10 320 10 320

128 16 0 0 0 18 640 18 640

256 32 0 0 0 34 1280 34 1280

512 64 0 0 0 66 2560 66 2560

1024 128 0 0 0 130 5120 130 5120

The new results are so interesting that we are encouraged

to pursue further the optimization process using higher basic

sub-radices (s>8) to reduce the total delay (DelT) of the

multiplier. Let us this time replace j
iA and j

iB as follows:

∑== 7

0

22
k

ji

k

kj

i CA and ∑== 3

0

22
k

ji

k

kj

i CB .We eliminate radix-25

since it can be derived from radix-21 and 22. The new Del

and Mux values of basic radices are grouped in Table VIII.

The C-program shows up even

more interesting results since starting

from r≥64 (Table IX), lower delays

are obtained with the same

multiplexer complexities as the ones

reported in Table VII. Based on the

obtained results, we pushed farther

the optimization process using even

higher basic sub-radices (s=16..32).

All optimal solutions come either on the form (a,0,0,0) or

(0,b,0,0). At this level we can draw a significant conclusion:

since the optimal solution is always in the form (a,0,0,0) or

(0,b,0,0) with a=2k and b=2k', there exists an integer s=2k''

such as either (s,0,0,0) or (0,s,0,0) is the optimal solution.

Consequently, equation (14) is rewritten accordingly, as

follows: rj
r

N

j

s

r

i

si

s

k

kji

k .CY 222

1

0

1

0

1
2

0

2∑ ∑ ∑−

=

−

=

−

= ⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
= (15)

and ji

k

ji

k

ji

k

ji

k yyyC 12212 2 +− −+= with }{ 21012 ,,,,C
ji

k −−∈ .

Based on heuristic developed in Section III, multiplexer

complexity of equation (15) for the whole multiplier is

always equal to MuxT=10×N/2=5N for any value of r and s.

As for the multiplier delay (DelT), we need to determine the

couple (r,s) that leads to the shortest critical path in terms of

adder levels. This is what is achieved in the next section.

V. THE OPTIMAL PARTITIONNING

The total delay (DelT) of the whole multiplier related to

equation (15) is: DelT= N/r-1+Del+d2 where Del is the PPGj

delay equal to (r/s-1)+(s/2-1), and d2 is the multiplexer

delay corresponding to the recoding logic of radix-22. Thus,

DelT= N/r+r/s+s/2-3+d2.

The optimal delay with regard to r is obtained for (r,s)

couples satisfying () 0/ =∂∂ rDelT , which gives N.sr = .

When r is substituted by N.s into DelT expression, we

obtain:
232//2 dssNDelT +−+= . Likewise, the optimal

delay with regard to s is obtained for s value satisfying () 0/ =∂∂ sDelT . We obtain 3 2/2 Ns = . Hence, the optimal

delay becomes:
2

3 32/3 dNDelT +−= .

Finally, we conclude that the optimal N-bit multiplier, in

comparison to equation (8) [13], relies on the new triple

recursive equation (15) with (r,s)=(3 22 N. , 3 22 /N).

Table X provides the s and r values that lead to the

optimal partitioning with respect to the operand size N. The

values s and r correspond to the number of multiplier bits

that are treated simultaneously inside each PPGji and each

PPGj, respectively. For N=64, the optimal partitioning is

obtained with (r,s)=(32,8) as illustrated by Fig. 4. Whereas

equations (15) and (8) require the same amount of hardware

resources (MuxT , AddT)=(320,31), they exhibit different

critical paths: 7 and 31 in terms of adder levels,

respectively.

VI. DISCUSSION OF THE IMPLEMENTATION RESULTS

We proved via FPGA implementation (Table III) how

much accurate are the area heuristics developed in Section

III (Table II). Based on this, we have undertaken a gradual

theoretical optimization process that yielded to equation

(15). This latter is implemented on FPGA with N=64, and

the results in terms of multiply-time, energy consumption

per multiply-operation, and total gate count, are as follows:

78.98 MMPS, 1.45pJ and 1987 slices, respectively.

Compared to implementation results of Seidel and Dimitrov

algorithms (Table III), gain ratios of 1.62, 1.71, 2.64 and

1.83, 1.71, 3.32 are obtained, respectively. A 64-bit

multiplier generated by Xilinx Coregen exhibits 75.86

MMPS and consumes twelve 18×18 bit DSP-slice

multipliers.

The real reasons behind these important results are

cleared up as follows.

TABLE VIII

DELAY AND MULTIPLEXER

COMPLEXITY OF THE NEW

BASIC RADICES: STEP #3

Algorithm Del Mux

21 0 5

22 0 10

28 3 40

216 7 80

TABLE X

THE OPTIMAL PARTITIONING VERSUS OPERAND SIZE N

Our recoding

Equation (15)

McSorley[13]

 Equation (8)

Seidel[11][19]

Equation (10)

Dimitrov [12]

Equation (13)N

(bits)
s r DelT DelT DelT DelT

8 4 8 2 3 6 1

16 4 8 3 7 7 2

32 8 16 5 15 9 4

64 8 32 7 31 13 8

128 8 32 9 63 21 16

256 16 64 13 127 37 32

512 16 128 17 255 69 64

1024 16 128 21 511 133 128

2048 32 256 28 1023 261 256

4096 32 512 35 2047 517 512

8192 32 512 45 4095 1029 1024

 s value corresponds to the number of bits that are treated

simultaneously inside each PPGji , while r value indicates the number

of bits that are processed simultaneously inside each PPGj. ds is not

included in DelT since d2<d8<d'8.

TABLE IX

OPTIMAL PPGJ SOLUTION (a,b,c,d) LEADING TO THE

OPTIMAL RADIX-2
r
 MULTIPLIER ACCORDING TO

COMPOSITE METRICS A
I
T

J

 Instance Number r size

(bits) a b c d
Del Mux Delmin Muxmin

8 0 1 0 0 3 40 3 40

16 0 2 0 0 4 80 4 80

32 0 4 0 0 6 160 6 160

64 4 0 0 0 10 320 10 320

128 8 0 0 0 14 640 14 640

256 16 0 0 0 22 1280 22 1280

512 32 0 0 0 38 2560 38 2560

1024 64 0 0 0 70 5120 70 5120

 : Optimal solution moved from (0,b,0,0) to (a,0,0,0)

Critical path (DelT)

X

"0" PPG00

1

y0
y1

y2

P127 - 0

64

+ y3

y4
y5

y6
y7

+

+

PPG01 y8
y9

y10 + y11

y12
y13

+

+

PPG02

+

+

+

PPG03

+

+

+

+

+

+

+

+

+

PPG11

+

+

+

PPG12

+

+

+

PPG13

+

+

+

+

+

+ +

2

3

4

5

6

7

PPG0

PPG1
PPG10

y14
y15

y16
y17

y18
y19

y20
y21

y22
y23

y29

y24
y25

y26
y27

y28

y30
y31

y61

y56
y57

y58
y59

y60

y62
y63

y37

y32
y33

y34
y35

y36

y38
y39

y45

y40
y41

y42
y43

y44

y46
y47

y53

y48
y49

y50
y51

y52

y54
y55

Fig. 4. Optimal partitioning of a two’s complement

64×64 bit radix-232 parallel multiplier based on

equation (15) with (r,s)=(32,8).

00
0C

00
1C

00
2C

00
3C

12
0C

12
1C

12
2C

12
3C

02
0C

02
1C

02
2C

02
3C

03
0C

03
1C

03
2C

03
3C

10
0C

10
1C

10
2C

10
3C

11
0C

11
1C

11
2C

11
3C

13
0C

13
1C

13
2C

13
3C

01
0C

01
1C

01
2C

01
3C

PP0

PP1

A. Area occupation

For operand size N=64, equation (15) is a composite

radix-232 algorithm (Table X), where each PPGj processes

simultaneously 32+1 inputs that are split on four sub-radix-

28 PPGji made of four instances (ji
kC) of McSorley algorithm

(Fig. 4). Seidel and Dimitrov algorithms are rather radix-28

algorithms, based on mono-bloc PPGj.

In fact, although radix-28 PPGji of equation (15) and

radix-28 PPGj of Seidel and Dimitrov are based on different

recoding schemes, they are mathematically equivalent since

they produce the same partial product PPji/PPj. Based on

theory (Table II) and implementation results (Table III),

Dimitrov recoding is the most space consuming due to the

use of odd-multiples of the multiplicand. On the other hand,

Seidel recoding does not require odd-multiples, but since

9 inputs are treated simultaneously in a mono-bloc PPGj, a

large amount of multiplexer resources is needed to recode

the 29=512 input combinations. Finally, radix-28 PPGji of

equation (15) is the least area consumer because it does not

employ odd-multiples and requires a small amount of

multiplexers as the total number of input combinations in

each radix-28 PPGji is equal to 8+8+8+8=32. Note that the

three recoding schemes are incorporating a number of

adders in their PPGji/PPGj which is 3, 6, and 1 for equation

(15), Seidel and Dimitrov algorithms, respectively.

Significant conclusion: the area occupation is dominated

by the Mux factor, and becomes larger as Mux number

becomes higher.

B. Delay

Using higher radices (r>>) will certainly shortens the

critical path. However, for high r values, mono-bloc PPGj

recoding induces an important delay (ds) due to the high

density of multiplexer logic that significantly degrades the

whole performance of the multiplier. This is clearly

illustrated by Dimitrov radix-28 recoding whose critical-path

totalizes 8 adder levels but exhibits a lower multiply rate

(43.17 MMPS) compared to Seidel recoding that have a

critical-path composed of 13 adder levels but shows a more

interesting rate (48.62 MMPS) due to lower multiplexer

complexity (Table II and III). As for equation (15), since a

composite PPGj is used, ds is equal to d2 (ji
kC delay) which is

the smallest delay (d2 < d5 < d8). Besides, the critical path

goes through the smallest number (7) of adder stages,

exploiting maximum parallelism that can be provided by the

triple-recursive equation (15). Thus, it is not surprising that

equation (15) achieves the best performance (78.98 MHz),

even when compared to Xilinx Coregen multiplier based on

DSP-slices (75.86 MHz). A double-recursive (s=2) version

of equation (15) served to design a scalable 16-bit setpoint

Finite-Word-Length PID controller, employing five

multiplication cores. The implementation results

outperformed the published ones at all levels [23].

Significant conclusion: using composite recoding in

conjunction with an optimal partitioning (r and s values)

provides the shortest critical path.

Equation (15) shows high aptitude for pipelining. Two

finely and coarsely grained systolic architectures for 64-bit

multiplier are depicted in Fig. 5.a and Fig. 5.b, respectively.

Fig. 5.a architecture is more suitable for high throughput

applications, with 7 clock-cycle latency.

VII. CONCLUSION AND FUTUR WORK

Upon the basis of the new multibit recoding

multiplication algorithm, we developed optimal parallel

multipliers with shortest critical paths and minimum

hardware resources for any value of operand size N. We

demonstrated by theory and FPGA implementation the

superiority of our high-radix algorithms over their existing

counterparts. Because exploiting the maximum parallelism

inherent in multiply operation, our look-up-table based

multiplier (eq. 15) is even speed-competitive with Xilinx’s

hardwired multiplier employing DSP-Slices (18×18 bit full-

custom multipliers).

More importantly, we demonstrated also that the current

trend relying upon minimal number-bases for the

development of high radix-2r recoding (r≥8) with mono-

bloc PPG requires an excessive amount of multiplexer

resources, which offsets speed and power benefits of the

compressor factor N/r. On the other hand, we proved that

composite PPG based on the new recursive multibit

recoding algorithm is the best realistic alternative.

The topology of our proposed recoding schemes shows

high capabilities for pipelining which can be finely or

coarsely grained to satisfy both high throughput and low

latency applications. A radix-232 64-bit parallel multiplier

was finely pipelined, resulting in a systolic architecture with

seven clock-cycle latency.

While the theoretical concept was validated using FPGA

as a preliminary step, an ASIC implementation based on a

standard-cell library is necessary for an ultimate validation

of the whole optimization work. This issue will be explored

in the near future, and we intend to report our results in a

forthcoming paper.

ACKNOWLEDGMENT

This work is supported by “Centre de Développement des

Technologies Avancées, CDTA,” Algiers, Algeria, under

project contract number: 21/CRSOC/DMN/CDTA/2011.

The project progresses under a close cooperation with

“Franche Comté Electronique Mécanique Thermique et

Optique-Sciences et Technologies, FEMTO-ST ” Besançon,

France.

The authors wish to thank T. Hilaire and B. Djezzar for

their careful review of this manuscript.

REFERENCES

[1] Reports on System Drivers of the International Technology Roadmap

for Semiconductors (ITRS), 2009 and 2010.

Available: www.itrs.net/reports.html

[2] H. Sam, and A. Gupta, “A Generalized Multibit Recoding of Two’s

Complement Binary Numbers and its Proof with Application in

Multiplier Implementation,” IEEE Trans. on Computers, vol. 39, N° 8,

August 1990.

[3] G. Kim et al., “A Low-Energy Hybrid Radix-4/-8 Multiplier for

Portable Multimedia Applications,” Proceedings of IEEE

International Symposium on Circuits and Systems, (ISCAS), pp.

1171-1174, Rio de Janeiro, Brazil, May 15-18, 2011.

[4] B.J. Benschneider et al, “A Pipelined 50MHz CMOS 64-Bit Floating-

Point Arithmetic Processor,” IEEE Journal of Solid-State Circuits,

vol. (24) 5, pp. 1317-1323, October 1989.

[5] C.F. Webb et al, “A 400-MHz s/390 Microprocessor,” IEEE Journal

of Solid-State Circuits, vol. (32) 11, pp. 1665-1675, November 1997.

[6] J. Clouser et al, “A 600-MHz Superscalar Floating-point Processor,”

IEEE Journal of Solid-State Circuits, vol. (34) 7, pp. 1026-1029,July

1999.

[7] R. Senthinathan et al, “A 650-MHz, IA-32 Microprocessor with

Enhanced Data Streaming for Graphics and Video,” IEEE Journal of

Solid-State Circuits, vol. (34) 11, pp. 1454-1465, November 1999.

[8] A. Scherer et al, “An Out-of-Order Tree-Way Superscalar Multimedia

Floating Point Unit,” Proceeding of IEEE International Solid-State

Circuits Conference (ISSCC), pp. 94-95, 1999.

7

6

5

4

3

2

1

X 64

"0"
00
0C

y0
y1

y2 + y3

y4
y5

y6
y7

+

+

+

+

+ +

+

+

+ +

+

+

+ +

y29

y24
y25

y26
y27

y28

y30
y31

y8
y9

y10
y11

y12
y13

y14
y15

y16
y17

y18
y19

y20
y21

y22
y23

+

+

+

+

+

+ +

+

+

+ +

+

+

+ +

P127 - 0

+

X 64

00
1C

00
2C

00
3C

10
3C

10
2C

10
0C

10
1C

01
0C

11
0C

01
1C

11
1C

01
3C

01
2C

02
0C

02
1C

02
2C

03
0C

03
1C

13
3C

03
2C

03
3C

02
3C

11
2C

11
3C

12
0C

12
1C

12
2C

13
0C

13
1C

13
2C

12
3C

Fig. 5. Space/Time partitioning of a two’s complement 64×64 bit radix-232 parallel multiplier based on equation (15).

 (a) High-throughput finely-grained systolic architecture; (b) Low-latency coarsely-grained systolic architecture.

y61

y56
y57

y58
y59

y60

y62
y63

y45

y40
y41

y42
y43

y44

y46
y47

y53

y48
y49

y50
y51

y52

y54
y55

y37

y32
y33

y34
y35

y36

y38
y39

y31

y61

y56
y57

y58
y59

y60

y62
y63

y45

y40
y41

y42
y43

y44

y46
y47

y53

y48
y49

y50
y51

y52

y54
y55

y37

y32
y33

y34
y35

y36

y38
y39

y31

P127 - 0

X 64

"0"
y0
y1

y2
y3

y4
y5

y6
y7

+

+

+

+ +

+

+

+ +

+

+

+ +

y29

y24
y25

y26
y27

y28

y30
y31

y8
y9

y10
y11

y12
y13

y14
y15

y16
y17

y18
y19

y20
y21

y22
y23

+

+

+

+

+

+ +

+

+

+ +

+

+

+ +

+

X 64

(b)

00
0C

00
1C

00
2C

00
3C

01
0C

01
1C

01
2C

01
3C

02
0C

02
1C

02
2C

02
3C

03
0C

03
1C

03
2C

03
3C

10
0C

10
1C

10
2C

10
3C

11
0C

11
1C

11
2C

11
3C

12
0C

12
1C

12
2C

12
3C

13
0C

13
1C

13
2C

13
3C

+

+

1

2

3

4 Critical path Clock Cycle Register
(a) (b)

[9] Intel Corp., “Intel 64 and IA-32 Architectures Software Developers

Manual,” volume 1, order number 253668, Copyright May 2011.

[10] R.J. Rieldlinger, “A 32 nm 3.1 Billion Transistor 12-Wide-Issue

Itanium Processor for Mission-Critical Servers,” Proceedings of IEEE

International Solid-State Circuits Conference (ISSCC), pp. 84-86, San

Francisco, CA ,USA, February 20-24, 2011.

[11] P.M. Seidel, L. D. McFearin, and D.W. Matula, “Secondary Radix

Recodings for Higher Radix Multipliers,” IEEE Trans. on Computers,

vol. 54, N°2, February 2005.

[12] V.S. Dimitrov, K.U. Järvinen, and J. adikari, “Area Efficient

Multipliers Based on Multiple-Radix Representations,” IEEE Trans.

on Computers, vol. 60, N° 2, pp 189-201, February 2011

[13] O.L. McSorley, “High-Speed Arithmetic in Binary Computers,”

Proceedings of the IRE, Vol. 49(1), pp. 67-91, January 1961.

[14] F. Lamberti, “Reducing the Computation Time in (Short Bit-Width)

Two’s Complement Multiplier,” IEEE Trans. on Computers, vol. 60,

N° 2, pp. 148-156, February 2011.

[15] S.R. Kuang, J.P. Wang, and C.Y. Guo, “Modified Booth Multipliers

with a Regular Partial Product Array,” IEEE Trans. on Circuit and

Systems II, Express Brief, vol. 56, N° 5, May 2009.

[16] S.R. Kuang, J.P. Wang, “Design of Power-Efficient Configurable

Booth Multiplier,” IEEE Trans. on Circuit and Systems I, vol. 57, N°

3, March 2010.

[17] M. Själander and P. Larsson-Edefors, “Multiplication Acceleration

Through Twin Precision,” IEEE Trans. on Very Large Scale

Integration (VLSI) Systems, Vol. 17, N° 9, September 2009.

[18] A. D. Booth, “A Signed Binary Multiplication Technique,” Quarterly

J. Mech. Appl. Math., Vol. 4, part 2, pp. 236-240,1951.

[19] P.M. Seidel, L. D. McFearin, and D.W. Matula, “Binary

Multiplication Radix-32 and Radix-256,” Proceedings of the IEEE

Symposium on Computer Arithmetic (ARITH-15), ISBN: 0-7695-

1150-3, pp. 23-32, USA, June 2001.

[20] A.K. Oudjida et al., “A New Recursive Multibit Recoding Algorithm

for High-Speed and Low-Power Multiplier,” Accepted for publication

in Journal of Low Power Electronics (JOLPE), Vol. 8, N° 5,

December 2012.

[21] E. Manmasson et al., “FPGA in Industrial Control Applications,”

IEEE Trans. on Industrial Informatics, vol. 7, N° 2, May 2011.

[22] M. Alioto, Elio Consoli, and Gaetano Palumbo, “Metrics and Design

Consideration on the Energy-Delay Tradoff of Digital Circuits,”

Proceedings of the IEEE International Symposium on Circuits and

Systems (ISCAS’09), pp. 3150-3153, Taiwan, May 24-27 2009.

[23] A.K. Oudjida et al., “High-Speed and Low-Power PID Structures for

Embedded Applications,” Proceedings of the 21th edition of the

International Workshop on Power and Timing Modeling,

Optimization and Simulation PATMOS, LNCS 6951, pp. 257-266,

Springer-Verlag Editor. Madrid, Spain, September 26-29, 2011.

APPENDIX

Proof of theorem 1: Initially, the multiplier Y is an N bit string. But to comply with the requirement

of the multibit recoding algorithm [2], we need to add a zero bit (y-1) to the less significant side of Y.

Thus, the total size becomes N+1.

122101 −−− ⋅⋅⋅= NN yyyyyyY with y-1=0

Y is a two’s complement number. It is written as follows:

1
1

2
2

2
2

1
1

0
0

1 22222 −−−−− −+⋅⋅⋅++++= N
N

N
N yyyyyyY

 j
N

j

j
N

N yy 22
2

1

1
1 ∑−−=−− +−=

In the multibit recoding algorithm, the multiplier Y is split into N/r two’s complement slices (
jQ),

each of r+1 bit length. Two contiguous slices (Qj with Qj-1, and Qj with Qj+1) have one overlapping

bit in common. Thus Y becomes:

(∑−= ++− ⋅⋅⋅++++=
1

0

2
2

1
10

1 222
r

N

j

rjrjrjrj yyyyY) ∑−=−+−−+− =−+
1

0

1
1

2
2 2222

r

N

j

rj
j

rj
rrj

r
rrj

r Qyy

In fact the Qj term is no more than a two’s complement representation of r+1 bit string which can

be split in its turn into r/s two’s complement overlapping slices (Pji), each of s+1 bit length. Thus Y

becomes:

([∑−= ++− ⋅⋅⋅++++=
1

0

2
2

1
10

1 222
r

N

j

rjrjrjrj yyyyY .) +−+ −+−−+− 0
1

1
2

2 222 srj
s

srj
s yy

 (⋅⋅⋅++++ +++++−+ 2
2

1
10

1 222 srjsrjsrjsrj yyyy .) +−+ −+−−+− s
srj

s
srj

s yy 222 12
1

22
2

 .
 .
 .

 (⋅⋅⋅++++ +−++−+−+−−+ 22
2

12
1

2
0

21 222 srrjsrrjsrrjsrrj yyyy .) +−+ ⎟⎠
⎞⎜⎝

⎛ −
−−+−−−+− 2

1
1

2
2 222 s

r
s

srrj
s

srrj
s yy

 (⋅⋅⋅++++ ++++++−+−−+ 2
2

1
10

1 222 srrjsrrjsrrjsrrj yyyy .) ⎥⎥⎦
⎤−+ ⎟⎠

⎞⎜⎝
⎛ −

−+−−+− 1

1
1

2
2 222 s

r
s

rrj
s

rrj
s yy

 () rj
r

N

j

s

r

i

si
sisrj

s
sisrj

s
sirjsirjsirjsirj yyyyyy 2222222

1

0

1

0

1
1

2
2

2
2

1
10

1∑ ∑−

=

−

= +−+−+−+−++++++− ⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
−+⋅⋅⋅++++= .

 rj
r

N

j

s

r

i

si
jiP 22

1

0

1

0

∑ ∑−

=

−

= ⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
=

 A synoptic scheme is depicted in Fig. 1 to illustrate the use of theorem 1 in the partitioning of

a 16-bit Y operand.

Proof of theorem 2: Likewise, Y can also be rewritten as follows:

([∑ ∑−

=

−+
= +++++++−⎢⎢

⎢
⎣

⎡
⋅⋅⋅+++=

1

0

1

0

1
10

1 22
r

N

j

ts

r

i

itsrjitsrjitsrj yyyY)()()(.) +−+ ++−+−++−+−
itssrj

s
itssrj

s yy)()(1
1

2
2 22

 (⋅⋅⋅+++ +++++++++−+ itssrjitssrjitssrj yyy)()()(. 1
10

1 22)] ()] rjitss
itsrrj

t
itsrrj

t yy 22222 1
1

2
2 +++−+−++−+− −+)()(

 [] () rj
r

N

j

ts

r

i

itss
jiji TP 222

1 1

0

∑ ∑− −+
=

+
⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
+=

A synoptic scheme is depicted in Fig. 2 to illustrate the use of theorem 2 in the partitioning of a 16-

bit Y operand.

y-1 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

P00

P01

P10

P11

Q0

Q1

Y

Figure 1. Partitioning of a 16-bit Y operand with

r=8 and s=4

Y

16+1 bits

Qj

8+1 bits

Pji

4+1 bits

y-1 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

P00

T00

P10

T10

Q0

Q1

Y

Figure 2. Partitioning of a 16-bit Y operand

with r=8, s=6 and t=2

Y

16+1 bits

Qj

8+1 bits

Pji

6+1 bits 2+1 bits

Tji

